
5.6. Discussion

Table 5.11: Comparison of the proposed method with existing methods

Methods
Ransomware

samples

Total

Class

Features

(S/D)

Total

Features

Accuracy

(%)

[73] 1787 10 S 123 91.43

[74] 210 10 D 8 97.1

[76] 500 6 D 23 97.03

[77] 256 2 D 8 87

[75] 755 8 D 131 98

[78] 574 12 S/D 98.25

Proposed(ERAND) 2288 (Dataset 1) 2 S 15 98.2

582 (Dataset 2) 12 D
Min: 4

Max: 42
98.8

5.6 Discussion

To effectively counter ransomware, a cost-effective method is proposed that lever-

ages the dynamic features of ransomware. This method involves several key com-

ponents to enhance its effectiveness and accuracy. Firstly, an ensemble approach

is introduced to identify the most discriminative features of various ransomware

families. This approach combines multiple feature selection techniques to ensure

that the most relevant and distinguishing features are selected. Once the discrim-

inative features are identified, a weighted majority-based combination function

is proposed. This function integrates the outputs of multiple classifiers, assign-

ing weights to each classifier based on their performance. This ensures that the

final decision is influenced more by the classifiers that perform better, thereby

improving the overall classification accuracy in ransomware detection. The pro-

posed method, ERAND, has been tested on multiple variants of ransomware and

has consistently shown superior performance. While ERAND has proven effective

in controlled experimental settings, its performance in real-world enterprise net-

works remains to be validated. Future work involves deploying ERAND in actual

enterprise environments to assess its effectiveness in detecting newer versions of

ransomware. Such validation would provide valuable insights into its practical

applicability and potential for real-time threat detection.

109

Chapter 6

An Ensemble Approach for

Effective Malware Detection

6.1 Introduction

The security and integrity of computer systems, networks, and user data are seri-

ously threatened by malware, often known as malicious software. Effective detec-

tion techniques are crucial for reducing these dangers as malware’s sophistication

and diversity keep growing. The identification of key characteristics that can

precisely discriminate between dangerous and benign files is a fundamental com-

ponent of creating effective malware detection systems. In general, the indicators

of compromises (IoC) are categorized into system-level and network-level. Typ-

ically, system-level IoCs exist within distinct computer systems, servers, or end-

points. They provide information regarding potential compromise or malicious

activity on a particular device. Network-level IoCs are observed in the network

traffic and infrastructure, and they can help identify threats that traverse the net-

work. A wide range of structural, behavioral, and statistical characteristics that

are displayed by malware can be exploited as potential indicators for detection.

The file format, code patterns, and header information are structural properties.

Execution-related behaviors, network communication, and system interactions are

behavioral attributes. Measures like entropy, frequency distribution, or coding

complexity can all be considered statistical properties. From among the myriad

options available, it is necessary to carefully analyze and investigate the relevant

features.

In the fight against constantly evolving malware threats, machine learning

110

6.1. Introduction

plays a crucial role in malware defense systems. By leveraging sophisticated al-

gorithms and extensive datasets, machine learning models can rapidly detect and

classify malicious software, including those with never-before-seen characteristics.

Furthermore, the machine learning model can adapt and enhance its performance

over time, acquiring knowledge from emerging threats and consistently improving

its capacity to detect and combat malware. The process of selecting significant

indicators of compromise (IoC) holds great significance in the context of machine

learning-driven defenses against malware. IoCs play a crucial role in the pro-

cess of efficiently identifying and mitigating possible malware threats. Machine

learning models can achieve high levels of precision and efficiency by selecting

the most relevant indicators. The curation of a comprehensive collection of IoCs

serves the purpose of not only minimizing the occurrence of false positives but

also maintaining the system’s ability to promptly address newly emerging threats.

Furthermore, the continuous refinement of IoCs in response to changing malware

behaviors contributes to the development of effective malware defense solutions.

In this chapter, an ensemble-based feature selector is proposed to identify

the most relevant set of features for effective malware detection. The performance

of the method is found to be better with high accuracy.

