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Introduction

This chapter discusses the importance of detecting drugs and food adulterants at

trace levels. It also provides an overview of traditional analytical methods used for

trace sensing of these molecules. The chapter delves into the history of Raman spec-

troscopy and the instruments used to record Raman signals. Additionally, it covers

the different modalities of substrate fabrication for Surface-enhanced Raman Spec-

troscopy that have evolved over time. A brief overview of the machine learning based

classification algorithms has also been discussed. Finally, the chapter outlines the

motivation of present research study and the research objectives.

1.1 Need for trace sensing of drugs in water and

food matrices

The importance of drugs in treating various ailments and maintaining a healthy

life cannot be overstated. However, it is crucial to recognize that the improper

disposal of pharmaceutical waste could cause significant harm to our natural water

resources and aquatic life. The contamination of pharmaceutical waste in natural

water resources may lead to the alteration of the abundance of proteins associated

with different cell functions of aquatic lives [1]. Amongst the various natural and man-

made pollution factors, the household and pharmaceutical waste contribute majorly

to the pollution of water bodies. According to the World Health Organization (WHO)

report that almost 15% of medical waste is considered hazardous, emphasizing the

need for proper disposal methods [2]. Additionally, the presence of antibiotics in

different food matrices is a serious concern, as it contributes to antibiotic resistance

(AR) and poses a significant threat to human health. According to the Centre for

Disease Control, nearly 60,000 children in the USA die before the age of 4 weeks due

to antibiotic resistance [3]. In Europe, over 25,000 deaths per year are estimated
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which is caused due to various diseases related to AR [4]. Antibiotics are widely

used in animal husbandry to treat a range of diseases, with almost 70% of antibiotics

produced worldwide being used in poultry. India is among the top five countries

with a significant stake in global antimicrobial consumption in animal husbandry [5].

While the prescribed dosage can kill microbial growth in animals, a low dosage of

antibiotics can promote muscle growth in animals, leading to increased weight gain

[4]. Some of these antibiotics are also used to treat microbial infections in humans

[6]. The extensive use of antibiotics in animal husbandry is expected to accelerate the

growth of antibiotic resistance in microorganisms, which may cause problems such

as treatment failures in human medicine. The following sections then discusses the

need for Raman spectroscopy, and the surface-enhanced Raman spectroscopy (SERS)

in particular, which has emerged as a unique sensing platform in recent times for

detection and analysis of drugs and food adulterants at trace concentrations.

1.2 Traditional sensing modalities

The standard instruments for the detection and analysis of drug samples include

liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry,

and high-performance liquid chromatography. While these analytical techniques are

highly accurate, they often suffer from high cost, long sample preparation times, and

are not field portable. These techniques are briefly discussed below-

1.2.1 Liquid chromatography-mass spectrometry

Liquid chromatography-mass spectrometry (LC-MS) is a powerful analytical tech-

nique widely used in chemistry and biochemistry for the identification, quantification,

and characterization of chemical compounds [7–10]. LC is a separation technique that

separates the components in a liquid mixture based on their interaction with a sta-

tionary phase and a mobile phase. The sample components are dissolved in a liquid

(mobile phase) and pass through a column containing a stationary phase. Different

components interact differently with the stationary phase, resulting in their separa-

tion. On the other hand, MS is a technique used to identify and quantify molecules

based on their mass-to-charge ratio. In MS, ions are generated from sample molecules

and then separated based on their mass-to-charge ratio in a magnetic or electric

field. The resulting mass spectrum provides information about the composition and

structure of the analyzed compounds. LC-MS combines the separation capabilities

of liquid chromatography with the sensitivity and specificity of mass spectrometry.

After separation by liquid chromatography, the eluent (liquid containing separated

components) is introduced into the mass spectrometer for analysis. LC-MS can de-



3

tect and identify compounds at very low concentrations and is suitable for a broad

range of compounds, including small molecules, peptides, and proteins. Furthermore,

MS provides information about the molecular weight and structure of compounds.

In tandem mass spectrometry, multiple stages of mass spectrometry are performed

in sequence, providing additional information about the structure and composition

of the analysed compounds [11].

1.2.2 Gas chromatography-mass spectrometry

Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical technique

used for the identification and quantification of chemical compounds in a wide range

of samples [12–14]. It combines the separation capabilities of gas chromatography

with the detection and characterization capabilities of mass spectrometry. GC is a

separation technique that separates volatile compounds based on their interaction

with a stationary phase and a carrier gas. The sample is injected into the GC sys-

tem and vaporized. The vaporized sample is then carried through a chromatographic

column by a flowing inert gas. Different compounds interact differently with the

stationary phase, leading to their separation along the column. MS is a technique

used to identify and quantify molecules based on their mass-to-charge ratio. In MS,

ions are generated from sample molecules, and these ions are separated based on

their mass-to-charge ratio in a magnetic or electric field. The resulting mass spec-

trum provides information about the molecular weight and structure of the analysed

compounds. In GC-MS, the effluent from the gas chromatograph is introduced into

the mass spectrometer for analysis. The separated compounds are ionized within the

mass spectrometer, and the resulting ions are analysed to produce a mass spectrum.

GC provides excellent separation of volatile compounds. MS offers high sensitivity,

allowing for the detection of compounds at low concentrations. The combination of

GC and MS provides high selectivity for compound identification. Similar to LC-MS,

GC-MS can also be configured as a tandem mass spectrometer, allowing for multiple

stages of mass spectrometry in sequence for enhanced structural information [15].

1.2.3 High-performance liquid chromatography

High-performance liquid chromatography (HPLC) is a powerful analytical technique

used for the separation, identification, and quantification of chemical compounds in

a liquid sample [16–19]. HPLC operates on the principles of liquid chromatography,

where a liquid mobile phase is used to transport a sample through a stationary phase.

The stationary phase, often packed in a column, interacts with sample components

based on their chemical properties, leading to separation. HPLC is mainly consist of

three major components mobile phase, stationary phase and column. Mobile phase is
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a liquid solvent or a mixture of solvents that carries the sample through the column.

Stationary phase is a solid or liquid phase that interacts with the sample components,

facilitating their separation. Column is a key component where the separation of

sample components occurs. The time it takes for a compound to travel through the

column and reach the detector is known as the retention time. It is a characteristic

property used for identification of various elements present in the analyte. Various

detectors are used to monitor and quantify separated compounds, such as UV-Vis

detectors, fluorescence detectors, diode array detectors, and mass spectrometers [20,

21]. Detection depends on the specific properties of the compounds being analysed.

1.3 Raman spectroscopy as a sensing technique

Raman spectroscopy is a molecular spectroscopic technique that is known for its

high specificity and ability to fingerprint the molecules. It is an inelastic scattering

process of light; where almost 1 in 106 − 108 photons scatter inelastically. This effect

is observed for the first time in India by Sir C.V. Raman and K.S. Krishnan with a

rudimentary experimental setup using the sun as the excitation source and his eyes

as the detector [22–25]. However, due to low scattering crosssection, the delicate

spectroscopic technique was unable to gain much popularity until the 1960s. After

the advent of state-of-the-art laser technology the shortcoming of low scattering cross-

section has been addressed to a great extent and the applications were explored in

different areas like chemical detection, drug detection biomolecule detection [26–28].

