DECLARATION

I, hereby, declare that the thesis entitled **Design of affordable SERS platform** for detection and analysis of drugs in water and food matrices, submitted to the School of Sciences, Tezpur University (TU), in partial fulfillment of the requirements for the award of the Doctor of Philosophy in Physics, has been carried out by me at the Department of Physics, TU, Assam, India-784028, under the supervision of **Prof. Pabitra Nath** (Supervisor). The contents of this work is original except where specific reference is made to the works of others and has not been submitted in whole or in part for consideration for any other degree or qualification in this or any other university or institute.

Dipjyoti Sarma

Date

DECLARATION

I, hereby, declare that the thesis entitled **Design of affordable SERS platform** for detection and analysis of drugs in water and food matrices, submitted to the School of Sciences, Tezpur University (TU), in partial fulfillment of the requirements for the award of the Doctor of Philosophy in Physics, has been carried out by me at the Department of Physics, TU, Assam, India-784028, under the supervision of **Prof. Pabitra Nath** (Supervisor). The contents of this work is original except where specific reference is made to the works of others and has not been submitted in whole or in part for consideration for any other degree or qualification in this or any other university or institute.

Dipjyoté Same

Dipjyoti Sarma

04/10/24

Date

TEZPUR UNIVERSITY (A central University established by an Act of Parliament) DEPARTMENT OF PHYSICS

Tezpur-784028, Assam, India

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Design of affordable SERS platform for detection and analysis of drugs in water and food matrices", submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of degree of Doctor of Philosophy in Physics, is a record of research work carried out by Dipjyoti Sarma under my guidance and supervision.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

> Date: 4/10/2024 Place: Tezpin Univ.

16.02

Prof. Pabitra Nath Department of Physics Email: pnath@tezu.ernet.in Ph. no. +91-3712-275575 Fax. +91-3712-267006

TEZPUR UNIVERSITY (A central University established by an Act of Parliament) **DEPARTMENT OF PHYSICS** Tezpur-784028, Assam, India

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Design of affordable SERS platform for detection and analysis of drugs in water and food matrices", submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of degree of Doctor of Philosophy in Physics, is a record of research work carried out by Dipjyoti Sarma under my guidance and supervision.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: Place: Prof. Pabitra Nath

Department of Physics Email: pnath@tezu.ernet.in Ph. no. +91-3712-275575 Fax. +91-3712-267006

TEZPUR UNIVERSITY (A central University established by an Act of Parliament) **DEPARTMENT OF PHYSICS** Tezpur-784028, Assam, India

CERTIFICATE OF THE EXTERNAL EXAMINER

This is to certify that the thesis entitled "Design of affordable SERS platform for detection and analysis of drugs in water and food matrices", submitted by Dipjyoti Sarma to the School of Sciences, Tezpur University in partial fulfillment for the award of degree of Doctor of Philosophy in Physics, has been examined by us on/..... and found to be satisfactory.

Prof. Pabitra Nath
Head of the Department
Department of Physics
Tezpur University, Napaam
785700

External examiner

Acknowledgement

Through the boundless grace and guidance of God, I successfully completed this work, reaching a significant milestone in my academic journey. I want to convey my eternal gratitude to those whose unwavering support and encouragement enabled me to present this thesis. Foremost, I extend my deepest appreciation to my mentor, **Prof. Pabitra Nath**, whose encouragement, and scholarly guidance propelled me forward throughout this study. His insightful suggestions, invaluable advice, and genuine care have been a constant source of enlightenment. Working under his meticulous supervision has instilled in me the confidence to carry out my research effectively. I am profoundly grateful to our esteemed vice chancellor, **Prof. Sambhu Nath Singh**, for his inspiration, guidance, and provision of necessary resources during my research. I also acknowledge the support and guidance of my Doctoral Committee Members, Prof. Damudar Mohanta and Dr. Rajib Biswas, whose supervision and input were indispensable in shaping this thesis. I express my heartfelt thanks to Tezpur University and the Department of Physics for the opportunity to pursue my Ph.D. I would like to express my gratitude to Prof. Pabitra Nath (Head), Late Prof. A. Kumar, Prof. P. Deb, Prof. N. Bhattacharya, Dr. S.K. Das and Prof. G.A. Ahmed of Department of Physics for their valuable suggestion and support to carry out my research work. I am grateful to SAIC-TU for allowing me to utilize their sophisticated characterization techniques and to the staff, particularly Dr. Ratan Baruah, for their assistance. Additionally, I appreciate the support from the Department of Food Engineering and Technology, particularly Prof. Laxmikant S. Badwaik, for granting access to their laboratory facilities. I also want to acknowledge Dr. Amit Prakash and Dr. Satya Sundar Bhattacharya, Department of Environmental Science, Tezpur University for the laboratory access and useful suggestions during the my research tenure. I must also acknowledge the technical officer Dr. Kishore K. Baruah and staff of Department of Physics, Late Biswa Kr. Das, Mr. Mrinmoy Gohain, Mr. Biju Boro, Mr. Palash Dutta, Mr. Dhurba Deka, Mr. Umesh Patir, and Mr. Narayan Sarma for their constant support. I would like to acknowledge my collaborators Sritam Biswas, Ankush Medhi, Kaushik K. Nath, Indrani Chetia for the their help in the experimental work. My heartfelt gratitude goes to my past lab members Sibasish Dutta, Nabadeep Chamuah and Iftak Hussain, Diganta Rabha, Diganta Hatibaruah, Priyanka Das whose support have been invaluable. I am very much thankful to my present lab members, Sritam Biswas, Biprav Chetry, and Rupam Bharat Saikia, Chunuranjan Dutta for all the stimulating discussions, their helping

