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Plasma treated bimetallic nanofibers as sensitive

SERS platform and deep learning model for

detection and classification of antibiotics

In the present chapter the functioning of an O2 plasma treated bimetallic nanofibers

as a new SERS platform is demonstrated. The performance of the designed SERS

substrate has been initially evaluated with the standard Raman active probe molecules

- BPE and R6G. For the standard Raman samples the LoD and LoQ of the proposed

sensing platform have been estimated and the values are found to be 3.8 nM and

11.6 nM respectively. The EF of the designed sensing platform is calculated to be

∼ 108 with a maximum signal variations of 5%. The applicability of the designed

SERS substrate has been realized through detection of two antibiotics - FLU and LIN

widely used in poultry farms. Furthermore, a deep learning model - ANN has been

implemented for effective classification of the analyte molecules from a mixed sample.

6.1 Introduction

PVA nanofiber-based SERS substrates are widely used due to their easy fabrication

procedure and excellent control over fabrication parameters. PVA is a water-soluble

polymer recognized for its high thermal stability, tensile strength, and biodegradabil-

ity [1, 2]. The primary problem associated with the conventional nanofiber prepara-

tion is the residual toxic chemicals; which occurs during the reduction of metals salts

to form NPs. Again, NP aggregation is another issue which is commonly encountered

in the chemical reduction methods. In this context, plasma treated nanofiber appears

as a viable alternative to the conventional counterparts [3]. O2 plasma-treated PVA

nanofibers offer significant advantages over other nanofiber fabrication methods for

SERS substrate fabrication, including superior nanoparticle binding, enhanced signal
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uniformity, increased surface area, and improved hydrophilicity for analyte adsorp-

tion. These properties collectively contribute to higher sensitivity, greater repro-

ducibility, and more reliable SERS measurements, especially when detecting trace-

level analytes or operating in complex environments such as biological systems. The

O2 plasma treatment introduces oxygen-containing functional groups on the nanofiber

surface, which facilitate the uniform and stable attachment of metal nanoparticles like

gold or silver, creating more efficient SERS-active sites. This uniform nanoparticle

distribution enhances signal consistency across the substrate, reducing variability

and improving measurement accuracy. Moreover, the plasma treatment process sig-

nificantly increases the surface roughness of the nanofibers, further enhancing sur-

face area and generating more hotspots for Raman enhancement, resulting in supe-

rior detection sensitivity for low-concentration analytes. The improved hydrophilic-

ity ensures better interaction and adsorption of water-based analytes, making the

substrates particularly effective in applications where aqueous environments. Addi-

tionally, O2 plasma treatment is a clean, solvent-free, and environmentally friendly

technique, making it ideal for large-scale production without generating hazardous

by-products.

In this work, a sensitive SERS platform has been demonstrated using plasma-

treated bimetallic nanoparticle-decorated electrospun nanofibers. Unlike conven-

tional nanofiber-based SERS substrates, the plasma-treated bimetallic nanofibers-

based SERS platform offers high sensitivity and reproducibility characteristics. Ad-

ditionally, the use of bimetallic nanoparticles contributes to both electromagnetic

and chemical enhancement of SERS performance, while the plasma treatment facili-

tates controlled exposure of the embedded NPs to the analyte, thereby enhancing the

overall sensitivity of the proposed technique. The designed SERS substrate has been

employed to detect and analyse antibiotics in trace concentrations. The performance

of the proposed SERS substrate was evaluated using standard Raman active samples

BPE and R6G respectively. Upon observing its reliable performance with standard

Raman active samples, its applicability has been demonstrated through the detection

of two antibiotic drugs - FLU and LIN, widely used in poultry farms. The schematic

of the proposed sensing work is depicted in figure 6.1.

For fabrication of the proposed SERS substrate, PVA solution has been mixed in

a proportional amount with the bimetallic salt solution. Subsequently, the nanofibers

obtained from the electrospinning unit were treated with O2 plasma, where the

metal salts were directly reduced to metal NPs. The presence of bimetallic NPs

in the nanofiber supports electromagnetic enhancement for the scattered Raman sig-

nal from the analyte when it is brought into the vicinity of the hotspot regions of

the NPs. Careful tuning of the voltage and rotational speed of the rotor during

the electrospinning process enables deposition of nanofibers with a high surface area
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Figure 6.1: Schematic of the proposed sensing work

with controllable surface morphology. For the proposed SERS platform, the surface

