
Chapter 5

Development of Deep Learning Joint Single Image

Super-resolution and Deblurring Network for Re-

mote Sensing Images

5.1 Introduction

In the recent years, DL-based techniques have gained remarkable progress in the

fields of image processing, computer vision, and its related areas; it achieves state-of-

the-art performance for the SISR of natural RGB RS images. DL-based SR methods

have become emerging research topic in RS applications. Due to the automated

extraction of high-level and complex features besides low-level features at different

abstraction levels, it becomes very effective for RS imagery because they frequently

have complex structures and detailed textures at multiple resolutions, which cannot

be represented well by the hand-crafted features alone.

State-of-the-art DL-based SR techniques can be divided mainly into two cate-

gories: generative adversarial networks (GAN) [52, 59, 110] and convolutional neural

networks (CNN) [18, 22, 45, 53, 97, 125]. Although GAN-based SR networks approx-

imate the original HR images to produce more realistic and perceptually enhanced

HR images, their main limitation is that the reconstructed HR images obtained

by these networks have a large structural difference from the original HR images.

Furthermore, GAN network training is a challenging task as it often suffers from

training instability, leading to problems, like mode collapse or oscillation that pose

significant practical constraints [88]. CNN-based SR methods CNN-based SR meth-

ods [18, 22, 45, 53, 125, 132] use advanced network architectures, residual learning,

and attention mechanisms to minimize the structural error between reconstructed

HR and original images by learning the intricate relationships between LR and

HR images. These CNN-based methods aim to capture and restore the missing
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high-frequency details and structural information in the LR images, bringing the

reconstructed HR images closer to the original ones. They achieve this by training

on a large dataset of LR-HR image pairs and optimizing network parameters. How-

ever, existing CNN-based RS super-resolution approaches still have the following

limitations: (1) there is scope for further improvement of the existing networks per-

formance by extracting the relevant features from the input LR using deep neural

networks. However, vanishing or exploding gradient problems are still prevalent in

deeper models (2) Existing RS super-resolution models treat spatial and channel

features equally, limiting their flexibility in dealing with diverse kinds of informa-

tion, and their ability to discriminate for the extraction of more meaningful features;

(3) They only perform the bicubic kernel-based downsampling operation for the LR

image generation within the image degradation model. However, in real-world im-

age degradation, mixed processes, such as downsampling due to imaging sensor’s

resolution and Gaussian blurring due to finite aperture of the optical lens and at-

mospheric turbulence are used to mimic the natural process of conversion from HR

to LR images. In contrast, traditional CNN-based methods are unable to efficiently

reconstruct HR images from the blurred and downsampled LR images.

In this chapter, we focus on developing a hybrid dual-branch CNN network that

performs both SR and image deblurring tasks concurrently in order to recover clear

and sharp HR images from blurry LR remote sensing images. The feature extraction

step is divided into two task-independent branches, including deblurring and SR

feature extraction, and then an attention-based gated module is used to adaptively

fuse the features from both the branches, allowing the dual-branch CNN network

to perform both SR and deblurring tasks at the same time. A residual spatial and

channel squeeze-and-excitation (RSCSE) module is designed to extract SR features;

specifically, a concurrent spatial and channel squeeze-and-excitation (SCSE) module

is used in a residual network. By recalibrating the feature maps simultaneously, this

concurrent SCSE module is capable of making feature maps more representational.

Furthermore, to adaptively retain local features, each RSCSE module utilises the

local feature fusion (LFF) concept. Similarly, the deblurring module is designed in

such a way that extracts sharp features from the blurry LR image using a simple
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SCSE-based encoder-decoder CNN structure. The proposed joint DL network is

evaluated on publicly available RS as well as real MS image datasets, outperforming

state-of-the-art methods both in terms of visual analysis and objective criteria.

5.1.1 Main contributions of the chapter

The main contributions of the proposed work are summarized as follows:

(i) We propose a joint dual-branch CNN network for the SR of RS images, which

have undergone both blurring and downsampling in the process of its acquisi-

tion. By addressing the dual problems of SR and deblurring simultaneously,

the proposed method restores clear and sharp HR images from a blurred LR

image. To achieve this, we have designed an attention-based gated DL mod-

ule that effectively combines the features extracted from both the SR and

deblurring networks.

(ii) We propose an SR feature extraction module, which adopts a RSCSE module

to extract SR features efficiently by applying spatial and channel squeeze-

and-excitation (SCSE) concurrently with local feature fusion (LFF) concept

to increase its representational ability. The proposed deblurring module is

developed based on SCSE-based encoder-decoder CNN structure for extracting

sharp features from the blurry LR images.

(iii) Extensive simulations are performed on publicly available RGB and real MS

remote sensing datasets for various zooming factors. Training datasets for the

proposed model are obtained by selecting more informative band images based

on entropy and variance values. To preserve the spectral information in these

MS datasets, we train and test SR models on individual spectral bands.

The rest of the chapter is organized as follows: Section 5.2 discusses prior art,

including residual learning and upsampling methods. Section 5.3 describes the pro-

posed method in detail. Experimental datasets and simulation results are discussed
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in Section 5.4. Finally, Section 5.5 draws a few conclusions on the current work

done.

5.2 Prior Art

5.2.1 Residual learning

Figure 5.1: Residual learning.

It is observed that SR method widely uses residual learning [85, 99], which is

shown in Fig. 5.1. When the DL network becomes deeper and complex, this learning

strategy is employed mostly to mitigate vanishing gradients. They can be broadly

divided into two categories: global and local residual learning.

(i) Global residual learning: Since image SR is an image-to-image translation

problem in which the input image is closely correlated with the output im-

age, global residual learning is used to learn only the residuals between them.

Learning a complex transformation from one complete image to another is

avoided in favor of learning only a residual map to recover the high-frequency

information that are missing. The model complexity and learning difficulties

are substantially reduced since the residuals are almost zero in the majority

of regions. Therefore, it is extensively used by SR models [40, 45, 95].

(ii) Local residual learning: The local residual learning is very analogous to

the residual learning that is used in ResNet [35]. It is utilized to mitigate the
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degradation issue [96] caused by steadily growing network depths, minimise

training difficulty, and increase learning ability. It is also often used for SR [57,

66, 132].

Practically, shortcut connections with element-wise addition are used to implement

both techniques. The primary difference between the two approaches is that the

former directly connects the input and output images, whereas the latter typically

introduces multiple shortcuts between layers at different depths within the network.

5.2.2 Upsampling methods

5.2.2.1 Sub-pixel layer

Sub-pixel layer [87] is an end-to-end learnable upsampling layer used in image SR

to increase the spatial resolution of an image by a factor of n (where n is the scaling

factor). The technique involves performing convolution on an input image to produce

feature maps that are equal to n2 times channels in total, followed by rearranging

the resulting feature map in a way that effectively upscales the image, as shown in

Fig. 5.2. Suppose, the input feature map size is h × w (Fig. 5.2a) and the output

size after convolution will be of h×w×n2c (Fig. 5.2b). Using a reshaping operation,

the final output will be of nh × nw × c obtained from the convolved feature map.