Now, there are more than 25 different types of known Raman spectroscopy techniques.

To name a few include Stimulated Raman scattering, hyper Raman scattering, Fourier

transform Raman scattering, Coherent antistokes Raman Spectroscopy (CARS), and

SERS.

1.4 Theory of Raman Spectroscopy

The phenomenon of Raman scattering can be explained theoretically by assuming

a classical approach. Classically, light is considered to be an electromagnetic wave

that consists of oscillating electric and magnetic fields. Upon irradiating a sample

with light, the oscillating electromagnetic field of light distorts the electron cloud,

resulting in a change in polarisability [29, 30]. Due to periodic deformation in the

electron cloud, the molecules begin to vibrate with its characteristic frequency. If P

is polarisability vector and E is the applied electric field of the incident light then

P = αE (1.1)
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For simplicity, we can understand Raman Spectroscopy by assuming a diatomic

molecule and approximating the chemical bond between the atoms as a spring, as

shown in the figure 1.1,

Figure 1.1: Schematic representation of diatomic molecule

Using, Hooke’s law of elasticity to the diatomic system, we get

m1 ×m2

m1 +m2

(
d2x1

dt2
+

d2x2

dt2
) = −k(x1 + x2) (1.2)

Denoting the term m1×m2

m1+m2

(d
2x1

dt2
+ d2x2

dt2
) as the reduced mass of the system µ and

total displacement (x1 + x2) as q, we get

µ
d2q

dt2
= −kq (1.3)

Equation 1.3 can be solved by assuming the coordinate variable as follows

q = q0cos(2πνmt) (1.4)

where q0 is the amplitude of the molecular vibration and νm is the frequency of

the molecular vibration and is defined as,

νm =
1

2π

√

k

µ
(1.5)

The electric field E is given by

E = E0cos(ωt) = E0cos(2πνt) (1.6)

where E0 is the amplitude and νm is the frequency of the incident electric field.

Using equation 1.1 and 1.6, the polarisation of the molecule is given by

P = αE0cos(2πνt) (1.7)

The oscillating induced dipoles emits radiation at its own oscillating frequency

ν which gives rise to Rayleigh scattering. The variation of polarisability with the
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molecular vibration gives rises to the inelastically scattered light i.e. the Raman

scattered light. This said variation can be written as

α = α0 + q
∂α

∂q
+ ............ (1.8)

Retaining only the first order terms and using equation 1.4 in 1.8 we get

α = α0 + q0

(

∂α

∂q

)

q=0

cos(2πvmt) (1.9)

Substituting α in equation 1.7, we get

P =

{

α0 + q0

(

∂α

∂q

)

q=0

cos(2πvmt)

}

E0cos(2πνt)

=⇒ P = α0E0cos(2πνt) + q0E0cos(2πνmt)cos(2πνt)

(

∂α

∂q

)

q=0

(1.10)

Using, the trignometric identity cos(a + b) + cos(a − b) = 2cos(a)cos(b) in 1.10

we get

P = α0E0cos(2πνt) +
1

2
q0E0

(

∂α

∂q

)

q=0

[cos(2πνmt+ 2πνt) + cos(2πνmt− 2πνt)]

=⇒ P =α0E0cos(2πνt) +
1

2
q0E0

(

∂α

∂q

)

q=0

[cos2π(νm + ν)t+ cos2π(νm − ν)t)]

(1.11)

From equation 1.11 it’s evident that the induced electric dipoles have three dis-

tinct frequencies viz. the frequency of excitation radiation (ν), the other components

(νm + ν) and (νm − ν). During a scattering process, there are two types of frequency

components: the dominant one is called Rayleigh scattering, where no change in

frequency takes place. The other frequency components account for inelastically

scattered radiation, which is referred to as Raman scattering. When there is an

up-conversion of frequency, it’s known as anti-Stokes radiation, and when there is

a down-conversion of frequency component, it’s known as Stokes radiation. When

a molecule is excited with radiation, the polarizability of the molecule changes, re-

sulting in scattered radiation. However, if the electron cloud of the molecule is not

perturbed upon excitation, the net polarizability change is zero, and the scattered

radiation will be absent i.e.
(

∂α
∂q

)

q=0

= 0. This means that the radiation will only

consist of the incident light. For a molecule to be Raman active, the molecular

vibration or rotation must cause a change in the polarizability of the molecule. Sym-
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metrical vibrations cause significant changes in the polarizability, resulting in intense

Raman scattered signals. On the other hand, asymmetric vibrations result in weak

Raman scattered signals, unlike those observed in infrared spectroscopy. In a cen-

trosymmetric molecule, no band can be active in both Raman scattering and infrared

absorption. This is referred to as the mutual exclusion rule. The classical approach

can explain the emergence of Stokes and anti-Stokes radiation. However, it is unable

to explain the different intensities observed in the scattered radiation.

In the quantum mechanical approach, light is viewed as packets of energy known

as quanta. When a beam of light falls on a molecule, it interacts with the cloud of

electrons surrounding the nuclei [31]. This interaction causes the electrons to polarize

and form a short-lived state called the virtual state. The virtual state is not a real

state of the molecule but is formed when the laser interacts with the electrons. The

energy of the virtual state is determined by the frequency of the light source used.

However, this state is not stable and re-radiation occurs quickly. If the process of scat-

tering only distorts the electron cloud, the photons will scatter with small changes in

frequency. This type of scattering is called elastic scattering. When molecules scatter

light in this way, it is known as Rayleigh scattering. However, if the nuclear motion is

induced during the scattering process, energy transfer occurs, and the nature of the

process is inelastic scattering. This type of scattering is known as Raman scattering.

In Raman scattering, the molecule absorbs energy from the ground vibrational state

and is promoted to a higher energy excited vibrational state. This process is called

Stokes scattering. However, due to thermal energy, some molecules may exist in an

excited state. Scattering from such excited states is known as anti-Stokes scattering

and involves transferring energy to the scattered photon. The relative intensities of

the two processes depend on the population of the various states of the molecule and

are given by the Boltzmann equation (ref figure 1.2) [31].

Nn

Nm

=
gn
gm

exp

(

−
(En − Em)

kT

)

(1.12)

where, Nn is the number of molecules in the excited vibrational energy level (n),

Nm is the number of molecules in the ground vibrational energy level (m), g is the

degeneracy of the levels n and m, En-Em is the difference in energy between the

vibrational energy levels and k is Boltzmanns constant. At room temperature, only

a small number of molecules are expected to be in an excited vibrational state other

than any low-energy ones. As a result, anti-Stokes scattering is weak, especially

at higher frequencies. Therefore, Raman scattering is usually recorded only on the

Stokes scattering side. However, in some special circumstances, anti-Stokes scattering

is preferred. This is done to eliminate the interfering fluorescence noise that occurs

at the lower energy side, i.e., on the Stokes scattering side.
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Figure 1.2: Energy diagram of the Rayleigh and Raman scattering processes

The intensites of the scattered Raman bands are illustrated by the equation 1.13

I = Klα2w4 (1.13)

where, K is a constant, l is the laser power, α the polarizability of the electrons in

the molecule and ω is the frequency of the incident radiation. The parameters l and

w are the experimentally controlled parameters and can be tuned for the optimized

Raman intensity which has been evident from the equation 1.13.

