
6.6. Discussion

6.6 Discussion

The chapter introduces FRAMC, an ensemble method designed to effectively in-

tegrate individual feature rankings obtained from diverse base ranker algorithms

using the Markov chain algorithm. Demonstrating its efficacy through benchmark

datasets in moderate and high-dimensional spaces, FRAMC identifies an optimal

number of features for both Windows and Android malware detection. While

FRAMC exhibits promise, further investigation into alternative aggregation tech-

niques holds the potential for even greater performance improvements. Enhancing

the method’s flexibility and robustness could involve exploring diverse ensemble

tactics or fusion approaches. Future work could involve exploring the application

of FRAMC as a cost-effective solution for IoT malware detection. By harness-

ing the efficiency and accuracy of FRAMC, it could be integrated into a holistic

malware defense system, potentially with a novel classification method. This in-

tegration would not only enhance the capabilities of existing defense mechanisms

but also provide a cost-effective solution for organizations facing evolving malware

threats.

125



Chapter 7

Parallel k-Nearest Neighbors for

Enhanced Malware Detection

7.1 Introduction

With the proliferation of data being generated, there is an urgent need of new

technologies and architectures to make it possible to extract valuable information

from it by capturing and analyzing processes. New sources of data include various

sensor-enabled devices like medical devices, IP cameras, video surveillance cam-

eras, and set-top boxes, which contribute largely to the volume of big data. Due

to data proliferation, it is predicted that 44 zettabytes or 44 trillion gigabytes of

data will be generated annually by the end of 20201. The data are continuously

generated by the sources from internet applications and communications which

are large, different variety, structured or unstructured, which is referred to as Big

data. Big Data is characterized by five particularly significant V’s - Volume, Ve-

locity, Variety, Veracity, and Value. The term Volume signifies the plethora of

data produced from time to time by various organizations and institutes. Veloc-

ity characterizes the rate at which data is generated from different sources. The

third V, Variety denotes the diverse forms of data which may be structured, semi-

structured, or unstructured, generated from several organizations. For example,

data can be in the form of video, image, text, audio, etc. The term Veracity

focuses on the quality and reliability of the data. With the increasing diversity

and volume of data, ensuring the accuracy and trustworthiness of the information

becomes crucial. The Value in the context of Big Data refers to the ultimate goal

1https://www.emc.com/leadership/digital-universe/2014iview/index.htm
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of leveraging large and diverse datasets to extract meaningful insights

Apart from the mentioned characteristics above, two other key features are–

incremental and dispersed nature. They are incremental in the sense that there

is a dynamic addition of new incoming data to the pile of big data. Big data

are dispersed in nature because they are geographically distributed across differ-

ent data centers. These are some of the distinguishing characteristics that set

big data apart from traditional databases or data warehouses. The traditional

data storage techniques are not adequate to store and analyze those huge volumes

of data. In short, such data is so large and complex that most traditional data

management tools are inadequate to store or process it efficiently.

There are various challenges associated with big data. Such a large volume of

data if processed sequentially takes a lot of time. Second, how do we process

and extract valuable information from the huge volume of data within the given

timeframe? To address the challenges, it is required to know various computational

complexities, information security, and computational methods, to analyze big

data. For example, many statistical methods that perform well for small data

sizes do not scale to voluminous data. Similarly, many computational techniques

that perform well for small data face significant challenges in analyzing big data.

Big data analytics is the use of advanced analytic techniques against very large,

diverse data sets that include structured, semi-structured, and unstructured data,

from different sources, and in different sizes from terabytes to zettabytes.

Predictive analysis gives a list of solutions by establishing the previous data pat-

terns for a given situation. It studies the present as well as the past data and pre-

dicts what may happen in the future or gives the probability of what will happen

in the future. We need to make use of such large data in order to make decisions

in the future. However, traditional machine learning and statistical methods in

sequential mode take much longer time in order to make predictions, especially, in

case of intrusion data [88]. Despite their accuracy, these models are often found

to be time-consuming, particularly when dealing with moderately sized datasets.

This time delay could be a significant drawback in security scenarios where quick

decision-making and response times are crucial.

7.1.1 Motivation

In various fields, the effectiveness of a predictive model is determined not only

by its accuracy in predicting outcomes but also by its speed in generating those
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predictions. This is particularly crucial in the domain of security applications,

where there is a demand for a highly accurate predictive model capable of swiftly

detecting any potential threat in near real-time. Unfortunately, conventional pre-

dictive models operating in sequential processing mode tend to be time-consuming,

even when dealing with datasets of moderate size. This poses a challenge, as the

need for quick and accurate responses in security scenarios requires more efficient

predictive models that can perform effectively without significant delays.

The K-Nearest Neighbors [89] (K-NN) algorithm is widely recognized for its sim-

plicity and effectiveness in classification tasks. However, one of its main drawbacks

is its computational intensity, especially when dealing with large datasets. This

is because K-NN requires calculating distances between the query point and all

points in the dataset, which can be time-consuming. To address this issue, the

development of a CUDA-accelerated K-NN algorithm becomes crucial, particu-

larly in the context of malware and malware-based attacks. By leveraging the

parallel processing capabilities of CUDA, the K-NN algorithm can be significantly

accelerated, allowing for much faster computations. This enhancement in speed

is essential for security applications, where the quick detection and response to

malware threats are critical.

7.1.2 Contribution

The major contribution of this chapter is the development of a parallel version

of the K-Nearest Neighbors (KNN) algorithm, referred to as TUKNN. This algo-

rithm leverages parallel processing capabilities to enhance the speed and efficiency

of KNN computations. An exhaustive experimental study is conducted on various

proximity measures within the KNN framework, resulting in recommendations

for the most effective measures to achieve better accuracy with the TUKNN algo-

rithm. Additionally, the study identifies an optimal range for K values specifically

for malware and malware-based attack datasets to ensure the best performance.