(Fig. 5.2c). The rearrangement is achieved by interleaving the values of the feature

map in such a way that they form a grid of size n × n. For example, if n = 2, the

values in the feature map are interleaved such that every other pixel corresponds

to a new pixel in the output image. By having a larger receptive filed, sub-pixel

layer can incorporate more contextual information, which results in generating more

realistic details.
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Figure 5.2: Sub-pixel layer.

Figure 5.3: Post-upsampling SR.

5.2.2.2 Post-Upsampling SR

To restore high-quality details, the pre-upsampling SR technique [22], [45] first uses

interpolation methods to upsample LR images to the target HR image, which is

subsequently refined using DL networks. However, the cost and complexity of the

pre-upsampling approach is very high because DL network is being applied on HR

space. To address the limitations of pre-upsampling SR, a post-upsampling strat-

egy is employed to fully use the DL technology to increase the spatial resolution

automatically by introducing end-to-end learnable upsampling layers at the end

of the DL models. The LR input images are directly fed into DL networks for

feature extraction without enhancing resolution, and sub-pixel layers are added to

upsample feature maps at the network’s end. Since the computationally expensive

feature extraction procedure only occurs in low-dimensional space and the resolution

increases only at the end, computation and spatial complexity are considerably re-

123



5.3. Proposed method

duced. Therefore, this method has become one of the most commonly used methods

in SR [52, 61, 101].

5.3 Proposed method

In order to reconstruct a clear and sharp HR remote sensing image, a joint dual-

branch SR and deblur network (JSRDNet) is developed and applied on the blurred

LR remote sensing image. The schematic diagram of the proposed JSRDNet is

shown in Fig. 5.4. It consists of four main modules: (i) the SCSE-based SR feature

extraction module for extracting highly representative feature maps; (ii) the de-

blurring module for obtaining deblurring feature maps; (iii) the SCSE-based gated

fusion module to adaptively fuse the SR and deblurring feature maps by recalibrat-

ing them, and (iv) the upscaling and reconstruction module to reconstruct the final

super-resolved image. In the following sections, each stage is elaborated in details:

Figure 5.4: The schematic diagram of the proposed JSRDNet

5.3.1 SR feature extraction module

In this section, a fully trainable feature extraction module for SR is designed for

RS images, which mainly consists of two major parts: shallow feature extraction

module FSFE and deep feature extraction module Fn
RSCSE. Given a blurred LR

image Y ∈ Rh×w×n (n= 1 or 3, represents the number of bands), in our formulation,

the SR feature map FSR is obtained by the following steps:
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5.3.1.1 Shallow feature extraction (SFE)

Initially, a 3 × 3 convolution layer is used for extracting the shallow features Fin

from the input Y, as follows:

Fin = FSFE(Y) ∈ Rh×w×c, (5.1)

where FSFE(·) performs the convolution (conv) operation and c is the number of

feature maps or channels.

5.3.1.2 Deep feature extraction

The extracted shallow feature Fin is fed to the input of a stacked RSCSE modules

for extracting the deeper SR feature map FSR. DL super-resolution models are

designed to learn hierarchical representations of the LR input images. The shallow

feature module is used as an initial stage in this hierarchy for extracting basic pat-

terns and structures, which may lack discriminative power. Given that RS images

exhibit highly detailed and complex structures, the deeper feature extractor mod-

ule is employed to extract more abstract and complex features. This hierarchical

approach allows the SR model to effectively increase the representation of the input

LR images, thereby enhancing discriminative power. The process is described as

follows:

FSR = FRIR(Fin) ∈ Rh×w×c, (5.2)

where FRIR(·) is a deep residual-in-residual (RIR) [132] structure and FSR is the

target SR feature map. As shown in Fig. 5.6, the network architecture realizing

FRIR function consists of N RG blocks and a residual long skip connection (LSC).

Therefore, Eq. 5.2 is rewritten as follows after using LSC:

FSR = WRG ∗ (Fn
RG(Fn−1

RG (· · ·F0
RG(Fin) · ·))) + Fin

= WRG ∗ FN
RG(Fin) + Fin,

(5.3)
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Figure 5.6: Proposed SR feature extraction module.

where FRIR(Fin) = WRGFN
RG(Fin)+Fin, andWRG corresponds to the weight matrix

of a 3×3 conv layer that is applied to the feature map of the N th RG block. Further,

as shown in Fig. 5.6, each RG consists of M numbers of RSCSE blocks (RBs) with

a short skip connection (SSC). The mth RB block with SSC connection in nth RG

can be expressed as:

Fn = WRB ∗ Fn
RB(F

n,m−1
RB (· · ·Fn,0

RB(Fn−1)) + Fn−1

= WRB ∗ FM
RB(Fn−1) + Fn−1,

(5.4)

where Fn and Fn−1 represent the output and input of the nth RG, respectively. The

function of mth RB is Fm
RB and the conv layer at the end of the nth RG is represented

by the weight matrix WRB. The local feature fusion (LFF) concept [135] is applied

to the RB module for preserving the high-frequency information adaptively by using

local dense features. The formulation of the mth RB combined with the LFF and

the SCSE modules in mth RG can be expressed by:

Fn,m = Fn,m−1 + FLFF SCSE(Fn,m−1)

= Fn,m−1 +Rn,m,
(5.5)
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where FLFF SCSE(·) is the function for the combination of the LFF and the SCSE

modules. Fn,m and Fn,m−1 denote the output and input of the mth RB in the nth

RG, respectively. Feature maps Rn,m are obtained as follows:

Rn,m = Xn,m · Sn,m

= FLFF (Fn,m−1) · FSCSE(Xn,m),
(5.6)

In LFF, first, the feature maps from the (m − 1)th RB are introduced to the mth

RB through concatenation. Next, The 1×1 conv layer serves as a gating layer that

reduces the dimensionality of the concatenated feature maps. It achieves this by

applying a conv operation with a 1×1 kernel size. This operation effectively reduces

the number of features in the concatenated feature maps, while preserving spatial

information. This LFF operation is formulated as follows:

Xn,m = Hm,LFF (Fn,m−1;Fm,s;Fm,2), (5.7)

where Hm,LFF represents the operations of the 1 × 1 conv layer in the mth RB.

Fn,m−1, Fm,s, and Fm,2 denote the outputs of the (m− 1)th RB, feature component

yield by ReLU function after first conv, and the second conv layers in the mth RB,

respectively.

Figure 5.7: Spatial-channel squeeze and excitation attention (SCSE) module.
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5.3.1.2.1 Spatial-channel squeeze and excitation attention (SCSE) block

Deep CNN has the ability to generate the features containing different kind of in-

formation both spatially and channel-wise, each of which contributes to recovery of

the high-frequency details. Learning more significant features would improve the

network’s performance and representation power, leading the network to become

more sensitive to higher contributing features. In view of this, a concurrent spatial

and channel squeeze and excitation block (SCSE) [78] is introduced into the residual

block (RB) by leveraging the interdependencies across channel and spatial features

in order to adaptively recalibrate the representations of features. The architecture

of the concurrent SCSE is illustrated in Fig. 5.7, which consists of two main compo-

nents: spatial squeeze and channel excitation block (SSEB) and channel squeeze and

spatial excitation block (CSEB). Let U ∈ Rh×w×c be an input feature map is being

applied to SCSE module, FSCSE to generate output feature map, ÛSCSE ∈ Rh×w×c.