areas of the nanofibers facilitate interactions between analyte molecules and the lo-

calized plasmonic fields of the bimetallic NPs. Furthermore, due to the presence of

oxygen-containing functional groups, the PVA nanofibers support chemical enhance-

ment of scattered Raman signals, providing an additional enhancement to the sensing

scheme. A deep learning-based model - ANN has been incorporated for classification

of the targetted analytes FLU and LIN. ANN is a deep learning algorithm used for

classification problems, employs a collection of connected units known as artificial

neurons. The neural network is capable of segregating the data groups when com-

plex datasets are involved [4]. SERS spectra can be highly non-linear, especially

due to the complex molecular interactions and variations in the local environment

of the analyte such as surface effects, orientation of molecules, or clustering. Some

simple methods such as linear regression assumes a direct proportional relationship

between the input and output variables which may not be adequate to capture the

full complexity of the data. Neural networks, on the other hand, are highly suited

to modelling non-linear relationships. The spectral signatures of the two antibiotics

might overlap significantly, especially in real field samples. Linear regression might
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struggle in distinguishing the differences of the overlapping peaks. A neural network

can potentially learn to differentiate these signals more effectively by leveraging com-

plex patterns in the data. The scheme was proposed in such a way that identification

of the analyte molecules in trace concentrations involving complex mixtures could be

performed.

Prior to implementing the ANN, PCA was performed to reduce the dimension

into two specific datasets, also known as PCs, which were subsequently considered as

inputs for the ANN model. The efficiency of the present model has been estimated

using different machine learning metrics such as confusion matrix, variation of accu-

racy, and loss with the epoch cycles. Furthermore, the accuracy of the implemented

ANN model has been compared with other ML techniques such as SVM, KSVM,

and Naïve Bayes. A significant enhancement in the accuracy of results has been ob-

served with the ANN model compared to the ML techniques. The use of ML and DL

models in the proposed sensing scheme enables rapid and accurate identification of

analytes, particularly in samples containing complex mixtures. The identification of

individual analytes becomes challenging when overlapping peaks are present in the

SERS spectra, as traditional methods may struggle to segregate the intricate spectral

features. To address these challenges, ML and DL models, combined with dimension-

ality reduction techniques like PCA, offer reliable option. PCA and similar methods

reduce the complexity of the data by identifying the most relevant features within the

spectra, focusing on the variance that best represents the underlying chemical compo-

sition of the analytes. This feature extraction allows ML models to effectively process

the data without relying on manual preprocessing or feature engineering, which can

be labor-intensive, subjective, and prone to errors. By leveraging ML and DL, the

system can automatically learn from the data, distinguishing between significant dif-

ferences in spectral patterns. This not only speeds up the analysis but also increases

the accuracy and robustness of the classification, even in the presence of overlapping

spectral peaks. Furthermore, these models can handle the high dimensionality and

complexity inherent to SERS data, allowing for the detection and classification of

analytes in mixed forms.

6.2 Experimental

6.2.1 Chemicals

The chemicals HAuCl4 · 3 H2O, AgNO3, PVA (MM = 1,045,000 gmol−1) were acquired

from Merck, India. R6G and BPE were obtained from Alpha Aesar, India. All

chemicals were utilized without any additional processing. The antibiotics, FLU and

LIN were procured from a local medical store.
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6.2.2 Preparation of the PVA solution and metal precursor

solution

8 wt% PVA solution has been prepared in the laboratory by dissolving appropriate

amount of PVA polymer in DI water. Precautions were taken to obtain a clear

solution of PVA in DI water. To achieve this, 8 grams of PVA polymer was dissolved

in 100 mL of DI water and stirring continuous for 5 hours. The final electrospinning

solution was prepared by adding 1 mM of AgNO3 and 0.01 mM of HAuCl4 · 3 H2O to

the PVA solution. Maintaining proper concentration ratios of the solvent is crucial

to prevent reaction between the metal salts. During the fabrication process, it has

been noted that high precursor concentration and low PVA concentration made it

challenging to form nanofibers. At such conditions, the ejection of nanofibers from

the syringe did not result in the formation of a Taylor cone [1]. Among various

combinations of PVA bimetallic precursor ratios, the 3:1 volumetric ratio of PVA

to metal precursor yielded the best results in terms of nanofiber deposition on the

aluminium substrate and overall sensing performance.