6.1.1 Motivation

The dynamic and ever-changing realm of malware demands novel strategies for

the effective detection of malicious software. In this context, the motivation for

developing an ensemble feature selection approach arises from the imperative to

enhance the precision and dependability of identifying features crucial for dis-

tinguishing benign and malicious programs. Traditional feature selection methods

may fall short in capturing the diverse and dynamic nature of malware, resulting in

less-than-optimal outcomes. By integrating multiple feature selection techniques

within an ensemble framework, this method aims to leverage the complementary

strengths of various approaches, thus improving the robustness of the feature se-

lection approach for the identification of the most discriminative features. This

holistic strategy aims to equip malware detection models with a refined set of

features, facilitating a more nuanced understanding of the unique characteristics

present in malware. This approach strengthens the overall resilience of the mal-

ware detection approach against evolving malware threats.

111

Chapter 6. An Ensemble Approach for Effective Malware Detection

6.1.2 Contribution

With the ever-evolving landscape of malicious software, developing effective detec-

tion methods is of utmost importance. This chapter focuses on the identification

of important features for malware detection methods, aiming to enhance the accu-

racy and efficiency of such systems. In this work, we propose an ensemble approach

called FRAMC to identify the key features that contribute significantly to the de-

tection of malware. The effectiveness of FRAMC is assessed using different types

of classifiers on a number of real-world malware datasets. The outcomes of our

analysis demonstrate that the proposed approach excels in terms of performance

when compared to other methods.

6.2 Background

6.2.1 Feature selection

In the realm of machine learning and data science, a dataset is composed of data

points, and each data point is characterized by a collection of values. These

values are referred to as variables, attributes, or features of the data point. The

number of features in this set is also known as the dataset’s dimensionality. The

dimensionality of each data point holds significance when developing machine

learning models. When the dimensionality of data becomes exceptionally large,

it gives rise to the ”curse of dimensionality,” which has a detrimental impact on

the performance of machine learning models [35]. Furthermore, the utilization of

a high-dimensional feature space leads to overfitting of the learning model, as well

as a substantial rise in memory needs and computing costs. In order to tackle

these concerns, the utilization of feature selection is employed as a method of

data preprocessing with the aim of decreasing the dimensionality [36] [37]. Not all

features that exist in the real world has importance or relevance. The process of

feature selection involves the identification and selection of a subset of pertinent

features based on certain evaluation criteria [38] [39] [40] [41].

Based on the availability of class label information and selection tactics,

feature selection algorithms are divided into different categories [42]. There are

three types of these techniques, supervised, unsupervised, and semi-supervised,

depending on the availability of ground truth knowledge. The supervised ap-

proach [43] attempts to identify a pertinent feature by considering the informa-

112

6.2. Background

tion provided by the class label. The determination of feature significance is often

accomplished through the use of different measures such as mutual information

and correlation. The unsupervised approach [44] [45] [46] involves the selection of

meaningful features from a set of unlabeled data. Given the absence of ground

truth knowledge, the determination of feature relevance typically involves the uti-

lization of various measures, such as data similarity and local discriminative in-

formation. The chosen subset of attributes demonstrates the capability to extract

clusters from all instances. Semi-supervised approach [47] [48] [49] generates a

relevant feature subset by taking into consideration of both labeled and unlabeled

samples. It is similar to the supervised approach except it uses the partial label

information.

The selection approach encompasses three distinct types of feature

selection techniques: filter, wrapper, and embedded [37]. Filter methods [50]

are employed to generate the most suitable subset of features by analyzing the

attributes of data through some statistical criteria. The feature selection step of

this method does not employ learning methods, resulting in improved computa-

tional efficiency. In contrast, wrapper methods [51] employ learning algorithms as

a means of selecting criteria. The wrapper approach is a technique that aims to

identify the most suitable subset of features by optimizing the predicted accuracy

of a given classifier. When the dimension of the dataset is significantly large, it

becomes computationally expensive. Additionally, there may be bias towards the

provided classifier. Wrapper methods are generally regarded as more efficient

than filter methods, although they do come with a higher computational cost.