hands whenever needed, and for all the fun times we had together. I want to express my thanks to the M.Sc project students, *Macduf R Marak*, *Hemanjalee Rajbanshi*, for their assistant in performing the experiments. I am thankful to my friends *Abinash*, *Hirak*, *Mahesh*, *Saransh*, *Sritam* at Tezpur University for their guidance and support. I am deeply indebted towards my parents *Mrs. Mina Kumari Goswami* and *Mr. Dibakar Sarma* who for their endless, unconditional support and love, and it can't be expressed in words how grateful I am to them for all the sacrifices and constant support throughout my life. I am also indebted to my beloved brother *Pijush Sarma* with whom I have spent a major part of my life and they have been a constant source of love and support for me. I'm grateful to *Miss Amrita Sagar Kashyap* for believing in me and standing by my side in difficult times and always been the reason of my inspiration. Lastly, I extend my gratitude to Tezpur University for providing the necessary facilities and financial support through the Research and Innovation Grant during 2020-2021, which made this research possible.

(Dipjyoti Sarma)

List of Figures

1.1	Schematic representation of diatomic molecule	5
1.2	Energy diagram of the Rayleigh and Raman scattering processes	8
1.3	Schematic of Raman instrumentation	10
1.4	Collection optics of Raman (a) at 90° scattering (b) at 180° scattering	11
1.5	1.5 Localised surface plasmon resonance	
2.1	Schematic of the experimental setup	40
2.2	(a) TEM image of the AgNPs (b) Simulation of LSPR field of mag-	
	nitude for different sized AgNPs over the 100 GSM paper substrate	
	assuming incident electric field amplitude as $6.17 \times 10^4 \text{ Vm}^{-1}$ (c) His-	
	togram of the TEM image (d) FESEM image of AgNP distribution	
	over the 100 GSM paper substrate (Scale bar is 500 nm) (e) EDX $$	
	spectra of the 100 GSM substrate showing the elements present (f)	
	Diffusion of AgNPs on the paper substrate	42
2.3	Elemental mapping of the fabricated substrate indicating the presence	
	of silver, carbon and oxygen	43
2.4	EM Simulation of two AgNPs seperated by 5 nm when the size of the	
	NPs are (a) 50 nm (b) 60 nm (c) 70 nm (d) 80 nm (e) 90 nm; with	
	incident electric field amplitude $6.17 \times 10^4 \mathrm{Vm^{-1}}$	45