6.2.3 Electrospinning and O2 plasma setup

The electrospinning nanofiber unit (E-SPIN Nanotech Equipment, India) features an

advanced solution delivery system equipped with precise pumps and a flow controller

unit. This system ensures a controlled supply of polymer solutions, contributing to

the consistency of nanofiber characteristics for the study. A dedicated high-voltage

power supply (maximum ∼ 40 kV) is integrated that maintains a stable and ad-

justable electrostatic field, crucial for the formation of well-defined nanofibers. A

microcontroller unit allows fine-tuning of spinning speeds (maximum ∼ 10,000 rpm)

of the rotating drum, facilitating customization of the deposited nanofibers. A sy-

ringe (5 mL) loaded with a mixed polymer-metal salt solution maintained a flow

rate of 0.5 mLh−1. The ground collector is positioned at a distance of 15 cm from

the needle tip. The optimum performance of the proposed SERS platform has been

evaluated by varying the applied voltage and speed of the rotor drum; which are

crucial for deposition of nanofibers over an aluminium foil. Figures 6.3(a) and 6.3(b)

illustrate the variations in recorded Raman signals for different SERS substrates ob-

tained by adjusting the applied voltage and rotational speed of the collector. The best

SERS performance has been observed when maintaining the applied voltage and rotor

speed at 22 kV and 1200 rpm, respectively, during the electrospinning process. The

deposited nanofibers are then vacuum-dried for 1 hour before treating them in an O2

plasma environment. The O2 plasma treatment, conducted in a custom-built setup

from Zeonics Systech, which utilizes a high-voltage dielectric barrier plasma genera-

tor supply with a tunable radio frequency controller unit, adjustable in the range of
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Figure 6.2: (a) Photo image of the fabricated SERS platform (b) FESEM image of the SERS
substrate (scale bar is 100 nm) (c) EDX analysis of the SERS substrate confirming the presence of
Au, Ag (d) elemental mapping of AgNPs and AuNPs over the fabricated SERS platform showing
the distribution of particles (e) COMSOL Multiphysics simulation of the SERS substrate showing
the amplitudes of the coupled EM field generated in the hotspot region of the SERS substrate; the
incident electric field amplitude was assumed as 6.4 × 104 Vm−1 (f) Variation of the coupled EM
field with the aspect ratio of nanofibers.

0 to 50 kV at 25 mA. The O2 plasma in the reactive chamber etches the nanofiber

surface, exposing embedded nanoparticles. Figure 6.2(a) displays a photo image of

the fabricated SERS substrate, while figure 6.2(b) presents the FESEM image of the

deposited nanofibers. Figure 6.2(c) shows the EDX of the proposed SERS platform,

indicating the presence of AuNPs and AgNPs in the fabricated nanofibers. Figure

6.2(d) depicts the elemental mapping of the designed SERS substrate, demonstrat-

ing the uniform distribution of nanoparticles over the sensing region of the proposed

SERS platform.
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Figure 6.3: (a) Variation of the SERS signal intensity with the electrospinning voltage for the
signature Raman peak of BPE near 1199 cm−1 (b) Variation of the SERS signal intensity with the
rotational speed of the ground collector for the signature Raman peak of BPE near 1199 cm−1 (c)
Variation of the SERS signal intensity with the plasma etching time for the signature Raman peak of
BPE near 1199 cm−1 (d). Variation of the SERS signal intensity with plasma voltage corresponding
to the signature Raman peak BPE near 1199 cm−1 ; (Error bars are plotted using the standard
deviation, calculated from five repetitions for each sample)

6.2.4 Raman spectrometer and data analysis

The specification of the Raman instrumentation has been incorporated in the section

2.2.4. All the machine learning and deep learning algorithms were implemented using

the Keras package in R programming language [5].

6.2.5 EM simulation

EM simulations has been performed to estimate the coupled EM field amplitude for

the designed SERS substrate using the COMSOL Multiphysics software (wave op-

tics module). The simulation software employs the finite element method based on

Maxwell’s electromagnetic equations to estimate the amplitude of the coupled EM

intensity at the nanoparticle site upon excitation by the incident laser beam. Figure

6.2(e) illustrates the distribution of the coupled EM field amplitude near the hotspots

of the nanofibers. The simulation was performed by depicting the FESEM image of
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the designed SERS substrate. For this, the nanofibers of diameter 20 nm and length