128



7.2. Background

7.2 Background

7.2.1 Introduction to K-Nearest Neighbors (K-NN)

K-Nearest Neighbors (KNN) is a simple and intuitive machine-learning algorithm

used for both classification and regression tasks. The fundamental idea behind

KNN is to predict the class or value of a data point based on the majority class or

average of its K nearest neighbors in the feature space. The term ”K” represents

the number of neighbors considered in the prediction process. To determine prox-

imity, a distance measure is employed, commonly Euclidean distance, though other

metrics like Manhattan or Minkowski distance can be used as well. The proximity

measures quantify the similarity or dissimilarity between data points, with smaller

distances indicating greater similarity. Essentially, the algorithm relies on the as-

sumption that data points in close proximity in the feature space are likely to

belong to the same class or share similar characteristics. The choice of K and the

distance metric significantly impact the performance of the KNN algorithm, and

practitioners often need to experiment with different values to optimize the model

for specific datasets. KNN is particularly useful for scenarios where the decision

boundaries are non-linear or difficult to define analytically. In the figure 7-1, the

K-Nearest Neighbors (K-NN) algorithm is depicted within a 2-dimensional feature

space. Blue circles represent data points, and the red circle indicates the query

point for which a prediction is sought. The algorithm identifies the three nearest

neighbors (shown as green circles) to the query point by calculating distances us-

ing a metric such as Euclidean distance. Dashed lines illustrate these distances.

The K-NN algorithm then predicts the class or value of the query point based on

the majority class or average value of the nearest neighbors, demonstrating how

proximity in the feature space guides the prediction.

7.2.2 Proximity Measures

Proximity measures play a crucial role in quantifying the similarity or dissimilarity

between data points in various domains such as data mining, machine learning,

and information retrieval. Euclidean distance, a fundamental proximity measure,

calculates the straight-line distance between two points in a multidimensional

space. It is sensitive to the magnitude of differences along each axis. Conversely,

Manhattan distance, also known as L1 norm, computes the distance as the sum of

absolute differences along each axis, making it less sensitive to outliers. Kulczyn-
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Figure 7-1: Illustration of the k-NN algorithm in 2D

ski distance assesses the dissimilarity between two sets based on the proportion

of common elements relative to the average size of the sets. Cosine similarity,

widely used in text analysis, measures the cosine of the angle between two vec-

tors, representing the direction of similarity irrespective of magnitude. Chebyshev

distance determines the greatest absolute difference along any coordinate axis,

making it suitable for scenarios where only the maximum deviation matters. So-

ergel distance and Sorensen measure dissimilarity in binary data, with Soergel

emphasizing larger differences and Sorensen focusing on shared binary features.

Tanimoto distance, often used in set-based comparisons, assesses dissimilarity by

considering the ratio of the intersection to the union of sets. These proximity

measures provide diverse tools for capturing different aspects of similarity or dis-

similarity, allowing researchers and practitioners to choose the most appropriate

method based on the characteristics of their data and the context of their analysis.

7.2.3 Introduction to CUDA

CUDA, which stands for Compute Unified Device Architecture, is a parallel com-

puting platform and programming model developed by NVIDIA [90]. It enables

developers to use NVIDIA graphics processing units (GPUs) for general-purpose

processing, going beyond their traditional role in rendering graphics. The architec-

ture of CUDA is designed to harness the parallel processing capabilities of GPUs,

allowing for significant acceleration of computation-intensive tasks.

At the core of CUDA’s architecture is the Streaming Multiprocessor (SM), which

is a fundamental building block of NVIDIA GPUs. SMs consist of multiple CUDA
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cores, which are individual processing units capable of executing parallel threads.

These threads are organized into blocks, and multiple blocks are grouped into a

grid. This hierarchical structure facilitates the parallel execution of tasks, with

each thread responsible for a specific portion of the computation. CUDA utilizes a

Single Instruction, Multiple Thread (SIMT) model, where threads within a block

execute the same instruction, but each thread operates on different data.

The memory hierarchy is a critical aspect of CUDA architecture. It includes global

memory, shared memory, and constant memory. Global memory is accessible by

all threads but has higher latency. Shared memory is a fast, on-chip memory that

threads within a block can share, enabling efficient communication and collabora-

tion. Constant memory is used for storing constant data that remains unchanged

throughout the execution of a kernel. Registers memory is used for storing tem-

porary variables for threads.

CUDA programming involves writing kernels, which are functions executed on the

GPU. These kernels are written in CUDA C, a parallel computing extension of

the C programming language. Developers explicitly define which parts of the code

should be executed on the CPU and GPU, and data transfer between the CPU

and GPU is managed through explicit memory management functions.

The CUDA processing flow involves a series of steps that leverage the parallel

processing capabilities of GPUs to accelerate computations. The process typically

begins on the Host CPU, where data is initialized and prepared for processing.

This initial data may represent tasks, algorithms, or calculations that can benefit

from parallel execution. Once the data is ready, it is transferred from the Host

Memory to the GPU Memory. This data transfer is a crucial step in utilizing the

parallel architecture of the GPU, enabling efficient parallel processing on a large

scale.

On the GPU, the actual computation takes place within CUDA Kernels. Kernels

are specialized functions written in CUDA C that are executed in parallel by

multiple threads on the GPU. Each thread processes a specific portion of the data,

allowing for concurrent execution and substantial speedup compared to sequential

processing on the CPU. The GPU Memory plays a crucial role during kernel

execution, storing not only the input data but also intermediate results generated

by parallel threads.
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Figure 7-2: Illustration of the CUDA concept and workflow

Figure 7-2 illustrates the CUDA concept and workflow, starting with data initial-

ization on the Host CPU. The data is then transferred to the GPU memory, which

includes Global Memory, Shared Memory, Constant Memory, and Registers. The

core computational process occurs in the ”CUDA Kernel Execution” step, where

multiple threads process data in parallel. After the computation, the results are

transferred back to the Host CPU for finalization. This workflow highlights how

CUDA leverages GPU parallel processing and various memory types to perform

efficient and high-speed computations.

7.3 Problem Statement

The objective of this research is to efficiently classify a query point q using the k-

nearest neighbors (k-NN) approach, leveraging the parallel processing capabilities

of CUDA through the TUKNN algorithm. Given a dataset D with N data points,

each represented as a vector xi in a d-dimensional feature space, the TUKNN

algorithm involves the following steps:
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1. Distance Computation: Compute the distance between the query point

q and each data point xi in parallel. For instance, using the Euclidean

distance:

distance(q, xi) =

√√√√ d∑
j=1

(qj − xij)2

2. Nearest Neighbor Selection: Identify the k-nearest neighbors with the

smallest distances to the query point:

neighbors(q,D, k) = argminN
i=1 (distance(q, xi))

3. Majority Voting: Determine the majority class among the k-nearest neigh-

bors to classify or predict the label of the query point:

prediction(q,D, k) = majority class (labels (neighbors(q,D, k)))

where labels(Nneighbors) returns the class labels of the neighbors, and

majority class(L) returns the class with the highest count in list L.