The embedded methods [52] are intermediate versions of wrappers and filters.

It exploits the benefits of both methods. First, it selects subsets of candidate

features using some statistical measures like filter methods and then it finally

selects the optimal subset that ensures the best possible classification accuracy.

It is computationally less expensive than wrapper methods.

6.2.2 Ensemble Feature Selection

Ensemble feature selection approaches represent a sophisticated strategy aiming

to enhance the robustness and reliability of feature identification processes. These

methodologies leverage a combination of distinct feature selection techniques, op-

erating on the premise that diverse methods can collectively contribute to a more

comprehensive understanding of the dataset. The ensemble framework essentially

113

Chapter 6. An Ensemble Approach for Effective Malware Detection

amalgamates the outputs of individual methods, mitigating the limitations of any

single approach and producing a more accurate selection of crucial features.

Consensus building is a fundamental process in decision-making that in-

volves achieving agreement or alignment among a group of individuals, often with

diverse perspectives or interests. In the context of ensemble feature selection,

consensus building is particularly noteworthy. Ensemble methods leverage the

strengths of different feature selection techniques, and consensus building becomes

pivotal in reconciling their outputs. Instead of relying on the findings of a single

method, consensus is sought by integrating the results of various techniques to

identify important features. Several voting mechanisms are employed to facilitate

consensus building in ensemble feature selection. These mechanisms may include

summing up individual feature ranks, calculating average ranks, or employing

weighted voting schemes. The objective is to ensure that features identified as

crucial are consistently recognized across multiple methodologies.

Ensemble feature selection methodologies can be broadly categorized into

three main groups based on their approaches to aggregating the outputs of indi-

vidual feature selection algorithms. Voting-based ensembles involve a democratic

decision-making process, where each feature selection algorithm ”votes” for the

importance of features, and the final decision is made by the majority or through

weighted voting. Ranking-based ensembles focus on consolidating feature rank-

ings generated by individual algorithms to create an overall ranking, with features

prioritized based on their positions. This category encompasses techniques such

as summing ranks and Borda Count. On the other hand, model-based ensembles

leverage the outputs of feature selection algorithms to train a predictive model,

where the model’s predictions dictate the final feature selection. Stacking and

Random Forest Feature Importance are examples of model-based ensemble ap-

proaches. These categories provide a framework for understanding the diverse

ways in which ensemble strategies can be employed to enhance the robustness and

effectiveness of feature selection processes in various domains, including machine

learning and data analytics. The choice of ensemble category depends on the

specific characteristics of the dataset and the objectives of the analysis.

6.2.3 Markov Chain

A Markov chain is a mathematical framework utilized to depict a succession of

events or states. In this model, the likelihood of transitioning from one state

to another is solely determined by the present state, without any consideration

114

6.3. Problem Statement

of the preceding ones. Each state in the chain represents a particular condition

or configuration, and the transitions between states are governed by transition

probabilities. These probabilities can be represented by a transition matrix, where

each entry indicates the likelihood of moving from one state to another.

A Markov chain for a system is specified by a set of states S, the transition

matrixM where each entry in the matrix represents the probability of transitioning

from one state to another state. The ordering of those states based on their Markov

chain analysis-obtained probabilities or scores is called Markov chain ordering.

The system initiates some of the start states in S. It makes a jump from one state

to another at each step. At each of the steps, the jump is dependent on M, if the

system moves from state i to state j then Mij is the probability associated with

it. If the current state probability distribution is given, the product of M and the

vector reflecting the current state distribution will be the next state probability

distribution. Usually, the start state distribution is chosen as uniform distribution

on M. For some conditions of the Markov chain, the system evaluates and reaches

a certain point where stationary or constant state distribution is observed. This

final distribution is known as stationary distribution.