124 nm have been considered to estimate the amplitude of EM field. The amplitude

of the coupled EM field was estimated to be 7.1× 106 Vm−1 while the amplitude of

the incident EM field was assumed as 6.4× 104 Vm−1. Additionally, EM simulations

were conducted to investigate the effect of nanofiber aspect ratio on the coupled EM

field for the designed SERS substrate. The aspect ratio significantly influences Ra-

man band enhancement, with higher aspect ratio fibers exhibiting increased hotspot

regions between adjacent nanofibers, resulting in greater enhancement to the SERS

signal compared to lower aspect ratio counterparts. Figure 6.2(f) illustrates the vari-

ation in coupled EM field amplitude with varying aspect ratios of the nanofibers. The

results indicate that nanofibers with the highest aspect ratio would yield the maxi-

mum amplitude for the coupled electromagnetic field (9× 107 Vm−1). The details of

EF , estimated through both simulation and experimental methods, are described in

table 8.16.

6.3 Results and Discussion

6.3.1 Optimization of the SERS substrate

At the outset of the current sensing study, the performance of the proposed SERS

platform has been optimized by adjusting parameters related to the O2 plasma treat-

ment unit. Different durations of O2 plasma etching has been conducted, and the

performance were evaluated by recording SERS spectra from a test Raman probe,

BPE, at a concentration of 1 µM. Figure 6.3(c) illustrates the variations in scat-

tered Raman signal intensities for the signature Raman band at 1199 cm−1 of BPE,

recorded from ten different SERS substrates that were treated at different durations

in O2 plasma environment. Among the different durations of O2 plasma treatment,

optimal SERS performance has been noticed for 3-minute treatment. The size of the

generated bimetallic NPs depends on the plasma etching time, subsequently influ-

encing the performance of the designed SERS platform [5]. Short plasma exposure

may not sufficiently reduce metal precursors to form NPs, while prolonged exposure

may damage the nanofiber surface morphology, thus affecting performance. Further-

more, SERS performance was assessed at varying plasma discharge voltages, shown

in figure 6.3(d). The proposed SERS substrate exhibited optimal performance at a

plasma voltage of 15 kV. For subsequent experimental work, plasma etching time and

plasma discharge voltage were maintained at 3 minutes and 15 kV, respectively.
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6.3.2 SERS analysis of BPE and MG

Following the optimization phase, analysis of Raman signals from standard Raman-

active probe molecules, BPE and R6G have been performed. Stock solutions of BPE

and R6G were prepared in the laboratory by dissolving a specified amount in DI water.

The lower concentration samples were obtained by diluting the stock solutions with

an appropriate proportion of DI water. Figure 6.4(a) presents the SERS spectra of

BPE at a concentration of 1 µM before and after plasma treatment.

The figure clearly demonstrates the enhancement in scattered Raman signal in-

tensities upon exposing the substrate to O2 plasma. O2 plasma induces the formation

of AuNPs and AgNPs, thereby generating hotspot regions on the SERS substrate.

Figure 6.4(a) illustrates the characteristic Raman bands of BPE when recorded from

the proposed SERS substrate with and without treatment under O2 plasma. For

reference, the figure includes the Raman signature of BPE recorded from a blank

nanofiber substrate. It is evident from the figure that the proposed SERS platform

yields the highest SERS signal intensities upon exposure to O2 plasma. Figures

6.4(b) and 6.4(c) depict the relative signal intensities for BPE and R6G, respectively,

recorded at different concentrations of the samples. These figures clearly show that

the intensities of the Raman bands from the target analytes increase with the in-

crement in concentrations. The Raman band assignments for BPE and R6G are

provided in the appendix section (see tables 8.3 and 8.1). Linear regression analysis

has been performed for both BPE and R6G. Figure 6.4(d) and figure 6.4(e) illustrate

the variation of normalized SERS signal intensity at varying concentrations of the

analytes in the range of 10 nM to 100 nM. The R2 values for BPE and R6G were esti-

mated to be 0.996 and 0.991, respectively. These high R2 values suggest a good linear

correlation between the variations in Raman signal intensity and the concentration

of analytes.

6.3.3 Estimation of LoD and LoQ

With BPE as test Raman probe, the LoD for the designed sensing platform has been

estimated using equation 2.1 and the value was found to be 3.8 nM. Again, the limit

of quantification (LOQ) for the present sensing scheme is estimated using equation

6.1.