2.5(a) Comparison of SERS spectra of MG at four different concentrations (b) Comparison of SERS spectra of R6G at four different concentrations (c) Variation of SERS intensity with different concentrations for MG at a signature Raman peak at 1398 $\rm cm^{-1}$ (d) Variation of SERS intensity with different concentrations for R6G at a signature Raman peak at 1362 cm^{-1} (e) SERS intensity variation in random locations of the substrate over an area of $1 \text{ mm} \times 1 \text{ mm}$ corresponding to the Raman peak at 1398 cm^{-1} (f) Normalized SERS signal intensity variation of the MG solution corresponding to the Raman peak at 1398 cm^{-1} for the concentrations $0.00927 \text{ mgL}^{-1} - 0.0927 \text{ mgL}^{-1}$; (Error bars are plotted using the standard deviation, calculated from five repetitions 46 for each sample) (a) Reproducibility characteristics of MG for ten different substrates 2.6(b) Reproducibility characteristics of R6G for ten different substrates (c) Uniformity of the substrate, evaluated by taking 21 random locations of the substrate; (Error bars are plotted using the standard deviation, calculated from five repetitions for each sample) 48 2.7(a) Recorded Raman spectra in the absence of pharmaceutical drugs, relative Raman signal intensities of different concentrations of (b) paracetamol and (c) aspirin in water, variation of SERS signal intensity at different concentrations at the signature Raman peak of (d) paracetamol at 1326 cm^{-1} and (e) aspirin at 1038 cm^{-1} and (f) SERS spectra of the mixed analytes of paracetamol and aspirin in three different concentration ratios; (Error bars are plotted using the standard deviation, 502.8SERS spectra of the field-collected sample (a) with paracetamol (b) with aspirin (c) in a 1:1 concentration ratio of the mixed solution of paracetamol to aspirin in the ten field-collected water samples collected 52Peak intensity variation corresponding to peak at (a) 1326 cm^{-1} for 2.9paracetamol and (b) 1038 cm^{-1} for aspirin (c) Peak intensity variation corresponding to peak at 1326 cm^{-1} for paracetamol and 1038 cm^{-1} for aspirin for 1:1 concentration ratio of the mixed solution of paracetamol to the aspirin; (Error bars are plotted using the standard deviation, 532.10 Time evaluation study of the fabricated substrate 543.162

- 3.2 (a) TEM image of the synthesized AuNPs (Scale bar is 20 nm) (b) estimation of the mean size of the synthesized AuNPs (c) FESEM image of the designed leaf SERS substrate (Scale bar is 100 nM) (d) EDX spectra of the designed SERS substrate (e) simulation of LSPR field of generated near the hotspot region of the AuNPs distributed over leaf substrate assuming incident electric field amplitude as $6.3 \times 10^4 \text{ Vm}^{-1}$ (f) image of the designed SERS substrate (g) Photo image of the water droplet dispensed on the AuNP decorated leaf SERS substrate 64
- 3.3 Elemental mapping of the SERS substrate indicating presence of elements 65

67

3.8	Backscattered Raman signal intensity of (a) CEF-Na and (b) CEFTR; linear regression plots of (c) CEF-Na at 1465 cm ⁻¹ and CEFTR at 1371 cm^{-1} (e) background spectra of the chemicals used for extraction and the Raman spectra of blank milk samples (f) SERS signature of 10 field-collected milk samples (with 7 samples with positive signatures of antibiotics); (Error bars are plotted using the standard deviation,	
3.9	calculated from five repetitions for each sample)	73
4.1		20
4.2	Schematic representation of the workflow of the proposed sensing scheme (a) FESEM image of the fabricated SERS substrate (b) EDX image showing the elements present in the designed SERS substrate (c) CA plot of the ED of Cu over ITO glass substrate (d) CV plot of the elec- trochemical deposition of gold layer over the ITO glass for 7 consecu- tive cycles. (e) Image of the fabricated SERS substrate (f) COMSOL multiphysics simulation image depicting the coupled EM field ampli- tude in the hotspot region of the SERS substrate; incident electric field	00
4.3	amplitude was assumed as $6.18 \times 10^4 \text{ Vm}^{-1}$	81
	tion XPS spectra for (b) AuNP, (c) carbon, (d) copper, and (e) XRD characterization of fabricated Au-Cu-ITO platform	86
4.4	(a) Comparison of the SERS performance of the Cu-ITO, Au-ITO, and the Cu-Au-ITO SERS platform taking MG as a test analyte.(b) SERS spectra recorded on Cu-Au-ITO glass SERS substrate for variation of concentration of MG. (c) SERS spectra recorded on Cu-Au-ITO glass SERS substrate for variation of concentration of R6G. (d) Variation of the normalized Raman signal intensity with the variation of concentra- tion of MG for the Raman band near 1172 cm^{-1} . (e) Variation of the normalized Raman signal intensity with the variation concentration of R6G for the Raman band near 1362 cm^{-1} . (f) Raman mapping of the SERS substrate for the signature Raman peak 1172 cm^{-1} of MG over an array 10×10 ; (Error bars are plotted using the standard deviation,	
	calculated from five repetitions for each sample) $\ldots \ldots \ldots \ldots \ldots$	87

