
7.6. Discussion

classification of the ransomware dataset, the Kulczynski distance gives an accu-

racy of 82%, while the Soergel distance gives an accuracy of 81%. Euclidean and

Manhattan distances give an accuracy of 79% in this case.

Similarly, proximity measures such as Euclidean, Manhattan, Kulczynski, Cosine

Similarity, Chebyshev, and Soergel distance give an accuracy of 94% when classi-

fying the SWaT dataset. Among all the computations performed, the Chebyshev

distance for binary classification of the ransomware dataset benefits the least from

CUDA usage, with GPU computation being only 40.86 times faster than CPU

computation. Conversely, the Cosine Similarity for classification of the SWaT

dataset benefits the most from CUDA, with GPU computation being 237.05 times

faster than CPU computation.

When dealing with binary classification of the ransomware dataset using the k-NN

model, if accuracy is a high priority, the Kulczynski Distance or Soergel Distance

as the proximity measure is recommended. For multi-class classification of the

ransomware dataset using the k-NN model, if accuracy is a high priority, the

Kulczynski Distance is recommended. For classification of the SWaT dataset

using the k-NN model, if accuracy is a high priority, any of the five proximity

measures can be used. However, if both accuracy and computational time are

priorities, the Manhattan Distance is the better option.

The TUKNN has performed well for binary classification of the ransomware

dataset and the SWaT dataset but has not performed as well for multi-class

classification of the ransomware dataset. It has been observed that the TUKNN

significantly benefits from CUDA’s parallel computation in terms of reducing com-

putational time.

167



Chapter 8

A Deep Learning Based Malware

Detection Method

8.1 Introduction

Malware, designed to inflict undesirable or harmful effects on computer systems,

poses a significant threat to their security. Typically categorized into various types

such as worms, viruses, backdoors, Trojan horses, bots, rootkits, and spyware,

malware often exhibits characteristics that span multiple categories. For instance,

a worm may include a payload enabling the installation of a backdoor for remote

access. Given the substantial loss and damage inflicted by malware, the focus on

malware detection has become paramount in computer security.

The prevalent method for malware detection is the signature-based ap-

proach. This method employs a straightforward pattern-matching technique

to identify malicious code, demonstrating high accuracy. The signature-based

method, while widely adopted for its high accuracy, encounters limitations that

necessitate exploration into alternative approaches for more robust malware de-

tection. Notably, the sensitivity of signatures to slight variations in malicious code

poses a significant drawback, making it susceptible to evasion through obfusca-

tion technologies. This sensitivity also raises concerns about the adaptability of

signature-based methods to evolving malware variants, particularly those modified

to evade traditional detection mechanisms. Moreover, the reliance on known mal-

ware samples for signature creation introduces a challenge when confronted with

previously unseen or modified instances of malicious code. As cyber adversaries

continually employ sophisticated techniques to circumvent signature-based detec-

168



8.1. Introduction

tion, a critical aspect in the realm of antivirus solutions becomes the development

of methodologies that can effectively identify and thwart novel, unseen threats.

In response to these challenges, the field of intelligent malware detection

has gained prominence. This paradigm shift involves the application of machine

learning and data mining methods to enhance the capability of malware detec-

tion systems. Machine learning algorithms, by analyzing and learning patterns

from a diverse training set containing both malicious and benign samples, exhibit

a capacity to generalize and discriminate between the two. The utilization of

machine learning in this context addresses the inherent limitations of signature-

based methods, as it doesn’t rely on explicit signatures but rather on learned

patterns, enabling the identification of previously unseen or modified malware. In

this field, different machine learning methods, such as the naive Bayes method,

support vector machines (SVM), and decision trees, have been employed to de-

tect unknown malicious executables. These studies show that machine learning

methods are effective for detecting unknown malware. The integration of deep

learning methodologies into malware detection systems has garnered significant

attention. Among these methodologies, Convolutional Neural Networks (CNNs)

have gained prominence for their ability to autonomously discern intricate patterns

within data. Initially developed for image recognition, CNNs have demonstrated

success in various domains, leading researchers to explore their potential in the

landscape of malware detection. The promise of CNN-based deep learning in mal-

ware detection lies in its potential to enhance accuracy, reduce false positives, and

adapt to the constantly evolving tactics of malware. By training on large datasets

containing diverse malware samples, CNNs can effectively learn to identify com-

monalities and anomalies, enabling them to make informed decisions about the

malicious code.