The Kramer Heisenberg Dirac (KHD) equation [31–34] is used to describe induced

polarizability in the molecule and is given by equation 1.14.

αρσ = kΣl

(

< F |rρ|I >< I|rσ|G >

ωGI − ωL − iΓI

+
< I|rρ|G >< F |rσ|I >

ωIF + ωL − iΓI

)

(1.14)

In the equation 1.14, α denotes the molecular polarisability whereas ρ and σ

indicates the directions of incident and scattered polarizations. Σ designates the sum

of all vibronic states of the molecule; the remaining constant terms are designated

by k. The states |G >, |I > and |F > correspond to the ground, excited and final

vibrational state respectively. The operators rσ and rρ are the dipole operators. In

the term < I|rσ|G > denotes the mixing of two states and is a contributing part in

the excitation process. Again, the term < F |rρ|I > represents the scattering process

and this leaves the molecule in the final state |F >. Thus, to conclude, the first

two terms in equation 1.14 indicate the mixing of a ground and an excited state and

the excited state and the final state respectively. Owing to the mixing nature of the

process, the process generally starts in the ground state. Thus, in the second term in
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equation 1.14, an equivalent expression has been added to the first term. The added

term < I|rρ|G > designates the mixing of excited state and the ground state, and

< F |rσ|I > represents the mixing of final and the excited state.

When the light is incident on a molecule the virtual state is generated; so it rep-

resents the state of the distorted molecule. Since the nuclei do not have time to reach

equilibrium, the virtual state is not a state associated with the static molecule. Thus,

with the aid of KHD expression the process of distortion is illlustrated by mixing all

of the vibronic, excited and ground states together to represent the electronic states

of the molecule. In equation 1.14, the energy of the term iΓI is small when compared

to the energies ωGI and ωL. Additionally, since ωGI and ωL are added in the second

expression, the denominator will always be larger than that in the first term. As a

result, term 2 has a smaller impact on describing the polarization process and can

be disregarded. If iΓI was not present, for ωGI = ωL would cause the denominator of

the first term to become zero, leading to infinite scattering. The term iΓI relates to

the lifetime of the excited state and influences the natural breadth of Raman lines.

By incorporating the Born-Oppenheimer approach in the KHD expression, the selec-

tion rules of the scattering process can be determined. The analysis indicates that

only vibrations containing one quantum of energy will facilitate Raman scattering,

which suggests a good selection rule. Furthermore, it is evident that symmetric vi-

brations are allowed for Raman scattering. Incorporating the quantum treatment of

Raman scattering, it is possible to show that the power of the scattered radiation is

proportional to the wavelength and the Raman crossection.

σR ∝
1

λ4
(1.15)

where λ is the wavelength of incident photon and so we get

Ps ∝
I0
λ4

(1.16)

From equation, 1.15 and 1.16, we may conclude that with the short wavelength exci-

tation sources and with the sources with large powers will facilitate Raman spectra

with enhanced signal to noise ratio.

1.5 Raman instrumentation

The Raman instrument is composed of four major components: an excitation source,

light collection optics, a wavelength selector, and a detector [35–38]. The schematic

of a moden Raman instrument is depicted in figure 1.3. In modern Raman spectrom-

eters, a laser is typically used as the excitation source. The collected light is guided to

the detector area through light collection optics. Wavelength selectors, which consist
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Figure 1.3: Schematic of Raman instrumentation

of monochromators, notch filters, and diffraction gratings, are used to segregate the

wavelength-shifted Raman scattering light from the Rayleigh scattered light. The

first monochromator is primarily used to separate the frequency-shifted Raman scat-

tering from other radiation. The second monochromator increases the dispersion and

separates individual Raman peaks. However, modern spectrometers use notch fil-

ters, which absorb all the frequency of incident radiation. With the advancement of

modern filters like notch and edge filters, the size of the Raman instrument has been

reduced significantly. Most of the commercially available Raman instruments collect

scattered light through the notch filter and focus it into a monochromator, which

separates the different energies of the Raman bands. The radiation is then directed

onto a charge-coupled device (CCD) for detection. In FT-Raman systems, InGaAs

detectors are often used for this purpose.

As shown in figure 1.4, there are two basic ways to collect scattered Raman signals:

one at 90◦ while the other at 180◦ [39]. For 90◦ scattering method, the laser beam is

passed through the sample and the scattered light is then collected at a 90◦ angle by

placing a mirror in a suitable position. The collected light is then imaged onto the

entrance slit of the Raman spectrometer. Since the light is scattered as a sphere, it

is better to collect a larger cone of light. Therefore, large lense diameter, or lenses

with short focal lengths, are used to cover the largest practicable angle. However, it

is also necessary to match the collection lenses with the collection optics for efficient
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Figure 1.4: Collection optics of Raman (a) at 90◦ scattering (b) at 180◦ scattering

performance. In the 180◦ system, the laser is delivered through the collection lens,

and the scattered light is collected back through it. In this arrangement, a small

mirror is placed in front of the collection lens to achieve this. This is the common

arrangement in systems that use a microscope to collect the light. Sometimes a mirror

system such as a Cassegranian system or a silvered sphere is also used, but lenses

are more common for Raman instrumentations. In special circumstances, ’grazing

incidence’ is used, in which the laser beam is directed along the surface.

As has been evident from equation 1.13, the intensity of the scattered Raman

signal is related to the power of the laser used for the excitation, the square of the

polarisability and the fourth power of the frequency of excitation source. Thus, there

are two instrumentation parameters frequency of the source and the laser power which

can be tuned to obtain optimized scattered signal from the analyte. Depending on

the target application UV, visible and near infrared (NIR) excitation sources are be-

ing employed to record the scattered Raman signals. Often in many spectrometers

UV excitation is preferred, due to the fact that the scattered intensity varying with

the fourth power of the frequency (ref to equation 1.13), which also ensures enhanced

Raman sensitivity. Also, occurrence of fluorescence is less probable in the UV exci-

tation region as compared to the visible excitation. However, UV excitation suffers

from some serious drawbacks such as sample heating and sample degradation may

occur; as many samples absorb UV radiation. Additionally, quality of optics required

for the UV excitation sources is different from visible sources; the cost associated

with it are quite high. So, visible excitation sources are often preferred as they are

readily available and can be quite compact. The primary and most significant draw-

back of using visible excitation is fluorescence, which is present in all visible Raman

spectrometer systems. More often, high power densities are used due to the lack of
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sensitivity in the visible excitation; which makes the fluorescene more feasible in that

range. Again, in most of the cases or in industrial use to be able to record the Raman

spectra for most of the samples NIR laser are preferred; which is often equipped with

an interferometer. The main advantage of the NIR based excitation system is that

fluorescene is less probable in that range; since most of the molcules don’t have exci-

tation wavelength in NIR range. Generally, a neodymium-doped yttrium aluminium

garnet (Nd3+:YAG) solid state laser emitting at 1064 nm is used. Since the excitation

wavelength is much longer (weaker radiation) most of the samples donot absorb the

exciting radiation efficiently compared to the visible and UV region; for this reason

high laser powers (∼2 watts) are used with these configurations. The coupling of the

FT-based system makes the spectrometer very sensitive. At room temperatures, the

detectors normally used are InGaAs based detectors, however for enhanced sensitivity

the detector can be cooled to liquid nitrogen temperatures. Further, the microscope

can be attached with NIR based system, however thermal degradation may result

owing to the high power density at the focal point. Generally, in the NIR based

systems occurrence of fluorescence could be avoided to a large extent.