6.3 Problem Statement

For a given dataset D of size M ×N with M instances and each of N features, i.e.,

F ={f1, f2, f3,, fN}, the goal is to find an optimal feature subset F ′ such that

F ′ ⊆ F and for F ′, the learning model will give the highest level of generalization

performance. The main objective is to decrease the dimensionality of dataset D by

eliminating insignificant or unrelated features while maintaining the effectiveness

of the learning model. The reduced feature set is obtained by minimizing the

redundancies among features and maximizing the feature-class relevance.

6.4 Proposed Method

In this section, the basic structure and technical principles of the detailed modules

in FRAMC are introduced, respectively.

The proposed novel approach comprised of developed an ensemble feature

selector named FRAMC for effective malware detection. The proposed method is

115

Chapter 6. An Ensemble Approach for Effective Malware Detection

comprised of three arrangement schemes: (1) extraction of indicator of comprises

and (2) selection of key indicators, and (3) evaluation of the learning model.

Malware Raw Data Feature Extraction Feature Selection Model Training &
Evaluation

Malware

Benign

The proposed framework(overview)

Malware Raw Data

Malware Analysis

Pre-Processing

Feature Extraction

Feature Extraction

FS1

FS2

FS3

FS4

FS5

Ensemble Feature Selection

Consensus
building

Ensemble of
classifiers

Malware

Benign

Pre-processing

FS:Feature Selector

The proposed framework(Detailed)

Figure 6-1: Overview of the proposed method

6.4.1 Extraction of indicator of compromises

Indicators of Compromise (IoCs) refer to specific features or characteristics derived

from malware data that are considered pertinent and relevant to the particular

security issue or threat under investigation. These features serve as valuable indi-

cators or evidence in the identification and resolution of security incidents or pos-

sible breaches. Features or attributes or characteristics have a significant role to

play because they affect the data’s complexity, readability, and functionality. The

feature extraction process goes through three stages namely data(both malware

and goodware) collection, data analysis, and feature extraction. During the data

collection phase, the acquisition of malware can occur via honeynet systems and

public repositories[34]. Subsequently, in the second stage, comprehensive malware

analysis is performed for additional preprocessing and the extraction of features.

Finally, the last stage involves the extraction of features from the analysis reports

of the malware. For a comprehensive understanding of the feature extraction pro-

cess, please refer to our earlier work, where we provide detailed information on this

procedure [79]. In our case, we have used features of both Windows and Android

malware binaries.

6.4.2 Selection of key indicators

Feature selection is an important process that involves selecting the most relevant

and informative subset of features from a high-dimensional dataset. By selecting

116

6.4. Proposed Method

a subset of relevant features, it reduces overfitting, enhances model performance

and interpretability, improves computational efficiency, and facilitates data com-

prehension. Therefore, it is necessary to select an optimal subset of features with

the highest degree of relevance and the least amount of redundancy. Since our

datasets contain a large number of features, we use feature selection to identify

the optimal subset of features. Specifically, we employ an ensemble feature se-

lection strategy that aims to leverage the benefits of multiple feature selection

algorithms to improve the robustness and efficacy of feature selection processes.

By combining the outputs of individual base feature selection methods, ensemble

approaches can identify a subset of features whose collective performance is prefer-

able to that of any individual method. The framework of the ensemble feature

selection process is depicted in Figure 6-2 .

Gain Ratio

Info Gain

ReliefF

Symmetric
Uncertainty

MIFS

Consensus
buildingMalware Dataset {f1 , f2 , f3 ,......., fn }

Feature Subset

Figure 6-2: Ensemble feature selection framework

6.4.2.1 Base Feature Selection Algorithm

Ensemble feature selection involves two steps, just like other ensemble methods.

Initially, we need a set of proficient base feature selectors, each of which provides

a subset of features identified as significant. Second, use an appropriate consensus

function to provide the optimal subset of relevant features based on the results of

each ranker’s or feature selection process. Guided by our experimental results, the

following five base feature selectors, namely, Symmetric Uncertainty[80], MIFS[32],

ReliefF[33], Gain Ratio [81], and Information Gain [82] are used.