8.1.1 Motivation

The increasing complexity and sophistication of malware, have propelled the need

for innovative and adaptive detection methods. Traditional approaches, such as

signature-based detection, struggle to keep pace with the dynamic evolution of

malware variants. In light of these challenges, the motivation to explore deep

learning, particularly Convolutional Neural Networks (CNNs), for malware detec-

tion emerges as a compelling solution. CNNs, renowned for their ability to auto-

matically learn intricate patterns from vast datasets, present a promising method

to enhance detection accuracy, reduce false positives, and address the intricate

169



Chapter 8. A Deep Learning Based Malware Detection Method

nature of malware.

8.1.2 Contribution

In this chapter, an exploration of Convolutional Neural Network (CNN) models

is undertaken, with the specific objective of enhancing malware detection capabil-

ities. The application of various CNN architectures is meticulously examined in

the context of their effectiveness in identifying and classifying malware instances.

Additionally, an exhaustive experimental study is conducted, encompassing a sub-

stantial number of malware samples.

8.2 Background

Deep learning, a subset of machine learning, represents a class of algorithms that

utilize neural networks with multiple layers to model intricate patterns in data.

This methodology has achieved substantial recognition due to its success across

diverse fields such as computer vision, natural language processing, and more

recently, cybersecurity, particularly in malware detection.

Convolutional Neural Networks (CNNs) are a specialized form of deep learning

model highly effective for analyzing data with a grid-like structure, such as images.

CNNs have gained widespread adoption in tasks including image classification, ob-

ject detection, and image generation, largely due to their ability to autonomously

and adaptively learn spatial hierarchies of features from input data.

8.2.1 Neural Networks

A neural network comprises interconnected layers of nodes (neurons), where each

connection between neurons has an associated weight, and each neuron applies

a non-linear activation function to its input. The basic architecture of a neural

network includes an input layer, one or more hidden layers, and an output layer.

The effectiveness of deep learning stems from the depth of these networks, i.e., the

number of hidden layers.

The learning process in neural networks involves adjusting the weights

using a method called backpropagation, which minimizes the error between the

170



8.2. Background

predicted output and the actual target. The error is typically measured using a loss

function, such as mean squared error (MSE) for regression tasks or cross-entropy

for classification tasks.

Mathematically, the output of a single neuron can be expressed as:

y = f

(
n∑

i=1

wixi + b

)
(8.1)

where:

• y is the output of the neuron,

• f is the activation function,

• wi are the weights,

• xi are the input features, and

• b is the bias term.

The figure below illustrates a simple neural network architecture with an

input layer, two hidden layers, and an output layer. This diagram demonstrates

the flow of information through the network, where each layer applies a transfor-

mation to the input data.

Input Layer ∈ ℝ⁷ Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ⁴ Output Layer ∈ ℝ²

Figure 8-1: Neural Network Architecture

171



Chapter 8. A Deep Learning Based Malware Detection Method

8.2.2 Convolutional Neural Networks (CNNs)

CNNs are specialized neural networks designed to handle data with a grid-like

structure, making them highly suitable for image data. They are composed of

several types of layers: convolutional layers, pooling layers, and fully connected

layers.

Convolutional Layers The convolutional layer is the core building block of a

CNN. It applies a set of learnable filters (kernels) to the input image to produce

feature maps. Each filter slides (convolves) across the input image, performing an

element-wise multiplication and summation operation, which can be mathemati-

cally represented as:

(I ∗K)(x, y) =
∑
i

∑
j

I(x+ i, y + j)K(i, j) (8.2)

where:

• I is the input image,

• K is the convolutional kernel,

• ∗ denotes the convolution operation,

• (x, y) are the coordinates of the output feature map.