7.4 Proposed Work

KNN is a widely used classification algorithm and can be considered parallel

friendly because of the number of independent operations. When the training

and testing datasets are large, then the speed of execution becomes quite slow

which makes it suitable for parallel implementation. In this work, we implement

KNN on CUDA framework. The proposed framework is depicted in figure 7-3. In

our framework, we explore a good no of proximity measures in parallel during the

mining process to recommend the best possible measure for better accuracy. The

measures used are : Euclidean distance, Manhattan distance, Kulczynski distance,

cosine similarity, Chebyshev Distance, Soergel distance, Sorensen, and Tanimoto.

7.4.1 Distance Measures

Dissimilarity is an essential component in the KNN algorithm. It influences the

performance of the algorithm significantly in terms of speed and accuracy. Since,

every proximity (similarity or dissimilarity) measure has its own advantages and
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Figure 7-3: Framework of the proposed work

disadvantages. So, we conduct an empirical study to evaluate their performance

and subsequently to recommend the best possible measure for cost effective per-

formance with TUKNN. Table 7.1 shows the distance measures and their mathe-

matical expressions used in our work.

• Euclidean Distance: It is the most common distance measure that is used

in the KNN algorithm. The Euclidean distance between the two points

measures the length of a segment connecting between two points. The

formula for Euclidean distance is given below.

Dxy =
√

(
m∑
k=1

(xik − yjk)
2) (7.1)

• Manhattan Distance: In Manhattan distance the distance between two

points is the sum of the absolute difference of their cartesian coordinates.The

distance is calculated using the formula given below.

DManhattan(x, y) = |xi − yi| (7.2)

• Kulczynski Distance: In Kulczynski distance measure, the distance between

two points is the ratio of the sum of the absolute difference of their Cartesian

coordinates and the sum of the minimum of their Cartesian coordinates. It

is defined as follows.

Dkulczynski(x, y) =
(
∑
|xi − yi|)

(
∑

max(xi, yi))
(7.3)

• Chebyshev Distance:It is also called as maximum value distance. It calculates

the absolute magnitudes of the differences between coordinates of a pair of

objects. The Chebyshev distance between two points or vector x and y with

standard coordinate xi and yi is computed as follows.

DChebyshev(x, y) = maxi(|xi − yi|) (7.4)
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Table 7.1: Distance measures and their mathematical expressions [1] [2]

Measure & References Math Expression

Euclidean [91] Dxy =
√

(
∑m

i=1(xi − yi)
2)

Manhattan [92] DManhattan(x, y) = |xi − yi|
Kulczynski [93] Dkulczynski(x, y) =

(
∑

|xi−yi|)
(
∑

max(xi,yi))

Chebyshev [94] DChebyshev(x, y) = maxi(|xi − yi|)
Cosine [92] Sim(A,B) = cos(θ) = A.B

||A||||B||

Sorgel [95] Dsg =
∑d

i=1 |Pi−Qi|∑d
i=1 min(Pi,Qi)

Sorenson [96] Dsoresnosn = 2|x.y|
|x|2+|y|2

Tanimoto [97] Dtanimoto =
x.y

|x|∗|x|+|y|∗|y|−x.y

• Cosine Similarity :It is the measure of calculating the difference between the

angle of the two vectors. The cosine similarity is calculated using the formula

given below.

Sim(A,B) = cos(θ) =
A.B

||A||||B||
(7.5)

• Soergel Distance: The Soergel Distance measure is given by the formula

below.

dsg =

∑d
i=1 |Pi −Qi|∑d

i=1 min(Pi, Qi)
(7.6)

• Sorenson Distance: The sorenson distance between any two vector can be

obtained by the following formula.

dsoresnosn =
2|x.y|
|x|2 + |y|2

(7.7)

• Tanimoto Distance: The tanimoto distance between any two vector can be

obtained by the following formula.

dtanimoto =
x.y

|x| ∗ |x|+ |y| ∗ |y| − x.y
(7.8)

Further, exhaustive experimentation was carried out on a large number

of datasets by varying the K values to identify an optimal range of K values for

the best possible performance of TUKNN. Additionally, both the sequential and

parallel versions of the KNN algorithm were presented.
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7.4.2 Sequential KNN algorithm

[1] For every fold in the 5 folds perform steps 2 to 8.

[2] Split the dataset into a test set and training set using 5-fold cross-validation.

[3] For every test instance in the test set perform steps 4 to 8.

[4] Find the distance between this test instance and all the training instances

in the training set.

[5] Now, from the distances obtained from step 4, find the first maximum K

number of minimum values and thereby save the respective training instances

having those values. Here, the maximum K value in the range (of K values)

is chosen for the algorithm.

[6] For every K in a range of values perform steps 7 & 8.

[7] Find the first K neighbors (i.e. the first K training instances with the

minimum distances) from the results obtained in step 5.

[8] Perform a majority voting among these neighbors; the dominating class label

in the pool will become the class label of the test instance.

In step 5, instead of applying a sorting algorithm, we find the first K minimum

distances and their respective training instances. This has been done in order

to decrease the time complexity of the algorithm as the best sorting algorithm

(Quick sort) takes O(N2) time where finding the first K minimum distances takes

O(NKmax) time. Here, N represents the size of the input (training set) and Kmax

is the maximum K-Value in a range chosen for the algorithm.

7.4.3 TUKNN Algorithm

The algorithm for parallel KNN implementation is stated below.

[1] For every fold in the 5 folds perform steps 2 to 8.

[2] Split the dataset into a test set and training set using 5-fold cross-validation.

[3] For every n instances(2500) in the test set, perform steps 4 to 8.
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[4] Compute the distances between these n instances and all the training in-

stances in the training set simultaneously by invoking the GPU kernel.

[5] Now, from the distances obtained from step 4, find the first maximum K

number of minimum values and thereby save the respective training instances

having those values. The maximum K is the maximum K value in the range

of K values chosen for the algorithm. This step is performed for all these n

instances simultaneously with the help of the GPU kernel.

[6] For every K, perform the steps 7 8.

[7] Find the first K neighbors (i.e. the first K training instances with the

minimum distances) from the results obtained in step 5.

[8] Perform a majority voting among these neighbors and the dominating class

label in the pool will become the class label of the test instance. The steps 6,

7, and 8 are performed for all these n instances simultaneously by invoking

the GPU kernel.

7.4.4 Complexity Analysis

The time complexity of k-Nearest Neighbors (k-NN) is O(N ·D), where N is the

number of data points and D is the dimensionality of the data. This complex-

ity arises because, during prediction, the algorithm must compute the distances

between the query point and all other data points.