In SSEB module, the input feature maps U = [u1, u2, ··, ui, ··, uc] ∈ Rh×w×c,

where ui ∈ Rh×w is transformed into recalibrated form by squeezing both spatially

and exciting channel-wise. A spatial squeeze process Fsq is performed via global

average pooling to obtain a scaler descriptor vector z = [z1, z2, ·, ·, ·, zc] ∈ R1×1×c

with its cth element, as follows:

zc = Fsq(uc) =
1

h× w

h∑
i

w∑
j

uc(i, j), (5.8)

By performing this process, the global spatial information is incorporated into the

vector z. In the channel excitation process Fce, the network learns channel depen-

dencies to adaptively determine excitation or scaling factors s. This operation is a

gating mechanism that performs channel attention by employing two fully connected

layers, ReLU operation δ(·), followed by a sigmoid activation σ(·):

sc = Fce(z) = σ(W1δ(W2z)), (5.9)

where W1 ∈ Rc× c
2 and W2 ∈ R c

2
×c represent weights of the two fully connected
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layers. The activation functions are adaptively tuned by the network as it learns to

abandon less significant channels and prioritize relevant ones. Finally, the output

feature maps ÛSSEB of SSEB module is obtained by mulitplying U by sc:

ÛSSEB = FSSEB(U) = U · FceFsq(U) = U · sc, (5.10)

In CSEB module, the feature map U = [u1,1, u1,2, ··, ui,j, ··, uh,w], where ui,j ∈

R1×1×c is recalibrated by squeezing channel-wise and exciting spatially. A channel

squeeze operation (Fcq) is achieved by employing 1×1 conv layer on the input feature

map U, i.e.: q = Fcq(U) = Wcq∗U. Here, Wcq ∈ R1×1×c is the weight and q ∈ Rh×w

is a projection tensor. The linear combination of all the channels c at each spatial

location (i,j) is represented by each qi,j. In the spatial excitation process Fse, the

sigmoid function σ(·) is used to excite U spatially by rescaling activations to [0,

1] i.e. ss = Fse(q) = σ(q). These activations aid in learning the network to pay

attention on more important spatial locations while ignoring irrelevant ones. The

final output feature map ÛCSEB of CSEB module is achieved by multiplying the

input feature map U element-wise with ss as shown:

ÛCSEB = FCSEB(U) = U · FcqFse(U) = U · ss, (5.11)

Finally, the outputs of SSEB and CSEB modules are combined to obtain the

target feature map ÛSCSE of the concurrent SCSE module FSCSE, as follows:

ÛSCSE = FSCSE(U) = ÛSSEB + ÛCSEB. (5.12)

Both channel and spatial rescalings increase the activation of a specific location (i,

j, c) on the input feature map U. With this recalibration, the network is compelled

to learn feature maps that are more significant both spatially and channel-wise.
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5.3.2 Deblurring module

A deblurring module is developed based on the encoder-decoder CNN structure

to extract sharp features from the blurred LR image Y. The architecture of the

deblurring feature extraction module is shown in Fig. 5.5. It consists of an encoder,

a SCSE module and a decoder, as follows:

FDeblur = Fdecoder(FSCSE(Fencoder(Y))) (5.13)

The encoder is composed of four convolutional layers with increasing numbers of

filters, followed by a SCSE module. The SCSE module is incorporated in order to

make encoder feature maps more informative. The number of filters in the convo-

lutional layers are 64, 128, 256, and 512. The spatial dimensions of the input are

reduced by a factor of 2 in each layer due to the 3×3 kernel size and 1 padding of

each convolution layer. The decoder uses three transposed convolutional layers with

decreasing numbers of filters. The number of filters in the transposed convolutional

layers in the decoder are 256, 128, and 64, respectively. As the kernel size of each

transposed convolutional layer is 3×3, stride 1, and padding 1, which upsample the

spatial dimensions of the encoded feature maps. The final layer of the decoder is a

transposed convolutional layer with kernel size 3×3, stride 1, and padding 1, which

produces the deblurred image with the same size as Y. The activation function

utilized throughout the model is ReLU for non-linearity.

5.3.3 SCSE-based gated fusion module

In the dual branch feature extraction process, the features extracted by the SR

feature extraction module try to recover spatial details that are lost due to down-

sampling of the original scene information, while the features extracted by the deblur

feature extraction module are especially the high-frequency features lost due to the

blurring of the imaging sensor. A gating mechanism is used to ensure the signifi-

cance of SR and deblur feature maps and accumulate the most relevant information
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accordingly. The SCSE attention mechanism is integrated into a gated fusion mod-

ule, which dynamically evaluates and selectively merges features from both modules.

This approach not only preserves local and contextual information but also enhances

the representational power of the fused feature map. Essentially, the SCSE-based

gated module Gscse consists of three layers and the SCSE module: one concatenation

layer, a 3×3 convolution layer (conv3×3), a Leaky ReLU, a SCSE module (FSCSE)

and a 1×1 convolution layer (conv1×1), as shown in Fig. 5.8. A set of SR feature

maps (FSR), deblur feature maps (FDeblur) and blurry LR input (Y) are applied to

Gscse. Subsequently, Gscse produces representational weight map to merge FSR and

FDeblur effectively. The fused feature maps Ffusion can be expressed by:

Ffusion = Gscse(FSR, FDeblur, Y )⊗ FDeblur + FSR

= FG ⊗ FDeblur + FSR,
(5.14)

where FG = Conv1×1(FSCSE(LeakyReLU(conv3×3(concat(FSR, FDeblur, Y))))).

Figure 5.8: SCSE-based gated fusion module.

5.3.4 Upscaling and reconstruction module

The final reconstructed SR output X̂ is obtained as follows:

X̂ = FUP (Fsmooth(Ffusion) ∈ RUh×Uw×n, (5.15)
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where n may be 3 or 1. FUP (·) denotes the upscaling and reconstruction module

which consists of one sub-pixel conv followed by single conv layer with kernel size

3× 3. Additionally, Fsmooth(·) represents a 3× 3 conv operation that is applied on

Ffusion for smoothing the refined fusion features.

5.3.5 Loss function

Our training data consists of N ground truth HR images {X}Ni=1 with corresponding

blurred LR images {Y}Ni=1 as well as N interpolated LR images {Ytarget}Ni=1, which

are obtained by bicubic interpolation of X. In order to train the proposed JSRDNet

network, SR loss (LSRREC
) and deblurring loss (LDeblur) are jointly optimized, as

follows:

min
{θ1, θ2}

LSRREC
(X̂,X) + αLDeblur(Ysharp,Ytarget), (5.16)

Here, X̂ and Ysharp are the predicted HR and LR images, respectively. α is used as

a weight for balancing the two loss terms. The pixel-wise L1 loss function is used

optimized both LSRREC
and LDeblur. These losses are defined as:

LSRREC
(θ1) =

1

N

N∑
i

∥∥∥X̂i −Xi

∥∥∥
1
. (5.17)

LDeblur(θ2) =
1

N

N∑
i

∥∥Ysharpi −Ytargeti

∥∥
1
. (5.18)

133



5.4. Results and Discussions

5.4 Results and Discussions

5.4.1 Dataset preparation

Simulations are done using RS images obtained from two publicly available databases,

namely, PatternNet1 and AID2, as well as two real MS remote sensing datasets, LISS-

IV3 and LISS-III3, collected from the NRSC data center. The training datasets

from the PatternNet and AID include approximately 80% of the total data in each

of the databases, selected randomly, having both textural and structural informa-

tion. While the validation is carried out on another 10% of the total data selected

randomly and not considered at all during the training.