4.5	Repeatability study for 10 different repetitions for the characteristics	
	Raman peak (a) MG at 1172 cm^{-1} (b) 1362 cm^{-1} (Error bars are	
	plotted using the standard deviation, calculated from five repetitions	
	for each sample)	89
4.6	(a)Fluctuation of the SERS signal intensities with time. (b) Repro-	
	ducibility characteristics of MG for ten identical substrates. (c) Re-	
	producibility characteristics of R6G for ten identical substrates (Error	
	bars are plotted using the standard deviation, calculated from five	
	repetitions for each sample)	90
4.7	(a) Comparison of the SERS and normal Raman spectra of the SFZ.	
	(b) Comparison of the SERS spectra of SFZ in four different concen-	
	trations. (c) Comparison of the SERS spectra of TCH in four different	
	concentration. (d) SERS spectra of the mixed samples of MG, R6G,	
	SFZ and TCH with concentration of $1 \mu\text{M}$ (e) Variation of the normal-	
	ized SERS signal intensity with the concentration in the range from	
	0.1 to 1 ppm for SFZ corresponding to the signature Raman band of	
	780 cm^{-1} . (f) Variation of the normalized SERS signal intensity with	
	the concentration in the range from 0.1 to 1 ppm for TCH correspond-	
	ing to the signature Raman band of 850 cm^{-1} (Error bars are plotted	
	using the standard deviation, calculated from five repetitions for each	
	sample)	91
4.8	(a) Raman spectra of the background chemicals used in the sample	
	extraction. (b) SERS spectra of the field-collected egg samples spiked	
	with SFZ. (c) SERS spectra of the field collected egg samples spiked	
	with TCH. (d) SERS spectra of the mixed SFZ and TCH in the ratio	
	1:1. (e) Interference study of the SFZ and TCH with oxytetracyline	
	and enrofloxacin	93
4.9	Mass spectra of the sample upon spiking with SFZ and TCH	94
4.10	(a) ML classification plot using PCA-KNN for training set. (b) ML	
	classification plot using PCA-KNN for test set. (c) Accuracy plot	
	comparing the accuracies of the different ML modalities. (d) ROC	
	curve for the PCA-KNN ML algorithm. (e) Confusion matrix obtained	
	for the proposed sensing platform implementing PCA-KNN	96
51	Schematic of the amonimental actum	109
5.1 5.2	Schematic of the experimental setup	102
5.2	(a) TEM image of the synthesised AuNPs. Scale bar is 20 nm (b) histogram of the TEM image (c) FESEM image of the fabricated SERS	
	substrate. Scale bar is 100 nm (d) EDX spectra of the SERS substrate	
	indicating the element present	104
		104

5.3	Elemental mapping of the SERS substrate indicating presence of gold, oxygen and carbon	105
5.4	(a) XPS survey scan of the fabricated SERS substrate (b) High-resolution XPS spectra for (c) AuNP, (d) carbon, (e) oxygen	
5.5	simulation of LSPR field magnitude for AuNPs distributed over PVA	100
F 0	nanofibers; the incident electric field amplitude was assumed as $1.0 \times 10^5 \mathrm{Vm^{-1}}$	107
5.6	COMSOL Multiphysics simulation for the coupled EM field when the diameter of the nanofibers is (a) 150 nm (b) 200 nm (c) 250 nm (d) 300	
5.7	nm; the incident electric field amplitude was assumed as $1.0 \times 10^5 \mathrm{Vm^{-1}}$ (a)Variation of SERS spectra of MG with different concentration of	108
	PVA solution in the fabrication procedure (b) Variation of SERS spectra of MG with applied voltage of the electrospinning setup	109
5.8	(a) Backscattered Raman signal intensity of MG recorded on Au-PVA SERS substrate, on glass and on PVA nanofiber (b) SERS spectra	
	of MG at various concentrations (c) SERS spectra of R6G at various	
	concentrations (d) Fluctuations of normalised SERS signal intensity with the change in concentrations for MG at signature Raman peak	
	1398 cm^{-1} (e) Fluctuations of normalised SERS signal intensity with	
	the change in concentrations for R6G at signature Raman peak 1362	
	$\rm cm^{-1}$ recorded at 785 nm excitation for five repeated runs for each	
	sample (f) SERS intensity variations mappings on 1 mm $\times 1$ mm of	
	the substrate when Raman peak at 1398 cm^{-1} of MG was considered	
	as an analyte over a sensing area of the substrate; (Error bars are	
	plotted using the standard deviation, calculated from five repetitions for each sample)	110
5.9	(a) Reproducibility characteristics of MG for ten different substrates with five repeitions for each sample (b) Reproducibility characteristics	
	of R6G for ten different substrates with five repeitions for each sample;	
	(Error bars are plotted using the standard deviation, calculated from	
5 10	five repetitions for each sample)	111
5.10	a test analyte recorded for 22 days	112
5.11	SERS spectra of (a) DCH and (b) ENX. For each sample, the spectra were recorded for five consecutive repetitions. Panels (c) and (d)	
	represent the normalised SERS signal intensity corresponding to the	
	Raman peak of DCH at 1141 $\rm cm^{-1}$ and ENX at 1395 $\rm cm^{-1}$ respec-	
	tively; (Error bars are plotted using the standard deviation, calculated	
	from five repetitions for each sample)	114