117

Chapter 6. An Ensemble Approach for Effective Malware Detection

6.4.2.2 Consensus Building

Ensemble feature selection eliminates the biases of individual participating feature

selection methods to yield the best possible output using an appropriate consensus

function. In our work, a Markov chain model is used for consensus building which

is described next.

Let’s assume we have ”N” feature ranking lists given by N base feature

selectors, denoted as f1, f2, ..., fN , each of which ranks ”M” features. These rank-

ings can be represented as matrices where each row corresponds to a feature, and

the values in the matrices represent their respective ranks. For example, fi[j] rep-

resents the rank of feature ”j” in the ith ranking list. Now, the goal is to aggregate

those N feature lists to generate a final feature list.

The proposed method employs a consensus-building procedure in order

to determine an optimal subset of features. It accepts the individual feature

lists from the base feature selection algorithms and generates the final aggregated

feature list. Below are the steps to generate the aggregated feature list. Firstly,

it constructs the set U that consists of all feature lists provided by each base

feature selector. Next, the transition matrix is constructed and normalized. The

resulting matrix captures the transition probabilities between features based on

the provided feature lists. Then, convert the above-normalized matrix into an

ergodic matrix Um by using the equation 6.1.

((normalized matrix) ∗ (1− ergodic value)) + (ergodic value/∥U∥) (6.1)

Next, the stationary distribution matrix is calculated as a principal left

eigenvector y associated with the ergodic matrix Um to get the aggregated rank

list.

yUm = αy (6.2)

Where α is the eigenvalue of Um. Finally, the importance or relevance of

each feature in the aggregated list is assessed using a set of classifiers.

118

6.4. Proposed Method

Algorithm 2: FRAMC

Input: C={f1, f2,fn} is the set of feature lists

Output: y=the aggregated feature subset

initialization;

U=∅;
for i=1 to n do

U.add()

end

UT=transition matrix(U);

UN=normalize matrix(UT);

Um=ergodic matrix(UN);

yUm=αy;

Return y;

6.4.3 Complexity Analysis

The ensemble method involves using multiple feature selectors, including Gain

Ratio, Info Gain, ReliefF, Symmetric Uncertainty, and MIFS, followed by a

consensus-building step to determine the optimal feature subset from a malware

dataset. Each feature selection algorithm contributes to the overall complexity:

Gain Ratio and Info Gain each have a complexity of O(n · log n), as they require

sorting feature values. ReliefF has a complexity of O(m · n), where m is the

number of instances and n is the number of features, due to the need to com-

pute distances between instances. Symmetric Uncertainty has a complexity of

O(n · m), involving mutual information calculations between features. MIFS is

the most computationally intensive, with a complexity of O(n2 · m), as it eval-

uates pairwise feature interactions. The consensus-building step aggregates the

results from k feature selectors, each producing a ranking of n features, with a

complexity of O(k · n). Therefore, the overall complexity of the ensemble feature

selection method is O(n · log n+m · n+ n2 ·m+ k · n).

6.4.4 Optimal Features

The ensemble feature selector FRAMC has effectively identified a subset of features

that significantly contribute to the detection of malware. The selected features

represent key characteristics within the datasets that are most informative for

distinguishing between malware and goodware. FRAMC assigns a rank to each

119

Chapter 6. An Ensemble Approach for Effective Malware Detection

feature within a dataset. The top-ranked features are considered the optimal

future set, providing the best possible classification accuracy. FRAMC minimizes

bias and variance found in each base feature selection algorithm. These chosen

features serve as the foundation for the predictive model, enabling it to effectively

distinguish malware and goodware. In the Windows malware dataset, Table 6.1

displays the top optimal features selected by FRAMC. Similarly, for the Android

malware dataset, Table 6.2 lists the top optimal features chosen by FRAMC.