In order to maintain uniformity in terms of number of images and size with

the PatternNet images, an equal number of Region of Interest (RoI) images of size

256×256 are chosen from the original images (of size ≈ 10000×10000) from the

LISS-III and LISS-IV datasets. For the preparation of training datasets for DL-

based methods using LISS-III and LISS-IV, care has been taken to include images

from all the spectral bands; the individual bands are selected based on their entropy

and variance values. By computing the entropy and variance of each band image

and ranking the bands accordingly, the top to medium-ranked entropy and variance

values are chosen for the training dataset, while the ones with the lowest values

are discarded. This approach ensures that the most informative band images are

selected, which leads to more accurate and robust training of DL models compared

to random selection. For testing purposes, a few images from the aforementioned

datasets are randomly selected ensuring that they are neither part of the training

set nor the validation, as shown in Fig. 5.9.

1PatternNet data: https://sites.google.com/view/zhouwx/dataset
2AID data: https://captain-whu.github.io/AID/
3NRSC Data Center: https://uops.nrsc.gov.in/ImgeosUops/land.html
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Figure 5.9: Column 1-2 from left to right: Publicly available remote sensing test
images of (a) PatternNet,(b) AID; Column 3-4 from left to right: Real MS remote
sensing test images of (c) LISS-III and (d) LISS-IV datasets for different bands.

5.4.2 Degradation method

For simulation of the proposed JSRDnet, blurred LR images (Y) are generated from

their corresponding HR images (X). First, the HR image is blurred using a 3×3

Gaussian kernel (sigma=0.6). Next, the blurred image is downsampled by different

scaling factors: 2,3 and 4. In order to train the deblurring network, we generate

sharp downsampled (resized) images by applying bicubic kernel to the HR images

X.

5.4.3 Experimental settings

The training dataset is subjected to data augmentation, which includes rotation

by 90◦, horizontal and vertical flipping, random inversion, and channel shuffling. In

each training batch, the proposed network takes 8 LR patches, each with dimensions

of 96×96, as inputs. The SR module consists of 10 RG units, where each unit is
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Table 5.1: Ablation study conducted on ‘Test-1’ image for 2× and 4× zooming
factors.

Component ×2 ×4
Baseline (Channel attention) 3 3

SCSE module 7 3 3 3 3 7 3 3 3 3

LFF module 7 7 3 3 3 7 7 3 3 3

Deblur module 7 7 7 3 3 7 7 7 3 3

Gated module 7 7 7 3 7 7 7 7 3 7

Gated module with SCSE 7 7 7 7 3 7 7 7 7 3

PSNR (dB)/SSIM
33.76/
0.944

34.05/
0.945

34.16/
0.946

35.17/
0.955

35.26/
0.956

28.34/
0.768

28.53/
0.772

28.62/
0.779

28.90/
0.790

28.95/
0.791

composed of 20 RSCSE blocks and one convolutional layer. To enhance the network’s

capacity, each layer (excluding the input and upsampling layers) is allocated 64

channels. During the training process, the initial learning rate is set to 1×10−4

and is reduced to half for every 20% of the total iterations. The ADAM optimizer,

with β1 = 0.9, β2 = 0.999 and ϵ= 10−6, is employed to optimize the network’s

performance. The activation function and α used in the gated module with SCSE is

the leaky rectified linear unit with a negative slope of 0.2 and 0.5, respectively. The

implementation of the proposed network utilizes PyTorch 1.9.0 and CUDA toolkit

11.1, executed on a Linux server with an Intel Xeon CPU, Ubuntu 16.04 OS, 128

GB RAM, and NVIDIA Tesla V100 GP-GPU hardware. The model is trained for

15,000 iterations over approximately 2 days.

5.4.4 Ablation studies

In this section, the effectiveness of the main components of our proposed JSRDnet

network is shown by conducting a series of ablation studies on PatternNet dataset

using ‘Test-1’ as the testing image for 2× and 4× factors, as shown in Table 5.1.

We have used the RCAN model as the baseline model for SR, which solely employed

the channel attention (CA) module. When we replace CA with the SCSE module,

the PSNR increases by 0.29 dB for 2× and 0.19 dB for 4× factors, respectively. It

is evident that the features obtained from the SCSE module boost performance.

Furthermore, as shown in Fig. 5.6, the LFF module is connected to the SCSE

in such a way that they increase PSNR by 0.11 dB and 0.09 dB for 2× and 4×

factors, respectively. We further explore the combined effect of debluring and SR
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modules when their features are jointly learned using a gated module. It is observed

from Table 5.1 that compared to only using the SR module, their combined effect

improves PSNR by 1.01 dB for 2× factor, and by 0.26 dB for 4× factor. This

comparison evidently shows the effectiveness of the joint deblurring and SR modules

with learned gated module (JDSRGN) on the performance. Finally, when SCSE

module is integrated into the gated module, the PSNR increases by 0.09 dB and

0.05 dB over JDSRGN for 2× and 4× factors, respectively.

Another ablation study is conducted as indicated in Eq. 5.16, by omitting the

deblurring loss (LDeblur). In this configuration, both the SR feature extraction mod-

ule and the deblur module are trained solely using super-resolution loss (LSRREC
).

This resulted in a notable performance decrease, with PSNR values of ‘Test-1’ de-

creasing from 35.26 to 34.91 in the joint deblurring and SR task. This highlights the

importance of incorporating LDeblur to guide feature extraction, improving model

performance.

5.4.5 Comparison with the state-of-the-art

To show the competitiveness of our proposed method with other state-art-the-art

DL-based methods on the PatternNet and AID remote sensing datasets, the pro-

posed method is compared with SRCNN [22], VDSR [45], SAN [18], MHAN [125],

CFSRCNN [97], HSENet [53], RCAN-it [62], GFN [129] and DASR [107] and SR-

Former [139]. SRFormer is transformer-based SR model for natural images. These

networks are re-trained using the same datasets and environment as used by the

proposed approach for fair comparison. Among them, GFN and DASR are designed

for the joint SR and deblurring problem for natural scenes. MHAN and HSENet

methods are the SR model for remote sensing images and the rest are excellent

methods for natural images. The SR results obtained by the various methods are

quantitatively evaluated using six metrics, including PSNR, SSIM, ERGAS [105],

SAM [121], Q-index [113] and sCC [137]. Better reconstructed image quality is indi-

cated by higher values of PSNR, SSIM, UIQI, sCC, and lower values of ERGAS and
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SAM. The quantitative evaluation results on test images of PatternNet and AID

using ×2, ×3 and ×3 upscaling factors are shown in Table 5.2 and 5.3. The results

in the table are highlighted in bold, which denotes the best-performing methods. It

is observed that the proposed JSRDNet always outperforms the other state-of-the

art SR models on all scales. The proposed method achieves the maximum average

PSNR for PatternNet test images when ‘Test-1’ and ‘Test-2’ are taken into account,

with improvements of 1.72–4.8 dB, 0.72–3.62 dB, and 0.62–2.89 dB for ×2, ×3,

and ×4 upscaling factors, respectively. In case of AID, JSRDNet has the highest

Figure 5.10: Visual comparisons of SR results for different methods on ‘Test-3’ for
×2, ×3 and ×4.