Although the time complexity of TUKNN in terms of big-O notation remains the

same (O(N ·D)), the actual execution time is significantly reduced due to paral-

lelization. By leveraging parallel processing capabilities, TUKNN distributes the

distance calculations across multiple threads on the GPU, leading to a substantial

decrease in computation time.

7.5 Implementation and results

For the parallel KNN, we have computed all of the distances between a set of test

instances and all the training instances simultaneously. Hence, all the distances are

computed at once, parallelly. To calculate the distance between the test instances

and all training instances in parallel, we have used many cores of the GPU platform

and developed the kernels in CUDA to compute the task in parallel. The most
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crucial task for a KNN classifier is to compute the distance ‘d’ for finding the

nearest neighbors. We have implemented ‘d’, the distance computation on the

GPU platform to perform parallel computation, which has resulted in considerable

improvement in the KNN performance.

The graphics card used for this project was an NVIDIA Tesla K40c GPU Accel-

erator, which has 12GB of memory. With this memory capacity, the GPU was

able to compute the distances between 2500 test instances and all the training

instances in the dataset simultaneously.

7.5.1 Dataset Used

We performed our experimentation on the following datasets.

1. Ransomware Dataset: For our experiment, we use a dataset from Sgandurra

et al. [98]. The dataset contains 582 samples of ransomware with 11 variants

and 942 samples of benign programs. The dataset has 30,962 attributes

which represent all instances both goodware and ransomware present in the

dataset. A detailed description of the dataset is given in the Table 7.2.

Table 7.2: Ransomware dataset characteristics

Sl no Class No of samples
1 Goodware 942
2 Critroni 50
3 CryptLocker 107
4 CryptoWall 46
5 KOLLAH 25
6 Kovter 64
7 Locker 97
8 MATSNU 59
9 PGPCODER 4
10 Reveton 90
11 TeslaCrypt 6
12 Trojan-Ransom 34

Total samples: 1524
Total features: 30962

2. SWAT Dataset [30]: SWaT represents a scaled down version of a real-world

industrial water treatment plant producing 5 gallons per minute of wa-

ter filtered via membrane based ultrafiltration and reverse osmosis units.

The main purpose of the dataset, carried out by the research team (Srid-

har Adepu and team) was to design secure and safe CPS (Cyber Physical
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System). SWaT has six main processes corresponding to the physical and

control components of the water treatment facility. In total, 946,722 sam-

ples comprising of 51 attributes were collected over 11 days. The dataset

consists of two labels- “Attack” and “Normal”, where all the different types

of attacks are merged into a single class under label - “Attack”.

3. UCI datasets: A total of 20 datasets is also used in our work. The list of

datasets used for this purpose given in the table 7.3.

Table 7.3: Characteristics of 20 datasets obtained from UCI repository

S.I. Dataset Name No of Instances No of Features

1 Absenteeism at Work 740 21

2 Audit 777 18

3 Banknote Authentication 1372 5

4 Blood Transfusion 748 5

5 Cardiotocography 2126 23

6 Diabetic Debrecen 1151 20

7 Ecoli 336 8

8 Glass Identification 214 10

9 Haberman 306 3

10 Hill valley 606 101

11 ILPD 583 10

12 Image Segmentation 2310 19

13 Immunotherapy 90 8

14 Ionosphere 351 34

15 Iris 150 4

16 Libras 360 91

17 LSVT 126 309

18 Parkinson 756 754

19 Sonar 208 60

20 Soya bean 47 35

7.5.2 Results and Observation

In our proposed methodology for KNN, the value of K is determined after twenty

datasets from UCI Machine Learning repository were tested. This testing reduces
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the overhead of calculating the best K value for highest accuracy and makes our

model faster. As we can see form the table 7.4, in the majority cases (15 out of

20) the results show optimal K values within the range of 2-10.

Table 7.4: Value of K for which the maximum accuracy is achieved for the 20 UCI
ML Repository Dataset

S.I. Dataset Name Instances Features k Max Avg Accuracy

1 Absenteeism at Work 740 21 8 30.20%

2 Audit 777 18 3 93.70%

3 Banknote Authentication 1372 5 4 100%

4 Blood Transfusion 748 5 8 76.50%

5 Cardiotocography 2126 23 37 98.40%

6 Diabetic Debrecen 1151 20 8 67.40%

7 Ecoli 336 8 8 79.00%

8 Glass Identification 214 10 17 53.40%

9 Haberman 306 3 39 77.40%

10 Hill valley 606 101 3 54.70%

11 ILPD 583 10 49 70.90%

12 Image Segmentation 2310 19 2 65.20%

13 Immunotherapy 90 8 5 78.60%

14 Ionosphere 351 34 3 83.20%

15 Iris 150 4 2 96.00%

16 Libras 360 91 3 11.50%

17 LSVT 126 309 50 65.90%

18 Parkinson 756 754 10 74.60%

19 Sonar 208 60 4 46.30%

20 Soya bean 47 35 2 98.00%

7.5.2.1 Results for Binary Classification on Ransomware Dataset

We first performed binary classification on the ransomware dataset. In the binary

classification ‘Goodware’ is given the class label 0 and rest all the family member

of the dataset in the table is labeled as 1.

1. Result for Euclidean Distance
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Table 7.5: Results of Euclidean Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.924590164 0.898360656 0.901639344 0.947540984 0.894389439 0.913304117

3 0.931147541 0.91147541 0.921311475 0.950819672 0.917491749 0.926449169

4 0.927868852 0.88852459 0.898360656 0.93442623 0.900990099 0.910034085

5 0.931147541 0.891803279 0.895081967 0.947540984 0.907590759 0.914632906

6 0.924590164 0.88852459 0.878688525 0.931147541 0.90429043 0.90544825

7 0.927868852 0.88852459 0.881967213 0.940983607 0.920792079 0.912027268

8 0.914754098 0.878688525 0.878688525 0.931147541 0.904290429 0.901513824

9 0.914754098 0.875409836 0.885245902 0.921311475 0.897689769 0.898882216

10 0.924590164 0.875409836 0.868852459 0.904918032 0.877887789 0.890331656

Table 7.6: Time Comparison betwenn CPU and GPU

CPU time GPU time

1hr 21mins 20 sec 73.606 seconds

Figure 7-4: K vs accuracy graph for Euclidean Distance

2. Result for Manhattan Distance
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Table 7.7: Result for Manhattan Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.924590164 0.898360656 0.901639344 0.947540984 0.894389438 0.913304117