Modern visible spectrometer are extended by using NIR lasers as the excitation

source with wavelengths in the range 785-850 nm. These systems can be used to anal-

yse a wide variety of samples for which Raman scattering can be measured effectively

without fluorescence interference. In these instruments, CCD is used as the detector

which are inaffective at the wavelengths above 1000 nm. The major problem for the

manufacturers of visible source instruments is that the CCD chips lack sensitivity

at wavelengths above 1000 nm. This means that lasers that operate at 790 nm or

850 nm are effective but are also very close to the end of the detector range which

eventually would lead to a drop in sensitivity for higher wavelength peaks.

1.6 Limitations of Raman Spectroscopy

Raman scattering is a very weak process, almost 1 in 107 photons scatters inelasti-

cally contributing to low scattering cross-section (∼ 10−30 cm−2) of Raman spectra.

The wide applications of the technique in different domains were limited due to

low-sensitivity; compared to the other spectroscopic techniques such as fluorescence

spectroscopy. However, the invention of laser in 1960s makes it possible for utilizing

the technique in different domains of chemical and biomolecule detection. Even after

the incorporation of laser as the excitation source the technique is not capable of de-

tecting low concentration samples. SERS emerges as a good alternative in the realm

of near-field Raman where the low-sensitivity issue could be greatly addressed to a

good extent [40–43]. Owing to the effect of strong LSPR in the metal nanostructure,

the intensities of the scattered Raman signals from the target analyte are enhanced
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manifold once it is brought to the vicinities of the metal nanoparticles.

1.7 Surface-enhanced Raman Scattering

The phenomenon of SERS was first observed in 1974 by Fleischman et al [44]. They

reported strong Raman scattering from pyridine molecules adsorbed from an aque-

ous solution onto a silver electrode, which was roughened using successive oxidation-

reduction cycles. Initially, the effect was attributed to an increase in the electrode

surface area caused by the roughening process, which enabled more pyridine molecules

to be absorbed on the surface. However, two independent groups showed that the

enhancement was not caused by the roughening of the electrode, as roughening could

only contribute to a 10-fold enhancement in the Raman bands, whereas the observed

signal enhancement was of the order of 106 [45, 46]. Moskovits established that the

contribution of optical properties in metallic surfaces was the cause of the enhance-

ment [47]. This new optical phenomenon leads to the naming of the method as SERS.

It became evident that roughened Ag electrodes were not the only type of material

that can be used as SERS substrates. Pettinger, Wenning, and Wetzel demonstrated

the use of Au, Ag, and Cu electrodes for the enhancement in Raman signals pyridine.

The optical properties of metals like Ag, Au, and Cu suggest resonances in the visible

region, supported by the surface plasmons (SPs). [47, 48]. The surface enhancement

is caused by SPs’ excitation, which triggers the enhancement in the electric field lo-

calized near the metallic nanostructures. If the nanostructures are very near, about

1-2 nm, the local electric field is enhanced by a substantial value. These regions

are known as SERS hotspots [49]. The electromagnetic component described by the

Surface Plasmon successfully explained the experimental results to a great extent.

However, in some cases, it failed to explain the chemical contribution. The optical

model does not consider the enhancement’s dependence on the chemical factors of

the probe molecule.

1.8 Theory of SERS

The true nature of the theory of SERS is still an active field of research; however two

contributing mechanisms - electromagnetic (EM) enhancement [50] and the chemical

enhancement [51] are assumed to be the primary cause from which most of the ob-

served results can be correctly explained. When an analyte is adsorbed onto metal

surface or resides in the close proximity to the metal surface; an interaction occurs

between the analyte and the plasmons. This interaction is known as electromagnetic

enhancement and is the primary contributor in scattered Raman signal enhancement

process. Again, when the adsorbate molecule chemically bonds to the surface, excita-
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Figure 1.5: Localised surface plasmon resonance

tion is then through transfer of electrons from the metal to the molecule and back to

the metal again. This form of enhancement is known as charge transfer or chemical

enhancement; this contributes only ∼ 103 in the enhancement process.

1.8.1 EM enhancement

Metal surfaces like silver have ample amount of electrons contributed from the con-

duction band. When a metal is irradiated with light, a collective group of oscillations

results across the metal surface; these oscillations are termed as surface plasmons.

Figure 1.5 shows the schematic representation of surface plasmon on metal dielectric

interface. Surface plasmons resulting from uniform metal nanostructures, or from

metal surfaces having a single periodic roughness, have a resonance frequency at

which the absorption and scattering occur most efficiently. The resonance frequency

varies with the metal and the nature of the surface. The oscillation frequency for

silver and gold lies in the visible region; so these metals are useful in visible region

and NIR based excitation sources. For smooth surface the oscillation occurs along

the plane of the surface resulting in absorption but no scattering. To get scattering,

there needs to be an oscillation perpendicular to the surface and this is achieved by

roughening the metal surface. Another important parameter of interest is the ratio

of absorption to scattering. The real part of the dielectric constant of a material

designates the scattering process, whereas the imaginary part designates the absorp-

tion part of a material. Silver is reported to be have comparatively good scattering

capability.

The process of EM enhancement can be understood by assuming a small metallic

sphere [31] ; however the contribution arising from the roughness of a material is

neglected. Let’s assume a small metal sphere which is subjected to an applied electric

field from the laser, the field at the surface is described by
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Er = E0cosθ + g
a3

r3
E0cosθ (1.17)

where Er is the total electric field at a distance r from the sphere surface, a is the

radius of the sphere, θ is the angle relative to the direction of the electric field, g is

a constant related to the dielectric constants such that

g =
ϵ1(νL)− ϵ0
ϵ1(νL) + 2ϵ0

(1.18)

ϵ0 and ϵ1 are the dielectric constants of the medium surrounding the sphere and of

the metal sphere respectively. νL is the frequency of the incident radiation. When the

denominator of equation 1.18 is at a minimum, the value of g will be maximum when

ϵ0 ≂ 1 and consequently this maximum usually occurs when ϵ1 ≂ 2. At this plasmon

resonance frequency the excitation of the surface plasmon greatly increases the local

field experienced by the molecule absorbed on the metal surface. In brief, the molecule

is surrounded in a very freely moving electron cloud and it intensifies the polarization

of the surface electrons. The electrons in the analyte molecule adsorbed on the

surface interact with this cloud causing greater polarization around the molecule;

which results in the enhanced Raman bands of the molecules.

