Table of Contents

Contents	Page No.
Abstract	i-xiv
Keywords	XV
Declaration by Student	xvi
Certificate from the Supervisor	xvii
Certificate of the External Examiner and ODEC	xviii
Acknowledgment	xix-xx
List of Figures	xxx-xxxvi
List of Schemes	xxxvii-
	xxxviii
List of Tables	xxxix-xl
List of Abbreviations	xli-xlii

Chapter 1A: General Introduction and review of		
literat	literature	
1A.1	Ionic liquids and their significance	1A.1
1A.2	Understanding functionalization in ionic liquids and their need in task-specific reactions	1A.2
	1A.2.1. Acidic ionic liquids	1A.2
	1A.2.2 Basic ionic liquids	1A.4
	1A.2.3 Task-specific functionalized ionic liquids	1A.5
1A.3	Need of heterogeneous catalysts made of ionic liquid and understanding polyoxometalates (POM) as anion	1A.8
1A.4	Organic -inorganic polyoxometalate based hybrids	1A.11
1A.5	Importance of cationic counterpart in IL-POM hybrids	1A.12
1A.6	Importance of IL-POM as phase transfer oxidation catalyst	1A.13
	1A.6.1 Literature review on IL-POM hybrid in oxidation reactions	1A.14

		1
1A.7	Importance of degradation of organic pollutant and role of	1A.19
	polyoxometalates	
	1A.7.1 Literature review on IL-POM used in oxidative	1A.20
	degradation of pesticides	
1A.8	Importance of 3-substituted indole heterocyclic compounds	1A.21
	1A.8.1 Literature review on IL-POM used as acid catalysts	1A.24
1A.9	Importance of metal extraction and role of ionic liquids in the	1A.26
	same	
	1A.9.1 Literature on ionic liquid used as solvent for metal	1A.27
	extraction	
1A.10	The objective of the present work	1A.32
	1A.10.1 Proposed Objectives	1A.34
1A.11	Bibliography	1A.35

Chapt	Chapter 1B: Materials and methodology	
1 B. 1	General Information	1B.1
1B.2	Materials used	1B.1
1B.3	Analytical methods of characterization	1B.1
	1B.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy analysis	1B.1
	1B.3.2 Nuclear Magnetic Resonance Spectroscopy (NMR)analysis	1B.2
	1B.3.3 CHN elemental analysis	1B.2
	1B.3.4 Thermogravimetric analysis (TGA)	1B.2
	1B.3.5 Raman Spectroscopy analysis	1B.3
	1B.3.6 Powder-X-ray Diffraction (PXRD) analysis	1B.3

	1B.3.7 UV-Visible Diffuse Reflectance Spectroscopy analysis	1B.3
	1B.3.8 Scanning Electron Microscopy (SEM) and Energy	1B.4
	Dispersive X-ray (EDX) analysis	
	1B.3.9 Inductively Coupled Plasma - Optical Emission	1B.4
	Spectroscopy (ICP-OES)	
	1B.3.10 Melting point measurements	1B.4
	1B.3.11 High Performance Liquid Chromatography	1B.5
	1B.3.12 Gas Chromatography-Mass Spectrometry	1B.5
	1B.3.13 Total organic carbon	1B.5
	1B.3.14 Atomic Absorption Spectroscopy	1B.5
	1B.3.15 pH meter	1B.6
	1B.3.16 NH ₃ -Temperature Programmed Desorption analysis	1B.6
	1B.3.17 The Brunauer - Emmett – Teller (BET) analysis	1B.6
1B.4	Bibliography	1B.6

Chapter-2: Solvent responsive self-separative behaviour of Brønsted acidic ionic liquid-polyoxometalate hybrid catalysts on H ₂ O ₂ mediated oxidation of alcohols		Page No.
2.1	Introduction	2.1
2.2	Results and discussion	2.3
	2.2.1 FT-IR analysis	2.4
	2.2.2 NMR analysis	2.5
	2.2.3 Elemental analysis	2.9

	2.2.4 TGA	2.10
	2.2.5 Powder-XRD analysis	2.11
	2.2.6 Raman analysis	2.13
	2.2.7 UV-Visible diffuse reflectance spectroscopy analysis	2.14
	2.2.8 SEM analysis	2.15
	2.2.9 EDX analysis	2.16
2.3	Catalytic activity	2.16
	2.3.1 Optimization of reaction condition	2.16
	2.3.2 Effect of Solvent Study	2.18
	2.3.3 Substrate scope study	2.20
2.4	Plausible Mechanism	2.22
2.5	Recyclability study of the catalyst	2.23
2.6	Conclusions	2.24
2.7	Experimental section	
	2.7.1 Procedure of synthesis of diethyldisulfoammonium	2.25
	salts of Keggin anions [DEDSA] ₃ [PM ₁₂ O ₄₀] where M= Mo	
	(VI), W(VI)	
	2.7.2 General procedure for oxidation of alcohols	2.26
2.8	NMR spectra of [DEDSA]Cl	2.26-2.27
2.9	Mass Spectra of products	2.28-2.33
2.10	Bibliography	2.33

