

DECLARATION

I do hereby declare that the Thesis entitled "IOT BASED BIOGAS MANAGEMENT: TECHNOECONOMIC ANALYSIS FOR RURAL ASSAM (INDIA)" being submitted to the Department of Energy, Tezpur University, is a record of original research work carried out by me. All sources of assistance have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for any other degree, diploma, or award.

Trimakshel Sarmuch

(TRINAKSHEE SARMAH)

Place: Tezpur

Date: 23 09 2024

तेजपुरविश्वविद्यालय/ TEZPUR UNIVERSITY (संसदके अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

Debendra Chandra Baruah Professor, Department of Energy Director, Centre for Multidisciplinary Research Director, Internal Quality Assurance Cell Tezpur University

Email: baruahd@tezu.ernet.in Phone: +91-3712-275307

CERTIFICATE OF THE SUPERVISOR

This is to certify that the Thesis entitled "IOT BASED BIOGAS MANAGEMENT: TECHNOECONOMIC ANALYSIS FOR RURAL ASSAM (INDIA)", submitted to the Department of Energy, School of Engineering, Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in Energy is a record of research work carried out by Ms. Trinakshee Sarmah under my supervision and guidance.

All help received by her from various sources has been duly acknowledged.

No part of this Thesis has been submitted elsewhere for award of any other degree/diploma.

Signature of Supervisor

(Debendra Chandra Baruah)

Designation: Professor School: Engineering Department: Energy Date: 23 6 9 2024

ACKNOWLEDGEMENT

I am honored to avail this opportunity to extend my sincere gratitude to Tezpur University and all those individuals whose invaluable contributions have made it possible to bring this Thesis to light.

I extend my gratitude to Professor Debendra Chandra Baruah, my esteemed advisor who has guided me in all the steps of this journey. I also extend my appreciation to the respected members of my Doctoral Committee: Professor Rupam Kataki, Dr. Vikas Verma, and Professor Manuj Kumar Hazarika. Additionally, I would like to express my gratitude to the Head of the Department of Energy, Professor Sadhan Mahapatra. I also appreciate the support from Dr. Rupam Goswami of the Department of Electronics and Communication, Tezpur University, and Dr. Dipal Baruah, Director (R&D and Innovation), TRCATS LLP.

I would also like to acknowledge the financial support received from Tezpur University in the form of Institutional Fellowship. I also take this opportunity to thank Tezpur University for providing financial assistance under the scheme "Research and Innovation Grant". I am also grateful for the support from the project titled "Multi crop Residue Processing Technology Package for Production of Fuel and Fertilizer" funded by the Science and Engineering Research Board (SERB) from IMPRINT-2(PAC Energy) scheme, Sanction order no. IMP/2019/000247, Government of India.

I am grateful to Mr. Tapan Borah and Mr. Troilokya Lahon of the Department of Energy for providing me with technical support for my research work. I would additionally like to acknowledge the support received from the villagers of Napaam, Amolapam, and Amlighat in carrying out the research work. I am also grateful to the team involved in developing the IoT-based biogas management system. I would like to express my heartfelt gratitude to my family, friends (Dr.Minakshi, Dr. Honey, Dr. Barkhang, Panchali, Adity, Isfakur, Niva, Aliya, Bharat, Dipjyoti), and all well-wishers whose unwavering support and encouragement have been influential in completing this Thesis.