The electromagnetic contribution of the SERS signal could be further assumed

to be composed two main enhancements - local field enhancement and radiation

enhancement.

Local field enhancement:

The electromagnetic field surrounding metallic surfaces undergoes significant alter-

ation when electromagnetic radiation interacts with a suitable metal surface, charac-

terized by a negative real and small positive imaginary dielectric constant [52]. This

condition is feasible when the excitation wavelength λL is close to the electromagnetic

resonances of the system. This specific alteration in the electromagnetic field arises

from the coherent oscillation of free electrons, which give rise to surface plasmons.

This results in the generation of EM hotspots and very high local fields contributing

to the local field enhancement. The local electric field (ELoc) differs from the incident

field (Einc) both in terms of magnitude and orientation. Generally, the magnitude of

|ELoc| can be significantly greater than |Einc|. The local field induces a Raman dipole

moment, given by :

PR = αRELoc(ωL) (1.19)

Thus, the dipole moment is amplified by a factor of |ELoc(ωL)|/|Einc| compared

to the dipole induced by the incident field. If such a dipole radiates in free space (i.e.,
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in the absence of a metallic environment), the radiated energy, which is proportional

to |PR|
2, would be enhanced by a factor:

MLoc(ωL) =
|ELoc(ωL)|

2

|Einc|2
(1.20)

The factor MLoc(ωL) is designated as the local field intensity enhancement factor

and is associated with the excitation of the Raman dipole. It also characterizes the

enhancement of the electric field intensity. Here, any modification of the electric field

polarization occurred during the process is neglected.

Radiation enhancement:

In the context of SERS conditions, the dipole moment generated by the local field

radiates very near to the metal, and the metal significantly influences this dipole

radiation [52] . Depending on factors such as the relative dielectric function ϵ(r) of

the metal, its geometry, the position and orientation of the dipole, and its emission

frequency (ωR), the value ofMd
Rad(ωR) can either increase or decrease compared to

that in free space. The coupling of LSPR in metallic objects results in an enhancement

of the radiated power. Therefore, the radiation enhancement factor is given by-

Mrad =
Prad

P0

(1.21)

where Prad and P0 is the total power radiated by the dipole in presence of a

medium and the free space respectively. The overall SERS intensity depends on both

the incoming (ωinc) and the outgoing (ωs= ωinc − ωvib) field and is given by the

equation

ISERS = Iinc(ωinc).I(ωs) = |Einc(ωinc)|
2|E(ωs)|

2 (1.22)

For the best SERS enhancement, it’s important that the incident radiation at

ωL and the stokes shifted radiation at ωs are both resonant with the LSPR peak of

the metallic nanostructure. Generally, nanostructures with dimensions ∼ 30-100 nm

are needed for excitation with visible radiation. Additionally, the LSPR is heavily

influenced by the size and shape of the nanostructures, and is also strongly altered

when nanostructures are closely spaced due to the existence of coupling, which mainly

results from the interactions of the LSPR of individual nanostructures. For simple

cases, ISERS can be reduced to |E(ωL)|
4 which is known as E4 enhancement.
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1.8.2 Chemical enhancement

In the context of chemical enhancement (CE), a bond is established between the

surface of the metal and the analyte, enabling the transfer of charge from the metal

surface into the analyte [51, 53–55]. The formation of this bond results in an increased

interaction with the metal electrons, leading to an enhanced molecular polarisability.

This enhancement is believed to occur as a result of the emergence of new electronic

states that arise from the bond between the analyte and the metal surface. These

new states are thought to be resonant intermediates in the Raman scattering process.

Unlike the EM enhancement mechanism, the radiation is absorbed into the metal,

and a hole is transferred into the adsorbate metal atom cluster. After the Raman

process, excitation is transferred back into the metal and re-radiation occurs from

the metal surface. Since the CE occurs mostly only from molecules that are directly

attached to the surface, it should increase only up to monolayer coverage.

1.8.3 Enhancement Factor

The enhancement factor (EF) stands as a pivotal aspect of the SERS phenomenon.

Over time, various types of SERS EFs have been proposed to establish an optimal

metric for comparing experiments across diverse substrates and conditions, alongside

facilitating theoretical calculations. A standard definition of EF chooses the inte-

gral intensities of the strongest band in SERS (ISERS) against those in conventional

Non-Resonant Raman Scattering or Resonant Raman Scattering (NRS) spectra. This

comparison, normalized to the number of molecular scatterers involved in each sce-

nario and conducted under identical experimental setups, yields

EF =
ISERS/NSERS

IRS/NRS

(1.23)

In scenarios like backscattering experiments (e.g., Raman microscopy), the ratio

NSERS/NRS is often estimated as the quotient of the effective surface density of

adsorbed molecules during SERS measurement to the spatial molecular density in

conventional Raman measurements, multiplied by the effective height of the scattered

volume [56].

The analytical enhancement factor (AEF), used in SERS analytical applications,

considers ratio of molecular concentrations of measured analyte.

AEF =
ISERS/cSERS

IRS/cRS

(1.24)

This parameter effectively showcases how surface enhancement facilitates the ana-

lytical capability of Raman spectroscopy in specific instances. However, it’s notewor-
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thy that AEF is not solely contingent on the SERS phenomenon but is also influenced

by the substrate type and its coverage by the adsorbate.

1.9 Role of SERS substrate

In the field of SERS, the plasmonic nanostructured platform is commonly referred

to as SERS substrates, while the target analytes are called SERS probes. These

substrates are crucial in SERS-based sensing and consist primarily of plasmonic

nanostructures that support LSPR. The nanoscale roughness and periodicity are

essential for achieving a enhanced and reproducible SERS signal. Over the years, dif-

ferent types of SERS substrates have been developed, ranging from electrochemically

roughened SERS substrates to lithographically prepared SERS substrates [57]. The

selection of substrates is critical in SERS because the interaction between the probe

and the substrate is necessary.

1.10 SERS Substrate fabrication

The fabrication of SERS substrates involves a broad spectrum techniques. Some of

the methods which are employed in the present thesis work are briefly discussed below

1.10.1 Chemical Synthesis of Nanoparticles

Nanoparticles made of noble metals like gold, silver, or copper are usually synthesized

by the chemical reduction method and deposited onto a substrate. The commonly

used Lee-Meisel and Turkevish method for synthesizing silver nanoparticles (AgNPs)

and gold nanoparticles(AuNPs) fall in this category [58]. These methods require

metal precursors, reducing agents, and stabilizing agents. The metal contributes

metal ions which are responsible for the formation of metal nanoparticles while the

stabilizing agent helps to control the size and stability of the formed nanoparticles.