PSNR for ‘Test-3’ and ‘Test-4’ images, resulting in gains of 1.04–4.91 dB, 0.43–2.49

dB, and 0.25–2.23 dB in comparison to other methods for 2×, 3×, and 4× factors,

respectively. Additionally, JSRDNet yields the highest scores for SSIM among all

SR models for both datasets. Furthermore, the proposed method exhibits superior
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Table 5.2: Quantitative comparison of test images of PattenNet dataset with different
methods for different zooming factors. The best results are in bold.
Methods Scale

Test-1 Test-2
PSNR
(dB)

↑ SSIM↑ ERGAS↓ SAM↓ UIQI↑ sCC↑ PSNR
(dB)

↑ SSIM↑ ERGAS↓ SAM↓ UIQI↑ sCC↑

Bicubic

×2

30.57 0.875 4.621 0.0840 0.8405 0.9787 33.60 0.935 2.625 0.0480 0.8584 0.9912
SRCNN [22] 30.85 0.885 4.480 0.0795 0.8544 0.9805 33.83 0.938 2.569 0.0449 0.8664 0.9922
VDSR [45] 31.35 0.896 4.230 0.0752 0.8705 0.9825 33.83 0.938 2.569 0.0450 0.8664 0.9922
SAN [18] 31.82 0.892 4.006 0.0729 0.8374 0.9840 34.53 0.933 2.367 0.0434 0.7783 0.9928
MHAN [125] 31.62 0.890 4.050 0.0735 0.8259 0.9835 34.24 0.935 2.445 0.0445 0.7940 0.9924
CFSRCNN [97] 31.53 0.884 4.196 0.0740 0.8193 0.9832 33.77 0.932 2.579 0.0469 0.7849 0.9915
HSENet [53] 31.80 0.888 4.016 0.0727 0.8292 0.9837 34.31 0.932 2.426 0.0440 0.7720 0.9926
RCAN-it [62] 33.76 0.944 3.198 0.0581 0.9252 0.9898 34.80 0.966 2.239 0.0420 0.9076 0.9934
SRFormer [139] 33.64 0.941 3.245 0.0573 0.9219 0.9896 36.18 0.966 1.947 0.0346 0.9107 0.9952
GFN [129] 33.91 0.939 3.150 0.0572 0.9158 0.9899 36.36 0.963 1.901 0.0347 0.8882 0.9953
DASR [107] 33.88 0.942 3.157 0.0573 0.9238 0.9900 36.44 0.970 1.886 0.0346 0.9171 0.9954
Proposed 35.26 0.956 2.691 0.0562 0.9446 0.9926 38.51 0.972 1.492 0.0343 0.9360 0.9971

Bicubic

×3

27.72 0.755 6.404 0.1168 0.6856 0.9580 30.56 0.8698 3.730 0.0684 0.7403 0.9822
SRCNN [22] 28.37 0.758 5.951 0.1084 0.6259 0.9635 30.82 0.870 3.621 0.0663 0.6132 0.9831
VDSR [45] 28.42 0.759 5.920 0.1078 0.6277 0.9639 30.90 0.870 3.590 0.0657 0.6149 0.9834
SAN [18] 28.72 0.760 5.719 0.1043 0.6410 0.9662 31.39 0.874 3.393 0.0622 0.6294 0.9851
MHAN [125] 28.57 0.756 5.819 0.1060 0.6342 0.9650 31.14 0.872 3.493 0.0640 0.6208 0.9843
CFSRCNN [97] 28.48 0.754 5.876 0.1071 0.6303 0.9644 31.00 0.871 3.546 0.0649 0.6175 0.9838
HSENet [53] 29.35 0.808 5.322 0.0966 0.7149 0.9710 31.81 0.882 3.236 0.0589 0.6438 0.9867
RCAN-it [62] 28.87 0.818 5.611 0.1019 0.7541 0.9683 31.14 0.903 3.474 0.0636 0.7688 0.9845
DASR [107] 30.52 0.853 4.411 0.0796 0.8285 0.9608 33.30 0.885 2.967 0.0541 0.8023 0.9615
Proposed 31.08 0.876 4.350 0.0768 0.8412 0.9814 34.18 0.925 2.456 0.0556 0.8275 0.9922

Bicubic

×4

25.94 0.651 7.871 0.1437 0.5445 0.9359 28.60 0.808 4.677 0.0858 0.619 0.9719
SRCNN [22] 26.26 0.696 7.591 0.1387 0.6254 0.9436 28.99 0.830 4.479 0.0811 0.6744 0.9760
VDSR [45] 26.79 0.685 7.146 0.1304 0.5231 0.9469 29.10 0.830 4.479 0.0811 0.6744 0.9760
SAN [18] 27.10 0.703 6.890 0.1258 0.5523 0.9507 30.19 0.840 3.896 0.0715 0.5457 0.9803
MHAN [125] 27.03 0.698 6.947 0.1268 0.5447 0.9498 29.96 0.838 4.001 0.0734 0.5518 0.9792
CFSRCNN [97] 27.02 0.697 6.958 0.1270 0.5425 0.9496 29.88 0.837 4.037 0.0741 0.5485 0.9789
HSENet [53] 27.46 0.717 6.619 0.1311 0.5734 0.9547 30.14 0.842 3.924 0.0718 0.5478 0.9802
RCAN-it [62] 28.34 0.763 5.971 0.1305 0.6915 0.9630 30.82 0.864 3.623 0.0661 0.7035 0.9835
SRFormer [139] 28.75 0.781 5.572 0.1245 0.7257 0.9695 31.21 0.876 3.367 0.0705 0.7245 0.9845
GFN [129] 28.31 0.762 5.991 0.1292 0.6764 0.9629 30.24 0.849 3.867 0.0708 0.6659 0.9807
DASR [107] 28.23 0.771 6.048 0.1280 0.6819 0.9626 30.96 0.878 3.499 0.0733 0.7111 0.9795
Proposed 28.95 0.791 5.564 0.1230 0.7212 0.9680 31.49 0.875 3.352 0.0700 0.7255 0.9854

Table 5.3: Quantitative comparison of test images of AID dataset with different
methods for different zooming factors. The best results are in bold.
Methods Scale

Test-3 Test-4
PSNR
(dB)

↑ SSIM↑ ERGAS↓ SAM↓ UIQI↑ sCC↑ PSNR
(dB)