3 0.931147541 0.91147541 0.921311475 0.950819672 0.917491749 0.926449169

4 0.927868852 0.88852459 0.898360655 0.934426229 0.900990099 0.910034085

5 0.93114754 0.891803278 0.895081967 0.947540983 0.907590759 0.914632905

6 0.924590163 0.88852459 0.878688524 0.93114754 0.904290429 0.905448249

7 0.927868852 0.88852459 0.881967213 0.940983606 0.920792079 0.912027268

8 0.914754098 0.878688524 0.878688524 0.93114754 0.904290429 0.901513823

9 0.914754098 0.875409836 0.885245901 0.921311475 0.897689768 0.898882215

10 0.924590163 0.875409836 0.868852459 0.904918032 0.877887788 0.890331655

Table 7.8: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

58mins 30 sec 72.994 seconds

Figure 7-5: K vs accuracy graph for Manhattan Distance

3. Result for Kulczynski distance
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Table 7.9: Result for Kulczynski distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.960655737 0.93114754 0.96065573 0.96065573 0.94389438 0.95140182

3 0.94754098 0.92786885 0.96393442 0.97377049 0.95049504 0.95272195

4 0.93770491 0.93114754 0.96393442 0.96393442 0.94719471 0.9487832

5 0.93770491 0.92459016 0.95081967 0.95409836 0.94059405 0.94156143

6 0.93770491 0.92131147 0.95081967 0.94754098 0.95379537 0.94223448

7 0.93770491 0.9114754 0.9409836 0.95081967 0.96039603 0.94027592

8 0.93442622 0.91803278 0.93770491 0.9409836 0.94719471 0.93566844

9 0.93442622 0.90819672 0.93114754 0.9409836 0.95379537 0.93370989

10 0.93442622 0.91803278 0.92786885 0.94426229 0.95049504 0.93501703

Table 7.10: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

6664.25 seconds 76.176 seconds

Figure 7-6: K vs accuracy graph for Kulczynski Distance

4. Results for Chebyshev Distance
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Table 7.11: Results for Chebyshev Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.701639344 0.711475409 0.685245901 0.695081967 0.689768976 0.696642319

3 0.675409836 0.698360655 0.662295081 0.675409836 0.663366336 0.674968348

4 0.675409836 0.698360655 0.662295081 0.675409836 0.663366336 0.674968348

5 0.668852459 0.675409836 0.652459016 0.66557377 0.646864686 0.661831953

6 0.668852459 0.675409836 0.652459016 0.66557377 0.646864686 0.661831953

7 0.659016393 0.672131147 0.65245901 0.655737704 0.636963696 0.65526159

8 0.704918032 0.672131147 0.65245901 0.655737704 0.636963696 0.664441917

9 0.675409836 0.66557377 0.652459016 0.655737704 0.636963696 0.657228804

10 0.675409836 0.675409836 0.652459016 0.655737704 0.646864686 0.661176215

Table 7.12: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

51mins 5 seconds 74.55100226402283 seconds

Figure 7-7: K vs accuracy graph for Chebyshev Distance

5. Result for Cosine Similarity
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Table 7.13: Result for Cosine Similarity

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.547540983 0.6 0.534426229 0.540983606 0.528052805 0.550200724

3 0.573770491 0.485245901 0.563934426 0.626229508 0.594059405 0.568647946

4 0.498360655 0.491803278 0.478688524 0.629508196 0.561056105 0.531883352

5 0.593442622 0.649180327 0.616393442 0.622950819 0.590759075 0.614545257

6 0.593442622 0.645901639 0.616393442 0.619672131 0.56435643 0.607953252

7 0.606557377 0.629508196 0.629508196 0.626229508 0.607260726 0.6198128

8 0.603278688 0.629508196 0.622950819 0.622950819 0.603960396 0.616529783

9 0.606557377 0.626229508 0.626229508 0.626229508 0.607260726 0.618501325

10 0.606557377 0.622950819 0.626229508 0.626229508 0.607260726 0.617845587

Table 7.14: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

1hr 56mins 40 seconds 74.05940866470337 seconds

Figure 7-8: K vs accuracy graph for Cosine similarity measure

6. Result for Soergel Distance
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Table 7.15: Result for Soergel Distance

K Value
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.96065573 0.93114754 0.96065573 0.96065573 0.94389438 0.95140182

3 0.94754098 0.92786885 0.96393442 0.97377049 0.95049504 0.95272195

4 0.93770491 0.93114754 0.96393442 0.96393442 0.94719471 0.9487832

5 0.93770491 0.92459016 0.95081967 0.95409836 0.94059405 0.94156143

6 0.93770491 0.92131147 0.95081967 0.94754098 0.95379537 0.94223448

7 0.93770491 0.9114754 0.9409836 0.95081967 0.96039603 0.94027592

8 0.93442622 0.91803278 0.93770491 0.9409836 0.94719471 0.93566844

9 0.93442622 0.90819672 0.93114754 0.9409836 0.95379537 0.93370989

10 0.93442622 0.91803278 0.92786885 0.94426229 0.95049504 0.93501703

Table 7.16: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

6633.75 seconds 73.79 seconds

Figure 7-9: K vs accuracy graph for Sorgel distance measure

7. Results for Sorenson Distance
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Table 7.17: Results for Sorenson Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.96065573 0.93114754 0.96065573 0.96065573 0.94389438 0.95140182

3 0.94754098 0.92786885 0.96393442 0.97377049 0.95049504 0.95272195

4 0.93770491 0.93114754 0.96393442 0.96393442 0.94719471 0.9487832

5 0.93770491 0.92459016 0.95081967 0.95409836 0.94059405 0.94156143

6 0.93770491 0.92131147 0.95081967 0.94754098 0.95379537 0.94223448

7 0.93770491 0.9114754 0.9409836 0.95081967 0.96039603 0.94027592

8 0.93442622 0.91803278 0.93770491 0.9409836 0.94719471 0.93566844

9 0.93442622 0.90819672 0.93114754 0.9409836 0.95379537 0.93370989

10 0.93442622 0.91803278 0.92786885 0.94426229 0.95049504 0.93501703

Table 7.18: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

5901.75 seconds 151.07 seconds

Figure 7-10: K vs accuracy graph for soreson distance measure

8. Results for Tanimoto Distance
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Table 7.19: Results for Tanimoto Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.96065573 0.93114754 0.96065573 0.96065573 0.94389438 0.95140182