The reducing agent reduces metallic ions to metal nanoparticles by donating elec-

trons. The size and shape of the nanoparticles depend on the rate of addition of

the reducing agent and the concentrations of the reactants. The stabilizing agent

helps to stabilize the formed nanoparticles and prevent them from agglomerating or

precipitating. After the completion of the reaction, the resulting solution is washed

or centrifuged to remove any excess reagents and byproducts.

1.10.2 Electrochemical Deposition

Electrochemical deposition is a highly versatile technique that allows for the con-

trolled growth of metal nanostructures on conductive surfaces. This technique is
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commonly used for the fabrication of SERS substrates, which are used to enhance

Raman signals. The process involves the reduction of metal ions from a solution

onto a conducting substrate. To carry out electrochemical deposition, we need a

conductive substrate made of materials like indium tin oxide (ITO), gold, or plat-

inum, and a solution containing the metal precursor, typically a salt of the metal

to be deposited (e.g. silver nitrate, gold chloride). The concentration of the metal

salt and the supporting electrolyte can be adjusted based on the desired properties

of the SERS substrate [59–64]. To initiate the reaction that triggers the reduction

of metal ions onto the substrate, an electrochemical setup is designed. This setup

includes the conductive substrate as the working electrode, a counter electrode (usu-

ally platinum), and a reference electrode. By applying a suitable potential to the

working electrode (substrate) in the presence of the metal precursor solution, metal

ions are reduced onto the substrate, leading to the formation of metal nanostructures.

The morphology of the nanostructures can be controlled by adjusting the deposition

parameters, which include the applied potential, deposition time, and temperature.

To further enhance the SERS activity, some surface modification steps like annealing

could be performed.

1.10.3 Electrospinning technique

Electrospinning (ES) is a technique used in the fabrication of SERS substrate for

producing polymer nanofibers with diameters ranging from few nanometres to several

micrometres. In the ES system, a high voltage is applied to a polymer solution which

causes a charged jet of the polymer solution to be released from a syringe needle

towards ground collector. During the course of travelling the charged jet stretches

and solidifies into ultrafine fibers, which further accumulate on the collector to form

a nano mat containing micro and nano-porous structures. Due to the formation

of nano-porosity, tunable morphology and high surface area to volume ratio, the

electrospun nanofibers facilitates excellent SERS characteristics [65]. The nanofiber

based platforms enhances the scattered Raman signals of the analytes adsorbed onto

their surfaces, thereby facilitating detection and analysis of analyte molecules at trace

concentrations.

The conventional mode of substrate fabrication via ES suffers from issues like non-

uniformity and the production of chemical intermediates in the synthesis procedures.

By adopting plasma treatment for the generation of NPs, such problems can be

resolved to a great extent. In the plasma treatment techniques, the NPs are produced

from the metal salts by the process of photo reduction. Thus, the fabrication process

is green and thereby doesn’t produce any interfering intermediates. Also, plasma

treatment parameters can be adjusted to tailor the properties of nanofiber substrates
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in accordance to the target applications. For the optimized SERS characteristics

the properties such as surface roughness, porosity, and wettability can be tuned by

optimizing the plasma etching time and voltages.

1.11 Other techniques

Some other substrate fabrication modalities like Physical Vapor Deposition, Chemical

Vapor Deposition, lithography are also rich in SERS literatures and are widely used in

commercial SERS substrates. With these techniques very sensitive and reproducible

SERS substrates can be fabricated. However, due to the high cost of instrumentation

and long fabrication time, such techniques are not suitable for infield sensing purposes.

Some of these techniques are briefly discussed below-

Physical Vapor Deposition:

Physical Vapor Deposition (PVD) is a technique used to fabricate SERS substrates

[66, 67]. PVD involves depositing material in a physical vapor state onto a substrate

surface, creating thin films or nanostructures that enhance Raman signals. Thin films

of noble metal nanostructures are deposited using evaporation or sputtering.

Chemical Vapor Deposition:

Chemical Vapor Deposition (CVD) is a technique used for the synthesis of thin films,

nanostructures, or coatings by introducing chemical precursors in the vapor phase

onto a substrate surface [68, 69]. In the context of SERS, CVD can be employed

to design nanostructured surfaces that enhance Raman signals. In this process, the

metal precursor is deposited on the substrate surface leading to the formation of

nanostructures via thermal activation. The morphology, size, density and distribution

of the nanostructures can be tuned by controlling the parameters such as precursor

flow rate, temperature, and pressure.

Lithography:

Lithography is a technique used for printing or patterning on a substrate, and it has

various applications in microelectronics, nanotechnology, and the production of opti-

cal components [70–72]. The principle of lithography involves transferring a pattern

from a mask or template onto a substrate. There are various types of lithography

techniques available, but the most commonly used are photolithography, electron

beam lithography, and nanoimprint lithography. In photolithography, light is used to

transfer a pattern from a photomask to a light-sensitive photoresist on a substrate.

On the other hand, E-beam lithography uses a focused beam of electrons to directly
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write patterns on a substrate and nanoimprint lithography involves pressing a mold

into a soft resist layer on a substrate to create a pattern.

1.12 Chemometrics and ML implementation

Chemometrics is the application of statistical and mathematical methods to analyze

chemical data [73–75]. It is particularly useful for handling complex datasets gener-

ated from analytical techniques such as spectroscopy. In the context of spectroscopy,

chemometrics helps extract meaningful information, reduce noise, and make predic-

tions or classifications. Common chemometric techniques include principal compo-

nent analysis, partial least squares regression (PLS), and cluster analysis. On the

other hand, machine learning (ML) is a broader field that involves the development

of algorithms and models that enable computers to learn patterns from data without

explicit programming [76–79]. In the context of chemical analysis, ML is applied to

process and interpret complex datasets. Supervised learning, unsupervised learning,

and reinforcement learning are common types. ML models can be trained to rec-

ognize patterns, make predictions, classify data, and identify relationships between

variables. When applied together, chemometrics and ML enhance the capabilities of

chemical analysis techniques. Chemometrics helps preprocess and extract relevant

information from data, while ML models can learn complex patterns and relation-

ships within the dataset. This combination is powerful for tasks such as quantitative

analysis, pattern recognition, feature selection, and real-time monitoring in various

scientific and industrial applications. Chemometrics and ML are related fields that

share some common goals, such as extracting information and patterns from com-

plex data sets. However, there are small differences between these two approaches. In

Chemometrics, we primarily focus on statistical methods and mathematical modeling

for the analysis of chemical data. It is often applied in chemistry, spectroscopy, and

analytical chemistry for tasks like calibration, quality control, and pattern recogni-

tion. However, ML encompasses a wide range of algorithms and techniques designed

to enable computers to learn from data and make predictions or decisions. It has

applications in various fields, including computer vision, natural language process-

ing, and healthcare, in addition to chemistry and analytical sciences. The selected

chemometrics, ML, and deep learning algorithms implemented in the current thesis

work are discussed briefly.