↑ SSIM↑ ERGAS↓ SAM↓ UIQI↑ sCC↑

Bicubic

×2

30.88 0.950 4.077 0.0732 0.8470 0.9805 30.32 0.977 2.909 0.0547 0.9036 0.9864
SRCNN [22] 30.97 0.949 4.052 0.0725 0.7201 0.9806 29.99 0.959 3.023 0.0569 0.8679 0.9850
VDSR [45] 31.15 0.951 3.978 0.0711 0.7281 0.9812 30.26 0.961 2.929 0.0552 0.8735 0.9859
SAN [18] 32.13 0.961 3.555 0.0635 0.7571 0.9850 31.38 0.971 2.576 0.0485 0.8951 0.9890
MHAN [125] 31.86 0.960 3.667 0.0654 0.7542 0.9842 31.07 0.968 2.670 0.0502 0.8890 0.9883
CFSRCNN [97] 31.63 0.956 3.764 0.0672 0.7427 0.9832 30.74 0.965 2.772 0.0522 0.8829 0.9873
HSENet [53] 34.06 0.990 2.814 0.0507 0.9120 0.9905 32.72 0.990 2.205 0.0414 0.9507 0.9920
RCAN-it [62] 33.68 0.994 2.917 0.0516 0.9158 0.9905 32.35 0.995 2.286 0.0433 0.9566 0.9914
GFN [129] 29.19 0.912 4.979 0.0889 0.6478 0.9708 28.15 0.934 3.735 0.0704 0.8287 0.9770
DASR [107] 34.78 0.993 2.601 0.0467 0.9194 0.9920 34.15 0.994 1.871 0.0352 0.9579 0.9943
Proposed 35.67 0.996 2.349 0.0422 0.9317 0.9934 35.35 0.997 1.630 0.0307 0.9674 0.9956

Bicubic

×3

28.09 0.917 5.617 0.1011 0.7053 0.9622 27.72 0.925 6.404 0.1168 0.6856 0.9580
SRCNN [22] 28.43 0.925 5.407 0.0973 0.7262 0.9650 27.47 0.924 4.040 0.0761 0.8099 0.9732
VDSR [45] 29.01 0.912 5.083 0.0910 0.6043 0.9692 28.07 0.924 3.771 0.0710 0.7937 0.9764
SAN [18] 29.45 0.950 4.786 0.0864 0.7871 0.9765 28.07 0.957 3.768 0.0710 0.8719 0.9851
MHAN [125] 29.27 0.949 4.881 0.0882 0.7847 0.9710 27.78 0.955 3.893 0.0734 0.8691 0.9749
CFSRCNN [97] 29.20 0.950 4.915 0.0889 0.7863 0.9706 27.63 0.955 3.963 0.0747 0.8684 0.9740
HSENet [53] 29.95 0.952 4.530 0.0815 0.7921 0.9754 29.04 0.960 0.960 0.0635 0.8776 0.9812
RCAN-it [62] 29.43 0.943 4.815 0.0865 0.7634 0.9726 28.69 0.948 3.509 0.0659 0.8547 0.9802
DASR [107] 30.27 0.952 4.276 0.0768 0.8060 0.9781 29.67 0.945 3.047 0.0576 0.8871 0.9819
Proposed 30.61 0.959 4.211 0.0757 0.8171 0.9788 30.19 0.967 2.953 0.0556 0.8943 0.9856

Bicubic

×4

26.39 0.861 6.826 0.1232 0.5705 0.9434 25.06 0.844 5.333 0.1005 0.6711 0.9531
SRCNN [22] 26.51 0.838 6.741 0.1212 0.4347 0.9450 24.91 0.828 5.423 0.1022 0.6328 0.9510
VDSR [45] 26.82 0.848 6.508 0.1170 0.4506 0.9487 25.33 0.845 5.171 0.0975 0.6564 0.9553
SAN [18] 27.19 0.858 6.244 0.1124 0.4620 0.9527 25.85 0.865 4.866 0.0918 0.6895 0.9605
MHAN [125] 27.08 0.859 6.324 0.1138 0.4717 0.9515 25.76 0.863 4.922 0.0928 0.6857 0.9596
CFSRCNN [97] 27.01 0.855 6.374 0.1147 0.4644 0.9507 25.63 0.857 4.996 0.0942 0.6764 0.9583
HSENet [53] 27.52 0.914 5.966 0.1081 0.6667 0.9568 25.89 0.906 4.844 0.0913 0.7697 0.9609
RCAN-it [62] 27.99 0.911 5.682 0.1022 0.6694 0.9611 25.88 0.895 4.844 0.0894 0.7518 0.9633
GFN [129] 27.74 0.916 5.827 0.1054 0.6718 0.9588 26.18 0.907 4.687 0.0883 0.7707 0.9634
DASR [107] 28.26 0.917 5.504 0.0992 0.6760 0.9633 27.14 0.915 4.194 0.0790 0.7853 0.9710
Proposed 28.43 0.918 5.405 0.0973 0.6896 0.9647 27.48 0.923 4.035 0.0761 0.8024 0.9730
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performance in ERGAS, SAM, Q-Index, and sCC values for 2×, 3×, and 4× zoom-

ing on both datasets by considering the same test images when compared to other

methods. Although the proposed method clearly outperforms DASR at a zoom-

ing factor of 2, however it does not significantly outperform DASR at 3×, and 4×

zooming factors. Since the DASR network is designed specifically to deal with more

complex and unknown degradation model in a unsupervised way, it is thus expected

to perform good at higher zooming factors when applied with less complex mixed

degradations such as bicubic interpolation and the Gaussian kernel. Although the

proposed method performs well in most of the cases, it is not particularly designed

for handling complex and unknown degradations that can occur in real-world scenar-

ios. This limitation can be overcome by making the proposed network degradation

aware by incorporating mechanisms to learn and adopt the complex degradation

characteristics including noise and anisotropic Gaussian kernels. Table 5.2 further

reveals that that the quantitative metrics for the SRFormer network are lower than

those achieved by our proposed method for 2× zooming, it delivers comparable re-

sults for 4× zooming. The competitive performance of SRFormer at 4× zooming

may be due to its effective use of transformer-based architectures, which excel at

maintaining intricate spatial information needed for higher magnification factors.

A visual comparison of SR results of different methods on ‘Test-2’ for ×2, ×3

and ×4 are shown on Fig. 5.10. From the original HR and SR images of the different

models, a RoI is chosen and zoomed in to provide better visual comparison. While

both SRCNN and VDSR tend to produce blurry SR images due to their limited use

of features. Similarly, SAN, MHAN, and CFSRCNN, generate unnatural artifacts

and smoothing effects in the SR results, causing a significant discrepancy between

ground-truth HR and reconstructed SR images. HSENet and RCAN-it are able to

restore texture details to some extent, but they are still blurry. Both GFN and

DASR are capable of recovering realistic textures with less blurriness in the images.

The proposed method outperforms both. As compared to other models, JSRDNet

produces SR with more clarity and sharpness, which is closer to the desired HR

image. The result reveal that JSRDNet effectively reconstructs the white line and

textural information of the basketball court in the RoI, while the other methods
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produce blurry images.