Table 6.1: Top 10 Features Selected by FRAMC for Windows Dataset

Sl No. Feature

1 Subsystem

2 SizeOfOptionalHeader

3 SizeOfStackReserve

4 VersionInformationSize

5 MajorSubsystemVersion

6 DllCharacteristics

7 MajorImageVersion

8 SizeOfHeapCommit

9 SizeOfHeapReserve

10 ResourcesMinSize

Table 6.2: Top 10 Features Selected by FRAMC for Android Dataset

Sl No. Feature

1 com.android.vending.BILLING

2 android.permission.SEND SMS

3 android.permission.READ PHONE STATE

4 com.google.android.c2dm.permission.RECEIVE

5 android.permission.READ EXTERNAL STORAGE

6 com.google.android.c2dm.intent.RECEIVE

7 android.permission.CHANGE WIFI MULTICAST STATE

8 android.intent.action.BOOT COMPLETED

9 android.intent.action.DATA SMS RECEIVED

10 android.permission.WRITE EXTERNAL STORAGE

120

6.5. Performance Analysis

6.5 Performance Analysis

FRAMC has been implemented in Python using a Dell Precision 7810 workstation

with 2x Intel Xeon (R) W-2145 comprising 8 cores, 64GB RAM, NVIDIA Tesla

K80 GPU with 12GB VRAM, and Ubuntu OS. Materials used, preprocessing

carried out, and performance achieved are discussed next.

6.5.1 Datasets and preprocessing

To understand the effectiveness of FRAMC, it has been tested on two datasets

of malware[83] [84]. The Windows dataset comprises 41324 categories of benign

software and 96724 types of malicious software. The dataset pertaining to Android

comprises 3074 distinct categories of benign software and 1926 distinct categories

of malicious software. The attributes of these datasets include both numeric and

categorical values. The detailed description of these datasets is given in Table 6.3.

Table 6.3: Dataset details

Dataset # Instances # Features # Classes

Windows 138047 57 2

Android 5000 347 2

6.5.2 Classification Performance Analysis and Compara-

tive Evaluation

The performance of our method is assessed based on classification accuracy. For

this, we have used six different classifiers, namely, Random Forest, Decision Tree,

AdaBoost, Gradient Boost, SVM, and Naive Bayes. The 10-fold cross-validation

is used to estimate the performance of the classifier on the selected features. In ad-

dition, our approach is benchmarked against various feature selection techniques,

including Symmetric Uncertainty (SU) [80], Mutual Information Feature Selection

(MIFS) [32], ReliefF [33], Gain Ratio [81], Information Gain (IG) [82], Minimum

Redundancy Maximum Relevance (MRMR) [85], Conditional Mutual Informa-

tion Maximization (CMIM) [86], and Chi-Square (ChiSqaure) [87]. Tables 6.4

through 6.11 illustrate the performance of the proposed method on both datasets,

encompassing evaluations conducted across the entire feature space as well as the

optimized feature space. These tables detail the classification accuracy, precision,

121

Chapter 6. An Ensemble Approach for Effective Malware Detection

(a) Accuracy on Windows malware dataset (b) Accuracy on Android malware dataset

Figure 6-3: Performance of FRAMC in terms of accuracy

(a) Optimal no. of features on Windows
malware dataset

(b) Optimal no. of features on Android
malware dataset

Figure 6-4: Optimal range of the size of feature subsets

recall, and F1 score outcomes. From the experimental results, it can be observed

that the proposed method is a top performer on both datasets and at least at

par with the other competing methods. It is also apparent that the average ac-

curacy achieved by FRAMC on the Windows malware dataset exceeds that of

other methods and is comparable to Gain Ratio and Information Gain. Similarly,

concerning the Android malware dataset, the average accuracy of FRAMC out-

performs all other methods. However, for both datasets, a feature subset found by

the proposed method has a different cardinality. Figures 6-3 illustrate this vari-

ance in the cardinalities of the ideal feature subsets. Similarly, figure 6-4 shows

the optimal range of features by different methods including the proposed one. In

an ensemble process, all the base algorithms operate independently, allowing us to

leverage parallel processing for faster results. In our scenario, we establish a pool

of worker processes to execute base feature selection algorithms concurrently. This

approach enhances the efficiency of the ensemble process by taking full advantage

of available computational resources and significantly reducing execution time.