1.12.1 Principal Component Analysis

Principal component analysis (PCA) is a statistical method used for reducing the

number of dimensions in a dataset while retaining the most significant informa-
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tion and transforming high-dimensional data into a lower-dimensional representation

[80, 81]. PCA has two objectives: dimensionality reduction and decorrelation. It

aims to transform the data into a set of linearly uncorrelated variables called princi-

pal components while preserving the essential variance in the data. These principal

components are obtained by linearly combining the original features. The first prin-

cipal component accounts for the most variance, the second for the second most, and

so on. PCA involves finding the eigenvalues and eigenvectors of the covariance matrix

of the original data. The eigenvectors define the directions (principal components),

and the eigenvalues indicate the amount of variance along those directions. The steps

involved in PCA are standardization, estimation of the covariance matrix, eigenvalue

decomposition, and selection of principal components. To begin with, PCA calculates

the covariance matrix of the original data, which represents the relationships between

pairs of features. The covariance matrix is then decomposed into its eigenvectors and

eigenvalues. The eigenvectors form the new basis for the data, and the eigenvalues

indicate the variance along each corresponding eigenvector. In summary, PCA is a

useful technique for dimensionality reduction and data visualization. It aims to trans-

form high-dimensional data into a lower-dimensional representation while retaining

the most significant information and decorrelating the features. PCA involves find-

ing the eigenvalues and eigenvectors of the covariance matrix of the original data and

selecting the principal components that explain the most variance in the data.

1.12.2 K-Nearest Neighbour algorithm

K-Nearest Neighbors (KNN) is a simple and widely used algorithm for classification

and regression tasks in ML [82–84]. It’s a type of instance-based learning, where the

algorithm makes predictions based on the majority class or average value of its k

nearest neighbors in the feature space. KNN involves storing all training examples,

prediction for a new data point, calculation of its distance to all other data points

in the training set. Further, selection is made for the k-nearest neighbors with the

smallest distances to the new data point. In the final step, the majority voting is

performed and subsequent the class labels are assigned.

1.12.3 Support Vector Machine and Kernel-Support Vector

Machine algorithm

A Support Vector Machine (SVM) is a supervised ML algorithm that is used for

classification and regression tasks [85–87]. SVMs are particularly effective in high-

dimensional spaces and are well-suited for scenarios where the data points are not

easily separable by a linear boundary. For classification problems, SVM aims to find a

hyperplane that best separates the data into classes, maximizing the margin between
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the classes whereas for regression problems, SVM seeks to find a hyperplane that

best fits the data, while allowing for a margin of error. The SVM algorithm finds

the hyperplane that maximizes the margin between the classes. The margin is the

distance between the hyperplane and the nearest data point from either class. SVM

seeks to maximize this margin. The larger the margin, the more robust the classifier

is to variations in the data. Support vectors are the data points that lie closest

to the decision boundary (hyperplane) and have the most influence on determining

the optimal hyperplane. These are the critical elements in SVM that define the

margin and the decision boundary. SVM can handle non-linear relationships between

features through the use of a kernel function. Common kernel functions include

linear, polynomial, radial basis function (RBF), and sigmoid [88]. The choice of

kernel depends on the nature of the data. This is known as kernel SVM (KSVM).

1.12.4 Decission tree algorithm

Decision Tree is a ML algorithms used for both classification and regression tasks

[89, 90]. Decision Trees are a type of supervised learning algorithm that makes

decisions based on a series of conditions. The algorithm builds a tree structure where

each internal node represents a decision based on a feature, each branch represents the

outcome of the decision, and each leaf node represents the final decision or prediction.

In the training step, the tree is built recursively by selecting the best feature to split

the data at each node. The selection is based on criteria like Gini impurity (for

classification) or mean squared error (for regression). However, decision Trees can

be prone to overfitting, capturing noise in the training data and resulting in poor

generalization to new data and sensitive to small variations in the data.

1.12.5 Naive Bayes algoritm

The Naive Bayes algorithm is a probabilistic ML algorithm based on Bayes’ theorem.

Despite its simplicity, it is often quite effective for classification tasks, particularly in

natural language processing and text classification [91, 92]. Naive Bayes is built upon

Bayes’ theorem, which relates the conditional and marginal probabilities of random

events. In the context of classification, it helps estimate the probability of a particular

class given the observed features [93]. The algorithm assumes that the features used

to describe an instance are conditionally independent given the class label.

P (class|feature) =
P (feature|class)P (class)

P (feature)
(1.25)

Naive Bayes calculates the probability of each class given the observed features.

For a given class, the probability is calculated as the product of the probabilities of
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each feature given the class.

P (class|feature) ∝ P (class)Πn
i=1P (feature|class) (1.26)

During training, the algorithm estimates the prior probability of each class P (class)

and the conditional probabilities of each feature given each class P (feature|class).

During the classification phase, the algorithm calculates the probability of each class

for a given set of features and selects the class with the highest probability as the

predicted class.

1.12.6 Aritificial Neural Network

Artificial Neural Network (ANN) is one of the class of ML algorithms inspired by

the structure and functioning of the human brain. They consist of interconnected

nodes (neurons) organized into layers, each layer having a specific role in the net-

work. ANNs are widely used for various tasks, including classification, regression,

pattern recognition, and more [91, 94–96]. Neurons are the basic units in an ANN,

and they receive inputs, perform a computation, and produce an output. Neurons

are organized into layers, including an input layer, one or more hidden layers, and

an output layer. Input Layer receives input features and passes them to the hidden

layers. The hidden layers are intermediate layers between the input and output lay-

ers where computations are performed. Deep neural networks have multiple hidden

layers. The output layer produces the final output of the network. Each connec-

tion between neurons has an associated weight, which determines the strength of the

connection. Biases are additional parameters that allow the model to learn an off-

set. Activation functions introduce non-linearities to the model, enabling it to learn

complex patterns. Common activation functions include sigmoid, hyperbolic tangent

(tanh), and rectified linear unit (ReLU). By the process of feed forward propagation,

input is passed through the network to produce an output. Each layer’s neurons pro-

cess the inputs using the weights and biases. The training process involves adjusting

the weights and biases based on the difference between the predicted output and the

actual target. Backpropagation is an optimization algorithm that iteratively adjusts

the network parameters to minimize the error. The lost function measures the dif-

ference between the predicted output and the actual target. Common loss functions

include mean squared error for regression and cross-entropy for classification. Fur-

ther, optimization algorithms such as gradient descent and its variants are used to

minimize the loss function and update the weights during training. A hyperparame-

ter that determines the step size during weight updates. It influences the convergence

and stability of the training process. The number of training examples used in one

iteration of gradient descent is called batch size. Epoch denotes the one pass through
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the entire training dataset during training process; however multiple epochs may be

required to train the network effectively. By hyperparamter tuning it’s feasible to

adjust parameters like the learning rate, number of hidden layers, and neurons per

layer to optimize performance.