5.4.6 Results on real RS data

Here, we employ some real MS images captured by the LISS-III and LISS-IV satellite

sensors to further validate the reconstruction quality of the proposed method. In

order to preserve the spectral information, we apply the SR models to each spectral

bands separately. Since most of the approaches are designed for processing 3-channel

RGB images, the proposed method as well as other DL methods are modified to

process the band images separately. The dataset preparation for the training are

already discussed in Section 5.4.1. Here, JSRDNet is compared with some of the

best performing SR methods, i.e. SAN, CFSRCNN, MHAN, HSENet, RCAN-it,

GFN and DASR are compared with the proposed method on LISS-III and LISS-IV

datasets. Table 5.4 shows the average results calculated over all the band images for

each of the test images. On an average, the proposed method improves the PSNR

of ‘Test-5’ images by 1.14–1.58 dB for a 2× upscaling and by 0.21–0.63 dB for a 4×

upscaling. In the case of ‘Test-7’ , the proposed method offers the highest PSNR

when compared to previous methods, with improvements of 1.51–4.64 dB and 0.28–

2.03 dB for 2× and 4× factors, respectively. In some cases, the proposed method

encounters substantial competition from DASR in terms of SSIM, ERGAS, SAM,

UIQI and sCC. The proposed method specifically focuses on fixed Gaussian blur in

such a way that the dedicated modules and mechanisms are designed to handle this

degradation, and quantitative results show its competitiveness compared to DASR

specifically in the case of Gaussian blur. The reason for DASR giving substantial

competition is already mentioned in Section 5.4.5. While the proposed method may

not have demonstrated significant improvements over DASR in terms of PSNR and

SSIM metrics, a detailed error analysis was conducted to better understand these

performance differences. The error statistics are calculated by comparing original

and reconstructed images for both DASR and the proposed method at 2× and 4×

upscaling factors. As shown in Fig. 5.11, the proposed method consistently exhibits

lower error rates, particularly in mean absolute error (MAE), despite the PSNR
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Table 5.4: Quantitative comparison of test images of LISS-III and LISS-IV dataset
with different methods for ×2 and ×4 zooming factors. The best results are in bold.

LISS-III

Methods Scale
Test-5 Test-6

PSNR
(dB)

↑ SSIM↑ ERGAS↓ SAM↓ UIQI↑ sCC↑ PSNR
(dB)

↑ SSIM↑ ERGAS↓ SAM↓ UIQI↑ sCC↑

SAN [18]

×2

34.27 0.868 3.716 0.0680 0.6850 0.9514 33.39 0.830 3.422 0.0673 0.6552 0.8643
MHAN [125] 33.63 0.856 3.877 0.0705 0.6017 0.9429 33.63 0.856 3.877 0.0705 0.6017 0.9429
CFSRCNN [97] 33.55 0.857 3.912 0.0705 0.6030 0.9445 32.76 0.818 3.607 0.0698 0.6365 0.8479
HSENet [53] 33.63 0.856 3.877 0.0705 0.6017 0.9429 32.84 0.817 3.573 0.0697 0.6205 0.8447
RCAN-it [62] 34.32 0.866 3.696 0.0677 0.6760 0.9519 33.47 0.830 3.395 0.0669 0.6537 0.8666
GFN [129] 35.56 0.910 3.247 0.0577 0.7791 0.9709 34.87 0.889 2.933 0.0563 0.8272 0.9154
DASR [107] 34.71 0.910 3.354 0.0614 0.8275 0.9543 34.12 0.887 3.051 0.0600 0.8184 0.8858
Proposed 35.85 0.918 3.143 0.0574 0.8428 0.9683 35.06 0.898 2.859 0.0563 0.8368 0.9104

SAN [18]

×4

31.39 0.737 5.242 0.0960 0.3638 0.9057 30.60 0.668 4.774 0.0941 0.3160 0.7239
MHAN [125] 31.18 0.724 5.468 0.1000 0.3479 0.9020 30.48 0.658 4.885 0.0962 0.3402 0.7150
CFSRCNN [97] 31.09 0.723 5.496 0.1006 0.3448 0.8996 30.40 0.656 4.913 0.0968 0.3360 0.7081
HSENet [53] 31.15 0.733 5.313 0.0968 0.3459 0.9000 30.42 0.664 4.833 0.0945 0.2960 0.7144
RCAN-it [62] 30.88 0.755 5.345 0.0975 0.4603 0.8926 30.28 0.698 4.808 0.0944 0.4501 0.7077
GFN [129] 31.83 0.766 5.024 0.0909 0.4889 0.9245 31.08 0.708 4.539 0.0886 0.4973 0.7722
DASR [107] 31.81 0.776 4.948 0.0904 0.5753 0.9168 31.04 0.719 4.516 0.0888 0.5097 0.7584
Proposed 32.02 0.773 4.954 0.0903 0.5623 0.9216 31.26 0.716 4.470 0.0881 0.5051 0.7690

LISS-IV

Methods

×2

Test-7 Test-8
SAN [18] 35.29 0.905 2.783 0.0545 0.7754 0.9529 34.84 0.922 2.620 0.0503 0.8370 0.9799
MHAN [125] 35.35 0.903 2.762 0.0542 0.7734 0.9532 34.90 0.920 2.603 0.0501 0.8347 0.9797
CFSRCNN [97] 35.44 0.910 2.723 0.0526 0.7849 0.9557 34.87 0.924 2.603 0.0494 0.8415 0.9804
HSENet [53] 38.72 0.964 1.861 0.0344 0.9159 0.9814 38.25 0.972 1.784 0.0322 0.9414 0.9921
RCAN-it [62] 38.72 0.964 1.861 0.0344 0.9159 0.9814 38.25 0.972 1.784 0.0322 0.9414 0.9921
GFN [129] 38.90 0.962 1.827 0.0338 0.9208 0.9824 38.40 0.969 1.743 0.0318 0.9425 0.9922
DASR [107] 38.42 0.965 1.922 0.0376 0.9189 0.9770 37.12 0.972 1.981 0.0380 0.9463 0.9885
Proposed 39.93 0.967 1.631 0.0320 0.9249 0.9839 39.60 0.976 1.523 0.0292 0.9541 0.9933

SAN [18]

×4

30.51 0.750 4.843 0.0947 0.4361 0.8503 29.40 0.741 4.894 0.0936 0.5115 0.9309
MHAN [125] 30.52 0.752 4.834 0.0949 0.4461 0.8490 29.48 0.745 4.841 0.0930 0.5239 0.9319
CFSRCNN [97] 30.42 0.750 4.887 0.0959 0.4391 0.8454 29.33 0.741 4.919 0.0945 0.5161 0.9296
HSENet [53] 30.79 0.757 4.693 0.0913 0.4601 0.8625 29.51 0.748 4.813 0.0917 0.5298 0.9340
RCAN-it [62] 32.24 0.829 3.998 0.0769 0.6822 0.9074 30.87 0.820 4.140 0.0782 0.7271 0.9538
GFN [129] 32.11 0.813 4.064 0.0794 0.6567 0.9001 30.34 0.794 4.396 0.0842 0.6911 0.9460
DASR [107] 32.26 0.827 3.986 0.0780 0.6798 0.9040 30.87 0.820 4.132 0.0792 0.7264 0.9522
Proposed 32.54 0.828 3.877 0.0760 0.6762 0.9086 31.07 0.819 4.058 0.0780 0.7227 0.9536

and SSIM values not differing significantly. Furthermore, while direct comparison

metrics such as PSNR and SSIM are commonly used, they are not able to fully

capture all aspects of image quality. This error analysis offers deeper insights into

the performance disparities between the proposed method and DASR.