(Trinakshee Sarmah)

Table	Description	Page No.
Number		
Table 1.1	A brief historical overview of Government support for biogas	5-6
	development in India	
Table 1.2 a	Production of biogas for cooking (in terms of 10^6 cubic meters of	10
	biogas) among major regions around the world for the years 2013 and	
	2022	
Table 1.2 b	Production of biogas for cooking (in terms of 10^6 cubic meters of	10
	biogas) among prominent biogas user countries of Asia for the years	
	2013 and 2022	
Table 1.3	C: N ratio of commonly used feedstocks for a biogas system	13
Table 1.4	Technological developments due to the implementation of policies in	14-16
	rural India by the Government of India	
Table 2.1	Brief review of the factors influencing the production of biogas	37-38
Table 2.2	Managerial issues faced in the management of a typical HBS (Fixed	43-44
	dome) and the prevailing practices of resolving these issues	
Table 3.1	Parameters considered for the study	59
Table 3.2	Details of the villages for field investigation	60
Table 3.3	Comparative cost analysis of three options of cooking fuels (for a	76
	small family of 5 members): short-term analysis for one year	
Table 3.4	Comparative cost analysis of three options of cooking fuels viz.,	77
	biogas, LPG, and fuel wood (for a small family of 5 members): long-	
	term analysis for 20 years	
Table 3.5	Potential revenue from biogas slurry as a source of N, P, and K	78
Table 4.1	Table of Components, Specification, Installation Location, Remarks	89-90
	of the IoT system	
Table 4.2	Costs involved in the fabrication of the IoT-based biogas	101
	management system	
Table 5.1	Details of the enterprises including HBS	111
Table 5.2	Expenditure and income profile of five enterprises	118

LIST OF TABLES

Table	Description	Page No.
Number		
Table 5.3	The rankings for the enterprises based on NPV	119
Table 5.4	Contribution of rural livelihood enterprises with Sustainable	122-124
	Development Goals	
Table 5.5	CO ₂ equivalent from combustion of LPG and biogas	125
Table 5.6	Annual decarbonization potential of three villages surveyed	126

LIST OF FIGURES

Figure	Description	Daga Na
Number		Page No.
Fig 1.1	Access to clean cooking fuels and technologies in India and rural India	1
Fig 1.2	Subsidy on LPG given by the Government of India	2
Fig 1.3	Key factors linked with the biogas promotional policies in India	7
Fig 1.4	Prevailing biogas management system of HBS in India	8
Fig 1.5	Trend of usage of biogas as a cooking fuel in India during 2013-2022	11
Fig 1.6	Percentage of biogas plants installed annually to the annual target set up	
	by MNRE for some selected states and for India under the NNBMP and	12
	NNBOMP schemes	
Fig 1.7	Current status of the application of IoT in different sectors	17
Fig 2.1	Multifaceted benefits of biogas programmes	34
Fig 3.1	Locations of the selected survey areas: Napaam, Amolapam and Amlighat	61
Fig 3.2 a	Layout of a typical HBS (Fixed dome type) (Deenbandhu biogas model)	62
Fig 3.2 b	Layout of a typical HBS (Floating dome type) (Janta model)	62
Fig. 3.3 a	Biogas plants in the study areas: A functioning biogas plant in Amlighat	64
	village working for 19 years	04
Fig. 3.3 b	Biogas plants in the study areas: A 13-year-old biogas plant remains	64
	non-functional in Napaam village	04
Fig 3.4	Overall cooking usage in the three villages	66
Fig 3.5	LPG cylinder (14.2 kg)	66
Fig 3.6	Wood-Fuelled Cook Stove	66
Fig 3.7	Concerns for lack of interest in biogas as a primary source of cooking fuel	68
Fig 3.8	Hassles faced during the running of the HBS	70
Fig. 4.1	Methodology to investigate the feasibility of the application of IoT for the	85
	management of HBS	05
Fig 4.2	Gas holder and digester providing spaces for gas storage and gas	
	consumption respectively in a Fixed dome and Floating dome-type biogas	86
	digester	
Fig 4.3	IoT-based biogas management system	88
Fig4.4(a)	Installing the circuit inside the digester	91