3 0.94754098 0.92786885 0.96393442 0.97377049 0.95049504 0.95272195

4 0.9377049 0.93114754 0.96393442 0.96393442 0.94719471 0.94878319

5 0.9377049 0.92459016 0.95081967 0.95409836 0.94059405 0.94156142

6 0.9377049 0.92131147 0.95081967 0.94754098 0.95379537 0.94223447

7 0.9377049 0.9114754 0.9409836 0.95081967 0.96039603 0.94027592

8 0.93442622 0.91803278 0.93770491 0.9409836 0.94719471 0.93566844

9 0.93442622 0.90819672 0.93114754 0.9409836 0.95379537 0.93370989

10 0.93442622 0.91803278 0.92786885 0.94426229 0.95049504 0.93501703

Table 7.20: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

4925.75 seconds 138.11 seconds

Figure 7-11: K vs accuracy graph for tanimoto distance measure

7.5.2.2 Result for Multi-Class Classification on Ransomware Dataset

1. Result for Euclidean Distance
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Table 7.21: Result for Euclidean Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.8262295 0.77377049 0.79344262 0.81311475 0.75577557 0.79246658

3 0.79672131 0.76721311 0.77377049 0.81311475 0.75247524 0.78065898

4 0.80983606 0.74754098 0.76065573 0.81639344 0.73267326 0.77341989

5 0.79672131 0.757377049 0.7409836 0.8 0.73927392 0.76687117

6 0.79016393 0.74754098 0.73442622 0.80327868 0.74257425 0.76359681

7 0.78360655 0.74754098 0.73442622 0.79344262 0.7260726 0.75701779

8 0.79016393 0.75081967 0.73770491 0.78688524 0.73267326 0.7596494

9 0.79016393 0.74754098 0.75081967 0.79344262 0.72937293 0.76226802

10 0.77704918 0.7409836 0.75081967 0.79672131 0.72277227 0.7576692

Table 7.22: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

1hr 34mins 5sec 74.730847120285 seconds

Figure 7-12: K vs accuracy graph for Euclidean distance measure

2. Result for Manhattan Distance
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Table 7.23: Result for Manhattan Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.8262295 0.77377049 0.79344262 0.81311475 0.75577557 0.79246658

3 0.79672131 0.76721311 0.77377049 0.81311475 0.75247524 0.78065898

4 0.80983606 0.74754098 0.76065573 0.81639344 0.73267326 0.77341989

5 0.79672131 0.757377049 0.7409836 0.8 0.73927392 0.76687117

6 0.79016393 0.74754098 0.73442622 0.80327868 0.74257425 0.76359681

7 0.78360655 0.74754098 0.73442622 0.79344262 0.7260726 0.75701779

8 0.79016393 0.75081967 0.73770491 0.78688524 0.73267326 0.7596494

9 0.79016393 0.74754098 0.75081967 0.79344262 0.72937293 0.76226802

10 0.77704918 0.7409836 0.75081967 0.79672131 0.72277227 0.7576692

Table 7.24: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

1hr 11mins 10sec 80.1867 seconds

Figure 7-13: K vs accuracy graph for Manhattan distance measure

3. Result for Kulczynski distance
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Table 7.25: Result for Kulczynski distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.8262295 0.79344262 0.81311475 0.84262295 0.7722772 0.8095374

3 0.82295081 0.78032786 0.8 0.83606557 0.7722772 0.8232428

4 0.80983606 0.76393442 0.78688524 0.82295081 0.77227722 0.7911767

5 0.79344262 0.78688524 0.77377049 0.82295081 0.8229508 0.7999999

6 0.80327868 0.79016393 0.77704918 0.80983606 0.76567656 0.7892008

7 0.79672131 0.78360655 0.77377049 0.81967213 0.76567656 0.7878894

8 0.79016393 0.78360655 0.77377049 0.81639344 0.76567656 0.78592219

9 0.79344262 0.78360655 0.77377049 0.81639344 0.76567656 0.7865779

10 0.78688524 0.78360655 0.77377049 0.81639344 0.76567656 0.78526645

Table 7.26: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

7777.5 Seconds 77.054 Seconds

Figure 7-14: K vs accuracy graph for Kulczynski distance measure

4. Result for Chebyshev Distance
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Table 7.27: Result for Chebyshev Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.67213114 0.69180327 0.65901639 0.67540983 0.65346534 0.67036519

3 0.67213114 0.69180327 0.65901639 0.66885245 0.65346534 0.66905371

4 0.66885245 0.67540983 0.64918032 0.66557377 0.64026402 0.65985607

5 0.66885245 0.67540983 0.64918032 0.66557377 0.64026402 0.65985607

6 0.65901639 0.67213114 0.64918032 0.6557377 0.63366336 0.65394578

7 0.65901639 0.67213114 0.64918032 0.6557377 0.63366336 0.65394578

8 0.64590163 0.66557377 0.64918032 0.6557377 0.63366336 0.65001135

9 0.64590163 0.66557377 0.64918032 0.6557377 0.63366336 0.65001135

10 0.63934426 0.66229508 0.64918032 0.64590163 0.63036303 0.64541686

Table 7.28: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

1hr 3mins 35sec 75.6112 Seconds

Figure 7-15: K vs accuracy graph for Chebyshev distance measure

5. Result for Cosine Similarity
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Table 7.29: Result for Cosine Similarity

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.58688524 0.4262295 0.59344262 0.6262295 0.60396039 0.56734945

3 0.60655737 0.62295081 0.6262295 0.62295081 0.60726072 0.61718984

4 0.60655737 0.62295081 0.6262295 0.62295081 0.60726072 0.61718984

5 0.60655737 0.62295081 0.6262295 0.62295081 0.5940594 0.61454957

6 0.60655737 0.62295081 0.6262295 0.62295081 0.60726072 0.61718984

7 0.60655737 0.62295081 0.6262295 0.62295081 0.60726072 0.61718984

8 0.60655737 0.6262295 0.6262295 0.62295081 0.60726072 0.61784558

9 0.60655737 0.6262295 0.6262295 0.62295081 0.60726072 0.61784558

10 0.60655737 0.6262295 0.6262295 0.62295081 0.60726072 0.61784558

Table 7.30: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

2hr 7mins 50sec 75.6016 sec

Figure 7-16: K vs accuracy graph for Cosine similarity measure

6. Result for Soergel Distance
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Table 7.31: Result for Soergel Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.8262295 0.79344262 0.81311475 0.84262295 0.77227722 0.8095374