LoQ =
10σ

S
(6.1)

where, σ is the standard deviation of the response and S is the slope of the

calibration curve. The LoQ of the fabricated SERS substrate is estimated to be 11.6

nM
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Figure 6.4: (a) Comparison of scattered Raman signal between before and after O2 plasma treatment
(PT) (b) Variation of the intensities of the Raman bands with change in concentration of the BPE
(c) Variation of the intensities of the Raman bands with change in concentration of the R6G (d)
Linear regression analysis of the normalized SERS signal intensity with the concentration of the
BPE (e) Linear regression analysis of the normalized SERS signal intensity with the concentration
of the R6G (f) Raman mapping of the fabricated SERS platform corresponding to the signature
Raman peak near 1199 cm−1; (Error bars are plotted using the standard deviation, calculated from
five repetitions for each sample)
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6.3.4 Estimation of EF

The EF of the proposed sensing scheme has also been estimated using equation 2.2,

and the value is found to be ∼ 108. Table 6.1 depicts the SERS performance of

the proposed sensing scheme alongside some of the previously reported works on

plasma-treated nanofiber-based SERS substrates.

Table 6.1: Performance comparison of the present SERS platform with other reported works on
plasma treated nanofiber-based SERS substrates

Substrate Analyte EF RSD
(%)

LOD
(nM)

Reference

AgNP/poly(methyl
methacrylate)

(PMMA)

4-Mercaptobenzoic
acid (4-MBA)

∼ 105−
106

Not
speci-
fied

Not
speci-
fied

[6]

AgNP/poly(L-
lactide) ( PLLA) &

AgNP/PAN

4-aminothiophenol
crystal violet

R6G

Not
speci-
fied

19.9% 1 [7]

This work BPE, R6G, FLU
LIN

108 5% 3.8 Present
work

6.3.5 Study of uniformity and reproducibility characteristics

The uniformity characteristics of the proposed SERS substrate has been evaluated

through mapping the characteristic Raman peak of BPE near 1199 cm−1 over the

sensing region of the SERS substrate. For this, 1 µM of BPE has been dispensed

over the sensing area of the SERS substrate, and the scattered Raman signals were

recorded in a spectral array of 10×10. Figure 6.4(f) depicts the spectral mapping of

BPE for its characteristic Raman band at 1119 cm−1. A reasonably stable Raman sig-

nal has been observed with signal fluctuations of ∼ 5%, suggesting a good uniformity

characteristics of the proposed sensing platform. Additionally, a reproducibility study

has been conducted by utilizing R6G as a test analyte for five identical substrates. For

each substrate, SERS spectra have been recorded from five random points, and the

mean values have been considered. Figure 6.5 illustrates the reproducibility study of

the designed SERS platform and a maximum RSD of ∼ 6% has been observed. This

again indicates that the proposed sensing scheme is highly reproducible in nature.

6.3.6 SERS analysis of antibiotics

The applicability of the proposed sensing platform has been demonstrated through

trace detection and analysis of two antibiotic samples FLU and LIN. First, a stock

solution of 10 ppm was prepared in DI water and another three more samples were

prepared by diluting the stock solution. 10 µL each of the prepared analyte samples
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Figure 6.5: Reproducibility study of the fabricated SERS platform; (Error bars are plotted using
the standard deviation, calculated from five repetitions for each sample)

have been dispensed over the sensing region and the SERS spectra were recorded

Figure 6.6(a) and 6.6(b) depict the SERS spectra of FLU and LIN recorded by the

Raman spectrometer. The figures clearly illustrate that the signal intensities of the

characteristic Raman bands of the targeted analytes increase with the increment in

concentrations of the samples. The band assignments for the considered analytes have

been included in the appendix (Table 8.14, Table 8.15). Linear regression analysis

of the targeted antibiotics was also conducted, yielding values of 0.973 and 0.998

for FLU and LIN, respectively. The high values of R2 again signify a strong linear

correlation between the normalized SERS signal intensity and the concentration of

the analyte sample. The concentration of unknown samples for FLU and LIN can be

estimated using the following regression equations.