Fig. 5.11 shows the visual comparison of reconstructed band 3 images of ‘Test-8’

using different methods for two upscaling factors ×2 and ×4. JSRDNet can generate

comparable SR results with HR images (see the textures and edges of the ‘Test-6’

of LISS-IV in Fig. 5.11) as well as restore complex spatial information quite well.

Fig. 5.12 also provides the visual results of ‘Test-8’ by stacking all bands in a false

color representation. By considering the visual results of JSRDNet, we can conclude

that it performs well while dealing with the complex real-world MS remote sensing

data.
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Figure 5.11: Visual results of different methods on band3 of Test-8 (LISS-IV) for
×2 and ×4 upscaling factors.

Figure 5.12: Visual results of different methods on Test-8 (LISS-IV) for ×2 and ×4
upscaling factors. Visual results are shown in false color RGB composition.
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Figure 5.13: Comparisons of performance vs inference time.

5.4.7 Comparison on model size

DL model complexity is often estimated roughly based on the number of model pa-

rameters. We have conducted an in-depth analysis regarding the parameter count

and its correlation with performance improvements. We consider the various con-

figurations of RGs and RSCSE blocks, aiming to strike a balance between model

complexity and reconstruction quality. Table 5.5 shows the results of these config-

urations for ‘Test-1’. Selecting 15 RGs and 30 RSCSE blocks results in 41 million

(M) parameters. However, a more optimized approach, such as employing 10 RGs

and 20 RSCSE blocks, significantly reduces the parameter count to 21 M, while

maintaining a commendable level of performance. Further reduction to 5 RGs and

10 RSCSE blocks yields a lighter model with 7M parameters. Although this choice

slightly compromises the SR reconstruction quality, it offers a notable reduction in

computational cost. Crucially, even with a moderate parameter count of 7 million,

our proposed JSRDNet network consistently outperforms other methods in terms of

PSNR for ‘Test-2’, as depicted in Table 5.2. We chose to stick with the configura-

tion of 5 RGs and 10 RSCSE blocks, totaling 7M parameters, which is only slightly

higher than DASR, as shown in Table 5.6. This increase is justified by the substan-

tial performance improvement over DASR, balancing model complexity with image
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reconstruction quality. The inference time taken by the proposed method is only

1.67 seconds, which is quite fast and practical for real-world applications. Moreover,

the inference time tradeoff is a reasonable compromise for attaining high-quality re-

construction. Fig. 5.13 shows comparisons of inference time (in the GPU mode) and

performance of different methods on the PatternNet test images for upscaling factor

2.

Table 5.5: Performance and parameters under different combinations of RGs and
RSCSE blocks for ‘Test-1’.

Number of RGs Number of RSCSE blocks Parameters (M) PSNR (dB)
5 10 7 34.95
10 20 21 35.26
15 30 41 35.30

Table 5.6: Comparison of model efficiency of different SR methods for ‘Test-2’.
Methods SRCNN VDSR SAN MHAN CFSRCNN RCAN-it GFN DASR Proposed
Parameters 57K 667K 15.7M 13.8M 1.2M 16M 10M 5M 7M
PSNR 33.83 34.51 34.53 34.24 33.78 34.80 36.37 36.45 38.32

5.4.8 Application: Land cover classification

In order to interpret and analyse the areas included in the remote sensing image, land

cover classification can be performed as a post processing step on the reconstructed

SR image. To evaluate the effectiveness of the proposed JSRDNet, we perform

supervised classification on SR results of different methods. We apply the support

vector machine (SVM) algorithm to conduct supervised classification on the SR

results of various methods, using the ‘Test-2’ and ‘Test-8’ for zooming factor 2.

The classification and analysis of the results are performed using Envi classic 5.1.

The RoI of ‘Test-2’ are divided into four categories: tree (red), building (green),

water body(blue) and bare land(blue). Similarly, we divide RoI of ‘Test-8’ into three

classes: building (red), bare land (green), road (blue). The proposed method has the

most similar classified regions with the original image when compared to other SR

methods, as shown in Table 5.7. The pixel counts per class for different methods are

computed for both the images. The total pixel counts in both the images is 65,536.

Results of different methods on ‘Test-2’ and ‘Test-8’ test images for zooming factor
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Table 5.7: Pixel count of each class of Test Image using unsupervised classification
for different methods.

Patternnet ‘Test-2’

Classes
HR SAN MHAN CFSRCNN HSENET RCAN-it GFN DASR Proposed
Pixels Pixels Pixels Pixels Pixels Pixels Pixels Pixels Pixels

Tree (Red) 32,954 32,142 30,463 30,369 31,851 31,139 32,395 31,247 32,181
Building (Green) 17,095 16,068 15,597 15,703 16,488 16,622 16,779 16,098 16,830
Water body (Blue) 9,931 8,766 8,415 8,433 8,977 9,742 8,625 8,570 9,768
Bare land (yellow) 9,931 8,766 8,415 8,433 8,977 9,762 8,625 8,570 9,768

LISS-IV ‘Test-8’

Classes
HR SAN MHAN CFSRCNN HSENET RCAN-it GFN DASR Proposed
Pixels Pixels Pixels Pixels Pixels Pixels Pixels Pixels Pixels

Bare land (Green) 11,165 11,142 11,070 10,782 11,146 11,412 11,230 11,200 11,145
Building (red) 45,104 43,711 43,814 44,201 43,687 43,687 44,896 45,004 44,099
Road (blue) 9,267 10,683 10,652 10,553 10,703 9,776 9,410 9,332 9,307

2 are shown in Fig. 5.14, along with the overall accuracy and kappa coefficient.

Here, the accuracy is referred as the percentage of correctly classified images out of

the total number of images in a dataset and the kappa co-efficient is a statistical

measure of agreement or performance for labelling images using classification models.

It is used to measure how well the predicted labels from a classification model fit

the actual labels. The ideal value of the kappa coefficient is 1, indicating perfect

agreement. The HR image classification map is used to represent the ground truth,

while the kappa coefficient is measured individually for the SR classification map

generated by other approaches. It is observed that the proposed method exhibits

superior performance in land cover classification compared to all other methods.

5.5 Conclusion

In this chapter, we have developed a joint dual-branch CNN network for recovering

the sharp and clear HR images from LR remote sensing images degraded with Gaus-

sian blur. The proposed network utilizes an attention-based gate module for fusing

features adaptively from SR and deblurring feature extraction modules, allowing the

network to handle deblurring and SR tasks jointly. We developed a RSCSE module

to extract SR features efficiently by adopting SCSE and LFF modules in residual

blocks in order to increase the representation ability of the proposed network. Fur-

ther, deblurring module uses a simple SCSE-based encoder-decoder CNN module

to extract sharp features for LR. Extensive simulations demonstrate that the pro-
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(a) Test-2 of PatternNet (b) Test-8 of LISS-IV

Figure 5.14: Classification results of various methods on (a) PatternNet ‘Test-2’
image, and (b) LISS-IV ‘Test-8’ image. Overall accuracy and kappa co-efficient of
each methods provided.

posed network outperforms other state-of-the-art approaches in terms of both visual

analysis and objective criteria when recovering RS images. Furthermore, the pro-

posed method also provides promising outcomes for land-cover classification, which

is significant for RS applications.
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