Figure	Description	Page No.
Number		I age 110.
Fig4.4(b)	Slurry in contact with the circuit	92
Fig. 4.5	Status of a circuit component before and after installing it in the gas holder	93
	of the household biogas system	95
Fig4.6(a)	Computer display of the biogas monitoring system showing ambient	
	pressure, temperature, humidity, temperature, and pH of the	95-96
	reaction media inside the digester	
Fig4.6(b)	Graph representing ambient temperature, pressure and humidity, slurry	97
	temperature, and pH of the biogas	97
Fig 4.7 a	2 cubic meters Deenbandhu biogas system	99
Fig 4.7 b	Installing of IoT based biogas monitoring system in 2 cubic meters	00
	Deenbandhu biogas system	99
Fig.5.1	Representation of HBS as equivalent to some common rural enterprises	110
Fig. 5.2	Methodology for calculation of NPV of the enterprises	112

LIST OF ABBREVIATIONS

Abbreviation	Full form
ABHA	Ayushman Bharat Health Account
AD	Anaerobic Digestion
AICRP	All India Coordinate Research Project
BAU	Business as Usual
BDTC	Biogas Development and Training Centre
BHIM	Bharat Interface for Money
BMP	Biomethane Potential
BPGTP	Biogas Power Generation (off-grid) and Thermal Energy
	Application Program
C: N	Carbon: Nitrogen
CDM	Clean Development Mechanism
CO	Carbon Monoxide
COD	Chemical Oxygen Demand
CPCB	Central Pollution Control Board
CSC	Common Service Centres
DIKSHA	Digital Infrastructure for Knowledge Sharing and Sharing) and
	SWAYAM (Study Webs of Active Learning for Young Aspiring
	Minds
DILRMP	Digital India Land Records Modernisation Programme
DRDO	Defence Research and Development Organization, India
FC	Fixed cost
GHG	Greenhouse gas
GOBARDHAN	Galvanizing Organic Bio-Agro Resources Dhan
HBS	Household Biogas System
HBS_IoT	HBS with the installed IoT system
HRT	Hydraulic Retention Time
ICAR	Indian Council of Agricultural Research
IEA	International Energy Agency
IoT	Internet of Things

Abbreviation	Full form
IREDA	Indian Renewable Energy Development Agency
IREP	Integrated Rural Energy Programme
IS	Indian Standard
KVIC	Khadi and Village Industries Commission
LACFE	Levelized annual cost of fixed expenditure
LPG	Liquefied Petroleum Gas
MDM	Mid-day meal
MoSPI	Ministry of Statistics and Programme Implementation
MOVCDNER	Mission Organic Value Chain Development in North East Region
NBDB	National Biogas Development Board
NBMMP	National Biogas and Manure Management Project
NDDB	National Dairy Development Board
NDUW	National Database of Unorganized Workers
NeGPA	National e-Governance Plan – Agriculture
NFSA	National Food Security Act
NMSA	National Mission on Sustainable Agriculture
NNBOMP	New National Biogas and Organic Manure Programme
NPBD	National Project for Biogas Development
NPV	Net Present Value
NPV	Net Present Value
OLR	Organic Loading Rate
ORP	Oxidation Reduction Potential
PIA	Programme Implementation Agency
PKVY	Paramparagat Krishi Vikas Yojana
PLC	Programmable Logic Controller
PM	Particulate Matter
PM-PRANAM	Programme for Restoration, Awareness, Nourishment, and
	Amelioration of Mother Earth
PM-PRANAM	PM Programme for Restoration, Awareness, Nourishment and
	Amelioration of Mother Earth
PMUY	Pradhan Mantri Ujjwala Yojana
RBI	Reserve Bank of India

Abbreviation	Full form
RC	Annual running cost
RET	Rural Energy Technicians
RSE	Renewable Sources of Energy
SATAT	Sustainable Alternative towards Affordable Transportation
SDG	Sustainable Development Goals
SHM	Soil Health Management
STOAT	Sewage Treatment Operation Analysis over Time
VFA	Volatile Fatty Acids
WEST	Worldwide Engine for Simulation, Training and Automation