Concentration of FLU =
Normalized SERS signal Intensity − 0.038

1.092
(6.2)

Concentration of LIN =
Normalized SERS signal Intensity − 0.422

1.447
(6.3)

For the proposed sensing platform, LoDs for FLU and LIN were estimated to

be 0.1 ppm and 0.3 ppm, respectively. According to the Food and Agricultural

Organization of the United Nations (FAO), the MRL for FLU and LIN are set to

be 100 ppm and 50 ppm, respectively. Thus, with the proposed sensing scheme, it

is possible to detect these analytes well below the permissible MRL specified by the

FAO [8].
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(b) Variation in the intensities of the Raman bands with the concentration of LIN (c) Variation of
the intensities of the Raman bands with change in concentration of the FLU (d) Variation of the
intensities of the Raman bands with change in concentration of the LIN; (Error bars are plotted
using the standard deviation, calculated from five repetitions for each sample)

6.3.7 Implementation Machine learning

In the final step of the present sensing work, the ANN model has been implemented

to classify FLU and LIN samples from the mixed matrices. ANN is a deep learning

algorithm for classification problems. Prior to performing the ANN, the spectral data

were fed into the PCA algorithm to reduce the dimension of the dataset. The most

prominent principal components (PC 1, PC 2) were considered, and these obtained

PCs were then used as the input for the ANN model. For training set, 70% of the

total dataset was used, while the remaining 30% has been used as the test set. From

the training set data, 20% of the data were used for validation of the ANN model.

The model was built with 8 hidden layers, and a batch size of 10 was considered in

each epoch. Figure 6.7(a) shows the PCA-ANN plot for the proposed sensing data,

indicating a clear segregation of the analyte samples in the PCA plot, validating

the effectiveness of the developed model. Figure 6.7(b) shows the loss and accuracy

of the model with the epoch numbers, indicating a decreasing trend in the loss and

increasing trend in the accuracy, with the accuracy stabilized after 250 epochs. Figure
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Figure 6.7: (a) PCA-ANN based classification of the Analytes FLU and LIN (b) Comparison of
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6.7(c) shows the confusion matrix of the ANN classification, depicting the correct

predictions in the diagonal, while the off-diagonal elements represent the incorrect

predictions. From the confusion matrix, it is evident that the PCA-ANN model

yields a good degree of classification accuracy with the optimized parameters in the

algorithm. The performance of the present ANN model has been compared with other

ML-based models, and the results are depicted in figure 6.7(d), clearly indicating that

compared to the other ML-based models, the present ANN algorithm yields higher

classification accuracy.

The incorporation of deep learning model supports rapid identification of the an-

alyte molecules from mixed matrices. Deep learning models (ANNs) are especially

suitable for handling complex, non-linear relationships in spectral data. They can

automatically learn hierarchical representations of features, capturing intricate pat-

terns which might be challenging for ML-based models like SVM or Naive Bayes [9].

ANNs can automatically learn relevant features from the raw data, reducing the need

for extensive manual feature engineering. In contrast, SVM and Naive Bayes may

require more feature engineering to achieve good performance.
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6.4 Summary

In summary, a novel SERS platform achieved via O2 plasma treatment of bimetallic

PVA electrospun nanofibers has been presented. The present work demonstrates its

effectiveness in detecting and analyzing antibiotics, specifically FLU and LIN. The

method proposed employs a green synthesis approach, where metal precursors were

reduced through plasma etching process. To facilitate rapid classification and iden-

tification of analytes within mixed samples, an optimized deep learning algorithm,

namely an ANN model has been implemented. The developed sensing approach

offers a cost-effective, swift, and reliable method for analyzing samples within com-

plex mediums. Despite the fact that the proposed sensing platform is effective in

sensing of target analyte in trace concentrations, the fabrication of nanofibers is a

relatively complex process. It depends on several parameters like polymer concen-

tration, viscosity, evaporation rate, interfacial interaction, applied voltage, and flow

rate. Even though the surface morphology of the electrospun PVA nanofibers can be

tuned by changing the applied bias voltage and the collector configuration, it may

vary in different environments. For instance, ambient conditions like humidity and

local temperature may cause a change in the optimization parameters for the depo-

sition of the nanofiber and hence may yield a variation in the surface morphology for

the deposited nanofibers. This may subsequently lead to variations in SERS perfor-

mance. The fluctuations in intensities of the Raman bands in different regions of the

SERS substrate pose difficulty for reliable and quantitative estimation of the analyte

samples. The plasma exposure time plays a critical role in determining the size of

the generated NPs. Also, for longer duration of plasma treatment, the nanofibers

may get damaged. An optimized etching time is highly desirable to obtain a sen-

sitive SERS platform. To implement the present sensing scheme for field-collected

applications, proper binding agents or functionalization of the analytes with the NPs

may be required to improve the selectivity for a specific targeted sample. This opens

another scope for further studies for the present sensing work.
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