3 0.82295081 0.78032786 0.8 0.83606557 0.77227722 0.80232429

4 0.80983606 0.76393442 0.78688524 0.82295081 0.77227722 0.79117675

5 0.79344262 0.78688524 0.77377049 0.82295081 0.76897689 0.78920521

6 0.80327868 0.79016393 0.77704918 0.80983606 0.76567656 0.78920088

7 0.79672131 0.78360655 0.77377049 0.81967213 0.76567656 0.7878894

8 0.79016393 0.78360655 0.77377049 0.81639344 0.76567656 0.78592219

9 0.79344262 0.78360655 0.77377049 0.81639344 0.76567656 0.78657793

10 0.78688524 0.78360655 0.77377049 0.81639344 0.76567656 0.78526645

Table 7.32: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

7701.25 seconds 73.64 seconds

Figure 7-17: K vs accuracy graph for Sorgel distance similarity measure

7. Results for Sorenson Distance
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Table 7.33: Results for Sorenson Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.63606557 0.64918032 0.63934426 0.64590163 0.62376237 0.63885083

3 0.63278688 0.64590163 0.63934426 0.64590163 0.62376237 0.63753935

4 0.63278688 0.64590163 0.63934426 0.64918032 0.62376237 0.63819509

5 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

6 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

7 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

8 0.63278688 0.64590163 0.63934426 0.64918032 0.62376237 0.63819509

9 0.63278688 0.64590163 0.63934426 0.64918032 0.62376237 0.63819509

10 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

Table 7.34: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

6100 seconds 142.91 seconds

Figure 7-18: K vs accuracy graph for Sorenson distance similarity measure

8. Results for Tanimoto Distance
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Table 7.35: Results for Tanimoto Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.63606557 0.64918032 0.63934426 0.64590163 0.62376237 0.63885083

3 0.63278688 0.64590163 0.63934426 0.64590163 0.62376237 0.63753935

4 0.63278688 0.64590163 0.63934426 0.64918032 0.62376237 0.63819509

5 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

6 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

7 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

8 0.63278688 0.64590163 0.63934426 0.64918032 0.62376237 0.63819509

9 0.63278688 0.64590163 0.63934426 0.64918032 0.62376237 0.63819509

10 0.63278688 0.64918032 0.63934426 0.64918032 0.62376237 0.63885083

Table 7.36: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

5337.5 seconds 137.90 seconds

Figure 7-19: K vs accuracy graph for Tanimoto distance similarity measure

7.5.2.3 Results for SWaT Dataset

1. Result for Euclidean Distance
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Table 7.37: Result for Euclidean Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84034672 0.8387451 0.84121787 0.84009241 0.84206852 0.8404941

3 0.93216386 0.93148209 0.931639 0.93131976 0.93346608 0.9320141

4 0.92373913 0.92330085 0.9237283 0.92333331 0.92553893 0.9239281

5 0.93940902 0.93911683 0.93866232 0.93831061 0.94027314 0.9391543

6 0.93805089 0.9373583 0.93693084 0.93695789 0.93874724 0.937609

7 0.94077256 0.94055071 0.9400475 0.93975532 0.94175035 0.9405752

8 0.94050202 0.94018819 0.93973367 0.93945231 0.94139322 0.9402538

9 0.94105393 0.94083749 0.94030722 0.9400475 0.94205337 0.9408599

10 0.94102687 0.94074551 0.94025853 0.93998798 0.94197762 0.9407993

Table 7.38: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

59days 4hrs 25mins 9hrs 47mins 55sec

Figure 7-20: K vs accuracy graph for Euclidean distance similarity measure

2. Result for Manhattan Distance
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Table 7.39: Result for Manhattan Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84031426 0.83861524 0.84106637 0.84002207 0.8415653 0.84031664

3 0.93215845 0.93180674 0.93192037 0.93113038 0.93329834 0.93206285

4 0.92380947 0.9234253 0.923793239 0.92336036 0.92513311 0.92390429

5 0.93929539 0.93920341 0.93872725 0.93837554 0.94026773 0.93917386

6 0.93793726 0.9374611 0.93702282 0.93690378 0.93872559 0.93761011

7 0.94072927 0.94056695 0.94001504 0.93970121 0.94169624 0.94054174

8 0.94046414 0.94019901 0.93971203 0.9393927 0.94136617 0.94022681

9 0.9410431 0.94085372 0.94026394 0.94000422 0.94203173 0.94083934

10 0.94100523 0.94076174 0.94017736 0.93995011 0.94195056 0.940769

Table 7.40: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

51days 20mins 9hrs 29mins 50sec

Figure 7-21: K vs accuracy graph for Manhattan distance similarity measure

3. Result for Kulczynski Distance
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7.5. Implementation and results

Table 7.41: Result for Kulczynski Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84030885 0.83862065 0.84106637 0.84003289 0.8415653 0.84031881

3 0.93215845 0.93180133 0.93192037 0.93113579 0.93329834 0.93206285

4 0.92381488 0.9234253 0.92379865 0.92335495 0.92513311 0.92390537

5 0.9392953 0.93920341 0.93872725 0.93837554 0.94026773 0.93917384

6 0.93793185 0.9374611 0.93702282 0.93690378 0.938731 0.93761011

7 0.94072927 0.94056695 0.94001504 0.93970121 0.94169624 0.94054174

8 0.94045873 0.9401936 0.93972285 0.93938738 0.94137158 0.94022682

9 0.9410431 0.94085372 0.94026394 0.94000422 0.94203173 0.94083934

10 0.94100523 0.94076174 0.94017736 0.93995011 0.94195056 0.940769

Table 7.42: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

90 days 6 hours 11 hr 56 min 56 sec

Figure 7-22: K vs accuracy graph for Kulczynski distance similarity measure

4. Result for Chebyshev Distance
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Table 7.43: Result for Chebyshev Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84017899 0.83838258 0.84084994 0.84086076 0.84207393 0.8404692

3 0.93207187 0.93172017 0.93173099 0.93141175 0.93334163 0.93205528

4 0.92364173 0.92318722 0.9236742 0.92357139 0.92543071 0.92390105

5 0.93938196 0.93899779 0.93879218 0.93834849 0.94038136 0.93918035

6 0.93803466 0.93727172 0.93725549 0.93689837 0.93878511 0.93764907

7 0.94075633 0.94055071 0.94013949 0.93982025 0.94177741 0.94060883

8 0.94041003 0.94027476 0.9397986 0.93948477 0.9414798 0.94028959

9 0.9410431 0.94083208 0.94033428 0.94002045 0.9420696 0.9408599

10 0.94102146 0.94077256 0.94026935 0.93995552 0.94198844 0.94080146

Table 7.44: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

53days 1hr 15mins 9hrs 50mins 30sec

Figure 7-23: K vs accuracy graph for Chebyshev distance similarity measure

5. Result for Cosine Similarity
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Table 7.45: Result for Cosine Similarity