122

6.5. Performance Analysis

Table 6.4: The classification accuracy of the Windows dataset using the complete
feature space

Classifiers

Decision

Tree

Random

Forest
AdaBoost

Gradient

Boost

Naive

Bayes
SVM

Full Feature Space (57) 99.02% 99.39% 98.85% 98.95% 69.99% 67.89%

Table 6.5: The Precision, Recall, and F1 score of the Windows dataset using the
complete feature space

Classifier Precision Recall F1 Score

Decision Tree 98.66% 98.58% 98.62%
Random Forest 98.9% 99.24% 99.11%
AdaBoost 98.14% 98.21% 98.18%
Gradient Boost 97.9% 97.87% 98.11%
Naive Bayes 68.9% 69.24% 69.37%
SVM 66.2% 65.24% 66.44%

Table 6.6: The performance comparison on the Windows dataset

Methods Features Classifiers

Decision

Tree

Random

Forest
AdaBoost

Gradient

Boost

Naive

Bayes
SVM

Gain Ratio 15 98.98% 99.12% 98.38% 98.71% 70.42% 69.96%

Info Gain 16 98.91% 98.78% 98.43% 97.71% 69.86% 71.03%

SU 14 98.56% 98.67% 99.40% 96.98% 69.97% 68.78%

ReliefF 17 99.10% 95.45% 98.75% 98.85% 68.74% 67.77%

MIFS 14 97.71% 98.91% 98.43% 99.03% 69.99% 69.99%

MRMR 17 98.6% 98.23% 97% 99.03% 69.6% 69.44%

CMIM 15 98.9% 98.6% 97.36% 98.4% 69.68% 69.99%

ChiSqaure 14 97.8% 98% 97.11% 98.41% 68.6% 70.41%

FRAMC 16 99.19% 98.35% 98.68% 98.95% 69.97% 69.98%

Table 6.7: Precision, Recall and F1 -Score on the Windows Dataset

Method Precision Recall F1

Decision

Tree

Random

Forest

Ada

Boost

Gradient

Boost

Na´ve
Bayes

SVM
Decision

Tree

Random

Forest

Ada

Boost

Gradient

Boost

Na´ve
Bayes

SVM
Decision

Tree

Random

Forest

Ada

Boost

Gradient

Boost

Na´ve
Bayes

SVM

Gain Ratio 97.6 98.37 96.8 97.67 68.89 67.88 96.67 97.9 96.32 97.7 68.33 66.77 98.1 98.9 97.1 98 69.5 68.3

InfoGain 97.99 97.77 97.57 96.62 68.87 69.98 97.78 97.54 96.99 96.11 68.23 69.23 98.34 98.21 97.9 97 69.2 70.89

SU 97.56 97.66 98.87 95.33 69.12 67.54 97.18 97.24 97.99 95.82 68.67 66.56 98.1 98 99 96.13 69.88 68.54

RelifF 98.9 94.72 98.11 98.12 68.1 66.99 98.66 93.89 97.74 97.82 67.89 66.23 99 95.1 98.6 98.5 68.3 67.35

MIFS 97.1 98 97.77 98.88 68.89 69 96.88 98 97.49 98.1 68.43 68.56 97.67 98.11 98.18 98.88 69.17 69

MRMR 97.65 97.9 96 98.22 68.3 68.77 97 97.35 95.6 97.89 67.78 68 98.11 98 96.64 98.7 68.8 69

CMIM 98.2 97.4 96.5 98 68.8 69 97.6 96.8 96 97.5 68 68.7 98.34 98 97 98 69.18 69.22

ChiSquare 96.8 97 96.21 97.7 67.11 68.43 96 96.7 95.59 97 66.88 68 97 97.2 96.5 98 67.5 69