5.12	(a) Background spectra of the chemicals used in meat extract, (b) SERS spectra of field collected meat sample, (c) PCA score plot im-	
	plemented to the field-collected meat samples	115
5 13	Chromatograph of the chicken meat sample	116
	MS Data of the chicken meat sample	117
	SERS spectra of the spiked meat sample with 0.5 ppm concentration	118
6.1	Schematic of the proposed sensing work	123
6.2	(a) Photo image of the fabricated SERS platform (b) FESEM image	
	of the SERS substrate (scale bar is 100 nm) (c) EDX analysis of the	
	SERS substrate confirming the presence of Au, Ag (d) elemental map-	
	ping of AgNPs and AuNPs over the fabricated SERS platform showing	
	the distribution of particles (e) COMSOL Multiphysics simulation of	
	the SERS substrate showing the amplitudes of the coupled EM field	
	generated in the hotspot region of the SERS substrate; the incident	
	electric field amplitude was assumed as $6.4 \times 10^4 \text{ Vm}^{-1}$ (f) Variation	
	of the coupled EM field with the aspect ratio of nanofibers	126
6.3	(a) Variation of the SERS signal intensity with the electrospinning	
	voltage for the signature Raman peak of BPE near 1199 $\rm cm^{-1}$ (b)	
	Variation of the SERS signal intensity with the rotational speed of the	
	ground collector for the signature Raman peak of BPE near 1199 cm^{-1}	
	(c) Variation of the SERS signal intensity with the plasma etching time	
	for the signature Raman peak of BPE near 1199 cm^{-1} (d). Variation	
	of the SERS signal intensity with plasma voltage corresponding to the	
	signature Raman peak BPE near 1199 cm^{-1} ; (Error bars are plotted	
	using the standard deviation, calculated from five repetitions for each	
	sample)	127
6.4	(a) Comparison of scattered Raman signal between before and after O_2	
	plasma treatment (PT) (b) Variation of the intensities of the Raman	
	bands with change in concentration of the BPE (c) Variation of the in-	
	tensities of the Raman bands with change in concentration of the R6G	
	(d) Linear regression analysis of the normalized SERS signal intensity	
	with the concentration of the BPE (e) Linear regression analysis of the	
	normalized SERS signal intensity with the concentration of the R6G	
	(f) Raman mapping of the fabricated SERS platform corresponding	
	to the signature Raman peak near 1199 cm^{-1} ; (Error bars are plotted	
	using the standard deviation, calculated from five repetitions for each	
	sample) \ldots	130

6.5	eproducibility study of the fabricated SERS platform; (Error bars are	
	plotted using the standard deviation, calculated from five repetitions	
	for each sample)	132
6.6	(a) Variation in the intensities of the Raman bands with the concentra-	
	tion of FLU (b) Variation in the intensities of the Raman bands with	
	the concentration of LIN (c) Variation of the intensities of the Raman	
	bands with change in concentration of the FLU (d) Variation of the	
	intensities of the Raman bands with change in concentration of the	
	LIN; (Error bars are plotted using the standard deviation, calculated	
	from five repetitions for each sample) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	133
6.7	(a) PCA-ANN based classification of the Analytes FLU and LIN (b)	
	Comparison of loss and accuracy with the number of epochs for train-	
	ing and validation data (c) Confusion matrix of the developed PCA-	
	ANN scheme (d) Comparison of the accuracy of different ML modali-	
	ties with deep learning ANN scheme	134