(Chapter-3: A mechanistic study on solar energized	Page No.
degr	adation of herbicide into value-added product using -	
SO	³ H functionalized ionic liquid-polyoxometalate based	
	heterogeneous catalyst in aqueous medium	
3.1	Introduction	3.1
3.2	Results and discussion	3.4
	3.2.1 FT-IR analysis	3.4
	3.2.2 NMR analysis	3.6
	3.2.3 Elemental analysis	3.11
	3.2.4 TGA	3.12
	3.2.5 Powder-XRD analysis	3.13
	3.2.6 Raman analysis	3.15
	3.2.7 UV- DRS analysis and Tauc Plots	3.16
	3.2.8 SEM analysis	3.18
	3.2.9 EDX analysis	3.19
3.3	Catalytic activity study	3.20
	3.3.1 Oxidative degradation of Metobromuron	3.20
	3.3.2 Discussion on active species involvement with few oxidative degradation products	3.23
	3.3.3 TOC determination	3.27
3.4	Plausible mechanism of generation of active species via IL-POM in degradation process	3.30
3.5	Recyclability study of the catalyst	3.31
3.6	3.6 Heterogeneity of the catalyst	3.34
3.7	Conclusions	3.34

3.8	Experimental Section	3.35
	3.8.1 Preparation of dibutyldisulfoammonium salts of Keggin anion [DBDSA] ₃ PM ₁₂ O ₄₀ where M= Mo & W	3.35
	3.8.2 Procedure for metobromuron degradation	3.36
3.9	Spectral data	3.36-3.38
3.10	Bibliography	3.39

Cha	apter-4: Study of catalytic activity of methylene	Page No.
bridg	ged dicationic -SO3H functionalized imidazolium	
pho	osphomolybdate hybrids for one pot sequential	
	synthesis of 3-substituted indoles	
4.1	Introduction	4.1
4.2	Results and discussion	4.5
	4.2.1 FT-IR analysis	4.5
	4.2.2 NMR analysis	4.6
	4.2.3 Elemental analysis	4.12
	4.2.4 TGA	4.12
	4.2.5 Powder XRD analysis	4.13
	4.2.6 Raman analysis	4.15
	4.2.7 UV-Vis diffuse reflectance spectroscopy analysis	4.16
	4.2.8 SEM analysis	4.17
	4.2.9 EDX analysis	4.18
	4.2.10 Determination of acidic sites in the hybrids	4.19
4.3	Catalytic activity study	4.21

	4.3.1 Screening of POM-IL hybrid catalysts for	4.22
	preparation of model Claisen-Schmidt product (3a) in	
	step-I	
	4.3.2 Optimization of reaction conditions for preparation	4.24
	of model Michael-like adduct (4a) in step 2	
	4.3.3 Substrate scope study for sequential Claisen-	4.25
	Schmidt condensation and Michael-like reactions	
4.4	Recyclability study of the catalyst	4.27
4.5	Plausible reaction mechanism	4.30
4.6	Conclusions	4.31
4.7	Experimental Section	4.32
	4.7.1 Procedure for synthesis of [DILPOM]-1,	4.32
	[DILPOM]-2, [DILPOM]-3 where POM is Keggin	
	$[PMo_{12}O_{40}]^{3-} anion$	
	4.7.2 Typical procedure for synthesis of 3-substituted	4.33
	indoles	
4.8	Spectral data	4.34-4.40
4.9	NMR spectra of selected chalcones and Michael adducts	4.41-4.50
4.10	Bibliography	4.50

Chapter-5: Investigative study on the dual functional		Page No.
behaviour of dicationic ionic liquid as extractant and		
hydrophol	oic biphasic solvent for extraction of Pb(II) in	
	water	
5.1	Introduction	5.1
5.2	Results and discussion	5.5

	5.2.1 FT-IR analysis	5.5
	5.2.2 NMR analysis	5.6
	5.2.3 Elemental analysis	5.8
	5.2.4 Thermogravimetric analysis	5.9
5.3	Preliminary experimental results of metal extraction using IL-1 and IL-2	5.9
5.4	Optimization of the extraction process and the biphasic extraction study	5.11
	5.4.1 Optimization of reaction time on extraction of metal	5.11
	5.4.2 Effect of varying concentration of Pb(II) in aqueous medium on extraction process	5.13
	5.4.3 Extraction studies based on FT-IR, TGA and EDX results of the metal-IL complexes soluble in ionic liquid phase	5.15
5.5	The plausible mechanism study for metal extraction from FT-IR results	5.18
5.6	Results of back-stripping methods for Pb-IL1and Pb-IL2	5.20
5.7	Results discussing comparative and selective extraction experiments of Pb(II) in presence of Ni(II) and Co(II)	5.24
5.8	Recyclability and reusability of IL-2	5.27
5.9	Conclusions	5.27
5.10.	Experimental section	5.28
	5.10.1 Procedure for synthesis of IL-1 and IL-2	5.28
	5.10.2 Extraction experiments using prepared ionic liquids	5.29

	5.10.3 Back-stripping experiments using IL-1 and IL-2	5.30
	5.10.4 Comparative and selective extraction experiments of Pb(II) in presence of Ni(II) and Co(II) using IL-2	5.31
5.11	Spectral data of IL-1 and IL-2	5.32
5.12	Bibliography	5.33

Chapter 6: Conclusions and Future scopes		Page No.
6.1	Conclusions	6.1
6.2	Future scopes	6.5
6.3	Bibliography	6.6

	Page No.
List of Academic Publications	xliii
Conferences and Symposiums attended	xliv