FRAMC 98.87 97.77 98.1 98.43 69 68.98 98.63 97 97.84 98 68.65 68.4 99 98.4 98.29 98.7 69 69.59

123

Chapter 6. An Ensemble Approach for Effective Malware Detection

Table 6.8: The classification accuracy of the Android dataset using the complete
feature space

Classifiers

Decision

Tree

Random

Forest
AdaBoost

Gradient

Boost

Naive

Bayes
SVM

Full Feature Space (347) 91.65% 90.20% 89.41% 87.68% 76.48% 91.90%

Table 6.9: The Precision, Recall and F1 score of the Android dataset using the
complete feature space

Classifier Precision Recall F1 Score

Decision Tree 91.66% 91.58% 91.62%
Random Forest 90.9% 90.24% 90.11%
AdaBoost 88.14% 88.21% 88.18%
Gradient Boost 87.9% 87.87% 88.11%
Naive Bayes 75.9% 77.24% 79.37%
SVM 90.2% 90.24% 91.44%

Table 6.10: The performance comparison on the Android dataset

Methods Features Classifiers

Decision

Tree

Random

Forest
AdaBoost

Gradient

Boost

Naive

Bayes
SVM

Gain Ratio 12 92.45% 92.60% 87.89% 91.98% 85.68% 92.67%

Info Gain 10 92.31% 90.41% 86.45% 92.30% 86.41% 92.45%

SU 11 91.68% 92.05% 89.91% 91.88% 83.77% 91.67%

ReliefF 13 90.33% 91.67% 88.70% 90.97% 84.56% 90.58%

MIFS 10 91.44% 92.37% 86.91% 91.67% 85.01% 91.85%

MRMR 11 90% 91.5% 87.33% 91.8% 83.6% 91.77%

CMIM 13 91.2% 91.34% 88.6% 92% 86% 92.65%

ChiSquare 14 87.8% 89% 86.32% 89.6% 83.21% 87.88%

FRAMC 11 92.60% 92.42% 88.73% 92.40% 85.58% 92.82%

Table 6.11: Precision, Recall and F1 -Score on the Android Dataset

Method Precision Recall F1

Decision

Tree

Random

Forest

Ada

Boost

Gradient

Boost

Na´ve
Bayes

SVM
Decision

Tree

Random

Forest

Ada

Boost

Gradient

Boost

Na´ve
Bayes

SVM
Decision

Tree

Random

Forest

Ada

Boost

Gradient

Boost

Na´ve
Bayes

SVM

Gain Ratio 91.8 92 87.1 91.2 84.78 91.9 91.65 91.89 86.8 90.79 84.21 91.65 92.1 92.43 87.3 91.22 85 92.3

InfoGain 92 88.89 86 91.8 85.9 92 91.7 88.59 85.88 91.32 85.64 91.8 92 89.1 86.1 92 86.22 92

SU 90.88 91.67 89.3 91 83.1 90.9 90.2 91 88.7 90.98 83 90.81 91.23 91.78 89.33 91.2 83.19 91.1

RelifF 89.8 91 88.12 89.9 84 89.99 89.28 90.88 87.99 89.78 84 89.86 90 91.11 88.3 90.13 84.19 90

MIFS 89.98 91.8 86 90.88 84.77 91 89.81 91 85.87 90.45 84.19 90.79 90.11 92.1 86.11 91 84.98 91.31

MRMR 88.66 90.23 86 89.12 82 89.71 88.21 89.5 85.43 88.78 81.49 88.61 89 90.78 86.24 89.9 82.6 91

CMIM 90 89.78 87 90.78 84.89 91.67 88.64 89 86.65 89.71 84 90.7 90.3 90 87.9 91.22 85.1 92

ChiSquare 86.44 87.9 84.33 88 82.56 86.2 86 87.1 83.77 87.8 81.6 85.5 87 88.3 85.1 88.5 82 87.1

FRAMC 92 91.8 88 91.98 84.9 92.3 91.8 91.6 87.69 91.64 84.67 92 92.29 92 88.22 92 85.19 92.46

124

	10_chapter 6