1.12.7 Performance evalutation of the ML algoritm

Evaluating the performance of a ML algorithm is crucial to understanding how well

it generalizes to new, unseen data. There are several metrics and techniques for

performance evaluation, and the choice depends on the type of task (classification,

regression, clustering) and the specific goals of your model. Some of the commonly

used metrices in classification problems are illustrated below [97, 98]. If TP, TN,

FP and FN represents true positive, true negatives, false positives and false negative

respectively then

Accuracy =
TP + TN

TP + TN + FP + FN
(1.27)

Precision =
TP

TP + FP
(1.28)

Recall =
TP

TP + FN
(1.29)

F1− score = 2×
Precision×Recall

Precision+Recall
(1.30)

Another important metric which is readily used is area under the receiver operating

characteristic (ROC-AUC). It measures the area under the ROC curve, which plots

the true positive rate against the false positive rate. Again confusion matrix is another

parameter which provides a detailed breakdown of true positives, true negatives, false

positives, and false negatives.

1.13 Scope of the thesis and statement of the the-

sis problem

SERS has emerged as a sensitive analytical technique for reliable detection of analyte

molecules in trace concentrations. The choice of SERS substrate is crucial in the sens-

ing process and is specific to the analyte of interest. Obtaining good reproducibility

and uniformity characteristics is highly desirable for deploying SERS substrates in

the different domains of applications. In addition, the feasibility of a substrate de-

pends on the factors like fabrication time and cost. Thus fabricating SERS substrate

involves controlling specific parameters to optimize signal enhancement. The choice
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of substrate material plays a crucial role in enhancing Raman signals; common ma-

terials include gold, silver, and copper, known for their strong plasmonic properties.

Many of the studies reported so far fall short of fulfilling all the requirements for

enhanced SERS characteristics. For example, SERS substrates obtained through the

electrochemical roughening of electrodes may be cost-effective but often suffer from

poor EF and reproducibility issues. On the other hand, colloidal nanostructures

can generate high EF but often exhibit low reproducibility. Although lithographic

techniques can be employed to fabricate highly reproducible SERS substrates, they

require professional training for sample preparation and equipment operation. These

techniques involve expensive and sophisticated instruments, as well as the need for a

well-equipped laboratory facility. In addition to that the high costs associated with

these substrates limit their accessibility.

The present thesis work explores different low-cost modalities of SERS substrate

fabrication. The developed SERS substrates has been applied to detect and quantify

trace concentrations of drugs in water and various food matrices.

1. At first, a relatively simple yet low-cost SERS platform has been fabricated

using 100 GSM paper. In presence of metallic NPs, the micropores of 100

GSM paper facilitates generation of EM hotspot regions in the proposed paper

platform. Owing to the phenomena of LSPR in the generated EM hotspots,

the scattered Raman signal are enhanced manifold supporting the sensing and

quantification of analyte in trace concentrations. Again, with the optimized

rate of in-plane diffusion over the lateral diffusion in 100 GSM paper facili-

tates relatively uniform SERS signal compared to other grade papers. Also,

aggregation rate of NPs is found to be optimized in case of the proposed 100

GSM SERS platform, which further supports uniform Raman signals over the

sensing region of the SERS substrate. Furthermore, the fabricated SERS plat-

form has been used for detecting trace concentrations of pharmaceutical drugs

paracetamol and aspirin in real water samples.

2. In the next work, the natural leaf surfaces have explored for the plausible appli-

cation as a SERS substrate. Although different groups have explored the leaf

surfaces, but the main goal remains confined to fabricate a hydrophobic SERS

substrate. The hydrophobic SERS substrates provides extensively strong Ra-

man signals due to the aggregation of nanoparticles in a relatively small area,

but these substrate lacks uniformity. To address this issue, a aegle marmelos

(AM) leaf surface having hydrophilic nature was chosen. The AM leaf surface

have imprinted micro structured pattern which supports the formation of EM

hotspots regions when deposited with nanoparticles. So, the AuNP-decorated

aegle marmelos (AM) leaf has been demonstrated as a sensitive and low-cost
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SERS platform for detection and analysis of Raman active samples. The usabil-

ity of the proposed sensing platform has been demonstrated through detection

of two antibiotics- Ceftriaxone (CEFTR) and Ceftiofur Sodium (CEF-Na) in

cow milk samples. With the proposed SERS substrate, the targeted analyte

with concentration as low as 0.1 ppm could be detected with a reasonably high

reproducibility. Besides, ML-based classification model has been implemented

in the present study to classify the antibiotics used in cow milk samples.

3. The fabrication of SERS substrates has also been performed by the electro-

chemical deposition (ED) of bimetallic NPs over the ITO-glass platform. Con-

trary to the direct deposition of NPs on a nanostructured surface, the ED

provides good control over the morphological characteristics of the deposited

NPs thereby provides more tuneability in the substrate fabrication process.

Again, the presence of bimetallic NPs supports synergistic effect which further

enhances scattered Raman signals enabling the trace quantification of analyte

samples. With the optimized deposition cycles the size of the NPs can be tuned

to generate a highly enhanced coupled LSPR field in the hotspot regions of the

SERS platform; thereby enabling the trace detection of analyte molecules. The

fabricated Cu-Au-ITO platform has been demonstrated for trace-detection of

two antibiotics sulfamethoxazole (SFZ) and tetracycline hydrochloride (TCH)

in egg samples. In the final step of this work ML classification model was

integrated to identify the target specimens in real mixed samples.

4. In the next work, the functioning of electrospun PVA nanofiber as a SERS sub-

strate has been explored. Following the ex-situ synthesis protocol, the AuNP-

treated PVA nanofibers have been fabricated by the electrospinning technique.

With the optimized voltage and rotor configuration, a sensitive SERS platform

could be fabricated with good reproducibility and sensitivity characteristics.

The optimized values of voltage and rotor speed of the ES setup provides rela-

tively good control over the surface morphological properties of the nanofibers

such as length and width of the fibers. The morphological property of the

nanofiber are important as they affect the generation of EM hotspots which

is crucial for the SERS based sensing schemes. The reliability of the pro-

posed SERS platform has been demonstrated through the trace detection and

quantification of enrofloxacin (ENX) and doxycycline hydrochloride (DCH) in

chicken meat samples. Also, the multivariate dimensionality reduction tech-

nique PCA has been incorporated with the sensing scheme for segregation of

the characteristic Raman signatures of the analyte in real meat samples.

5. In the final work, PVA nanofibers have been fabricated by ES and followed

by O2 plasma treatment for the generation of NPs. The major issue associ-
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ated with the ex-situ synthesis process of nanofiber fabrication is the uneven

distribution of nanoparticles, which sometimes may causes clustering and ag-

gregation affecting the overall performance. The uneven distribution of AuNPs

produces large variations in the intensities of the Raman signal. To compensate

this issue, plasma treatment can be used instead of direct mixing of the NPs.

The Plasma treatment facilitates a more uniform and controlled distribution of

nanoparticles on the nanofiber surface, ensuring a homogenous structure which

will eventually lead to the relatively uniform scattered Raman signal intensities.

In this work, with the developed SERS substrate two antimicrobials flucona-

zole (FLU) and lincomycin (LIN) have been detected in trace concentrations.

Further, for the real applicability of the designed platform, deep learning clas-

sification algorithm ANN has been implemented for rapid identification of the

analytes in mixed samples.
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