List of Tables

2.1	Comparison of the LoDs of previously reported works and the present work on sensing of paracetamol and aspirin.	51
3.1	Comparison of the coupled electric field amplitude with the variation	
	of excitation wavelength $\ldots \ldots \ldots$	68
3.2	Estimation of EF	72
3.3	Comparison of the proposed SERS platform with the already reported	
	SERS substrates	72
4.1	Comparison of the SERS performance with the number of CV cycles	83
4.2	Estimation of EF	90
4.3	Comparison of the proposed Cu-Au-ITO glass sensing scheme with	
	some already reported SERS-based sensing works based on ED tech-	
	niques	92
4.4	Estimation of the recovery rate for SFZ and TCH	95
5.1	Comparison of the recently reported nanofiber-based SERS substrates	113
5.2	SERS analysis of spiked DCH and ENX in the meat Sample	116
6.1	Performance comparison of the present SERS platform with other re-	
	ported works on plasma treated nanofiber-based SERS substrates $\ .$.	131
8.1	Band assignment for MG	143
8.2	Band assignment for R6G	143
8.3	Band assignment for BPE	143
8.4	Band assignment for paracetamol	144
8.5	Band assignment for aspirin	144
8.6	Peak assignment of CEF-Na	144
8.9	Band assignment for SFZ	144

8.7	Peak assignment of CEFTR	145
8.8	Band assignment for milk extract	145
8.10	Band assignment for TCH	145
8.11	Band assignment for DCH	146
8.12	Band assignment for ENX	146
8.13	Band assignment for background chemicals	146
8.14	Peak assignment of FLU	147
8.15	Peak assignment of LIN	147
8.16	6 Comparison of estimated EF from simulation and the experimentally	
	measured SERS EF	147
8.17	Comparison of the MRL of target analytes and LoD values of the	
	designed SERS substrates	148

$List \ of \ abbreviations$

AR	Antibiotic Resistance
AEF	Analytical Enhancement Factor
AgNP	Silver Nanoparticle
AUC	Area Under the Curve
AuNP	Gold Nanoparticle
AM	aegle marmelos
BPE	1,2-bis(4-pyridyl)ethylene
CARS	Coherent Antistokes Raman Spectroscopy
CCD	Charge Coupled Device
CEFTR	Ceftriaxone
CEF-Na	Ceftiofur Sodium
CE	Chemical Enhancement
CuNPs	Copper Nanoparticles
Cu-AuNPs	Bimetallic Copper-Gold Nanoparticles
Cu-ITO	CuNPs on Indium Tin Oxide
CVD	Chemical Vapor Deposition
DCH	Doxycycline Hydrochloride
DL	Deep Learning
DI	Deionized
DVD	Digital Versatile Disc
ED	Electrodeposition
EDTA	Ethylenediaminetetraacetic acid
EDX	Energy Dispersive X-ray
EF	Enhancement Factor
$\mathbf{E}\mathbf{M}$	Electromagnetic
ENX	Enrofloxacin
FESEM	Field Emission Scanning Electron Microscopy
FLU	Fluconazole
GC-MS	Gas Chromatography and Mass Spectrometry
GSM	Grams per Square Meter
HPLC	High-Performance Liquid Chromatography
ITO	Indium Tin Oxide
IR	Infrared
KHD	Kramer Heisenberg Dirac
K-NN	K-Nearest Neighbors
KSVM	kernel SVM

LC-MS	Liquid Chromatography and Mass Spectrometry
LIN	Lincomycin
LoD	Limit of Detection
LoQ	Limit of Quantification
LSPR	Localized Surface Plasmon Resonance
MG	Malachite Green
ML	Machine Learning
NIR	Near Infrared
NP	Nanoparticle
PCA	Principal Component Analysis
PLS	Partial Least Squares
PVA	Poly Vinyl Alcohol
PVD	Physical Vapor Deposition
PVP	Poly Vinyl Pyrrolidone
ppm	Parts Per Million
RBF	Radial Basis Function
ReLU	Rectified Linear Unit
ROC	Receiver Operating Characteristic
R6G	Rhodamine-6G
RSD	Relative Standard Deviation
SD	Standard Deviation
SPs	Surface Plasmons
SERS	Surface Enhanced Raman Spectroscopy
SFZ	Sulphamethoxazole
SVM	Support Vector Machine
TCH	Tetracycline Hydrochloride
TEM	Transmission Electron Microscopy
UV	Ultraviolet
WHO	World Health Organization
WOAH	World Organisation for Animal Health
XPS	X-ray Photoelectron Spectroscopy
XRD	X-ray Diffraction

Dedicated to my beloved Parents Mina Kumari Goswami and Dibakar Sarma