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.93873807 0.90624577 0.90734959 0.92381488 0.92863945 0.92095755

3 0.9410918 0.94077797 0.94037757 0.94007456 0.92875308 0.93821499

4 0.94096735 0.94069681 0.91137528 0.92521088 0.92872061 0.92939418

5 0.9410918 0.94094571 0.94037757 0.94010161 0.94212371 0.94092808

6 0.9410918 0.94094571 0.94037757 0.94007456 0.94136617 0.94077116

7 0.9410918 0.94094571 0.94037757 0.94010161 0.94212371 0.94092808

8 0.9410918 0.94094571 0.94037757 0.94010161 0.94211289 0.94092591

9 0.9410918 0.94094571 0.94037757 0.94010161 0.94213453 0.94093024

10 0.9410918 0.94094571 0.94037757 0.94010161 0.94212912 0.94092916

Table 7.46: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

97days 18hrs 5mins 9hrs 53mins 48sec

Figure 7-24: K vs accuracy graph for Cosine distance similarity measure

6. Results for Soergel Distance
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Table 7.47: Results for Soergel Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84030885 0.83862065 0.84106637 0.84003289 0.8415653 0.84031881

3 0.93215845 0.93180133 0.93192037 0.93113579 0.93329834 0.93206285

4 0.92381488 0.9234253 0.92379865 0.92335495 0.92513311 0.92390537

5 0.93929539 0.93920341 0.93872725 0.93837554 0.94026773 0.93917386

6 0.93793185 0.9374611 0.93702282 0.93690378 0.938731 0.93761011

7 0.94072927 0.94056695 0.94001504 0.93970121 0.94169624 0.94054174

8 0.94045873 0.9401936 0.93972285 0.93938738 0.94137158 0.94022682

9 0.9410431 0.94085372 0.94026394 0.94000422 0.94203173 0.94083934

10 0.94100523 0.94076174 0.94017736 0.93995011 0.94195056 0.940769

Table 7.48: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

7985440.3 seconds 42644.66 seconds

Figure 7-25: K vs accuracy graph for Sorgel distance similarity measure

7. Results for Sorenson Distance

162
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Table 7.49: Results for Sorenson Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84030885 0.83862065 0.84106637 0.84003289 0.8415653 0.84031881

3 0.93215845 0.93180133 0.93192037 0.93113579 0.93329834 0.93206285

4 0.92381488 0.9234253 0.92379865 0.92335495 0.92513311 0.92390537

5 0.93929539 0.93920341 0.93872725 0.93837554 0.94026773 0.93917386

6 0.93793185 0.9374611 0.93702282 0.93690378 0.938731 0.93761011

7 0.94072927 0.94056695 0.94001504 0.93970121 0.94169624 0.940541742

8 0.94045873 0.9401936 0.93972285 0.93938738 0.94137158 0.940226828

9 0.9410431 0.94085372 0.94026394 0.94000422 0.94203173 0.940839342

10 0.94100523 0.94076174 0.94017736 0.93995011 0.94195056 0.940769

Table 7.50: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

7078337.9 seconds 41061.559248209 seconds

Figure 7-26: K vs accuracy graph for Sorenson distance similarity measure

8. Results for Tanimoto Distance
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Table 7.51: Results for Tanimoto Distance

K
Accuracy

(1st Fold)

Accuracy

(2nd Fold)

Accuracy

(3rd Fold)

Accuracy

(4th Fold)

Accuracy

(5th Fold)

Average

Accuracy

2 0.84030885 0.83862065 0.84106637 0.84003289 0.8415653 0.84031881

3 0.93215845 0.93180133 0.93192037 0.93113579 0.93329834 0.93206285

4 0.92381488 0.9234253 0.92379865 0.92335495 0.92513311 0.92390537

5 0.93929539 0.93920341 0.93872725 0.93837554 0.94026773 0.93917386

6 0.93793185 0.9374611 0.93702282 0.93690378 0.938731 0.93761011

7 0.94072927 0.94056695 0.94001504 0.93970121 0.94169624 0.94054174

8 0.94045873 0.9401936 0.93972285 0.93938738 0.94137158 0.94022682

9 0.9410431 0.94085372 0.94026394 0.94000422 0.94203173 0.94083934

10 0.94100523 0.94076174 0.94017736 0.93995011 0.94195056 0.940769

Table 7.52: Time Comparison betwenn CPU and GPU

CPU Time GPU Time

6098829 Seconds 40016.88 Seconds

Figure 7-27: K vs accuracy graph for Tanimoto distance similarity measure

7.5.2.4 Accuracy Comparison

The graph plots for the accuracy comparison is shown below.

1. Accuracy of Binary and Multi-Class Classification on Ransomware Dataset
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Figure 7-28: Accuracy of Binary and Multi-Class Classification on Ransomware
Dataset

2. Accuracy of SWaT Dataset

Figure 7-29: Accuracy SWaT Dataset

7.5.2.5 Time Comparison

1. CPU vs GPU Time Comparison for Binary Ransomware Dataset

Figure 7-30: CPU vs GPU Time Comparison for Binary Ransomware Dataset

2. CPU vs GPU Time Comparison for Multi-Class Ransomware Dataset

165



Chapter 7. Parallel k-Nearest Neighbors for Enhanced Malware Detection

Figure 7-31: CPU vs GPU Time Comparison for Multi-Class Ransomware
Dataset

3. CPU vs GPU Time Comparison for SWaT Dataset

Figure 7-32: CPU vs GPU Time Comparison for Swat Dataset

Table 7.53: A ratio of CPU time and GPU time

S. No Proximity measures
Binary classification of

Ransomware Dataset

Multi class classification of

Ransomware Dataset

Classification of

SWaT Dataset

1 Euclidean Distance 65.94 75.2 144.96

2 Manhattan Distance 48.94 59.62 130.98

3 Chebyshev Distance 40.86 50.19 129.37

4 Cosine Similarity 94.59 100.9 237.05

5 Kulczynski Distance 87.49 100.94 181.95

6 Soergel Distance 89.63 104.06 187.25

7 Sorenson Distance 39.07 42.95 172.38

8 Tanimoto Distance 35.68 38.95 152.41

7.6 Discussion

In this chapter, the TUKNN algorithm, a parallel version of the k-Nearest Neigh-

bors (k-NN) model, is implemented. It has been found that the Kulczynski dis-

tance and Soergel distance, when implemented with the k-NN model, give an

accuracy of 95% for binary classification of the ransomware dataset. In contrast,

Euclidean and Manhattan distances give an accuracy of 93%. For multi-class
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