The result is a set of feature maps that highlight various aspects of the

input image, such as edges or textures.

Activation Functions Following the convolution operation, an activation func-

tion (e.g., ReLU) is applied to introduce non-linearity into the model. The Recti-

fied Linear Unit (ReLU) function is defined as:

ReLU(x) = max(0, x) (8.3)

Pooling Layers Pooling layers reduce the spatial dimensions (width and height)

of the feature maps, thereby decreasing the computational load and controlling

172



8.2. Background

overfitting. The most common type of pooling is max pooling, which selects the

maximum value from a patch of the feature map. This can be expressed as:

y = max(x1, x2, . . . , xn) (8.4)

Fully Connected Layers After several convolutional and pooling layers, the

high-level reasoning in the neural network is done via fully connected layers. These

layers take the flattened output of the last pooling layer and produce the final

output, typically through a softmax function for classification tasks:

softmax(zi) =
ezi∑
j e

zj
(8.5)

where:

• zi are the input scores to the softmax function.

Training CNNs Training a CNN involves feeding the input data through the

network, computing the loss, and using backpropagation to adjust the weights.

This process iterates over multiple epochs until the network’s performance con-

verges to an acceptable level. Optimizers like Stochastic Gradient Descent (SGD)

or Adam are commonly used to update the weights during training.

Example CNN Architecture The following figure illustrates a detailed CNN

architecture, showcasing the layers and their configurations. This architecture

consists of several convolutional layers followed by pooling layers, culminating in

fully connected layers. Each layer extracts increasingly complex features from the

input data, eventually enabling accurate classification or prediction tasks.

This specific configuration includes:

• Input Layer: The initial layer that receives the raw input data.

• Convolutional Layers: Multiple layers (e.g., conv1, conv2, conv3, conv4,

conv5) with increasing depth and complexity, responsible for feature extrac-

tion.

173



Chapter 8. A Deep Learning Based Malware Detection Method

6464 I

conv1

64 64 I/
2

conv2

256 256 256 I/
4

conv3

512 512 512 I/
8

conv4

512 512 512 I/
16

conv5

4096 4096

fc to conv

K I/
32

fc8 to
conv K I/

16

K I/
16

+

K I/
8

K I/
8

+

K K I

softmax

Figure 8-2: Convolutional Neural Network (CNN) Architecture

• Fully Connected Layers: Layers that combine features extracted by con-

volutional layers, including fc to conv and fc8 to conv.

• Output Layer: The final layer, typically utilizing a softmax function to

generate the classification output.

This detailed architecture demonstrates how CNNs process and learn from

input data, progressively capturing and refining features through multiple layers

to achieve high-performance outcomes in tasks such as malware detection.

In summary, CNNs’ capability to automatically learn hierarchical feature

representations makes them exceptionally powerful for image-like data, leading to

their adoption in various domains, including malware detection, where binary or

hexadecimal representations of files can be treated as images for analysis.

8.3 Problem statement

The problem to be addressed involves the development of an effective and efficient

malware classification system utilizing Convolutional Neural Networks (CNNs).

Specifically, the task is to design a model capable of accurately distinguishing be-

tween benign and malicious files within a given dataset of malware. The detection

of malware is defined as a classification problem. For a given malware dataset, the

objective is to identify the class label y (goodware or malware) with high preci-

sion based on a given set of training instances xtrain
i . The output is a binary label

y ∈ {0, 1}, indicating malware or goodware, respectively. The aim is to achieve

high detection accuracy (i.e., minimum false alarm rate) for any given input test

instance in identifying its class label.

174



8.4. The Proposed Method

8.4 The Proposed Method

The proposed model for the detection of malware is illustrated in Figure 8-3. The

model aims to classify a given data into two categories, malware, and goodware

with minimum false alarms.

Malware/Goodware Collected Data

Virus Total

Data Label

Disassembler

Binary Files
(1D array of

bytes)

2D conversion

Semantic
Mode

Images

Emulated Environment

Vi
rtu

al
N

et
w

or
k

Greyscale Images

Data
Peprocessing

Validation

Training

Learning
 algorithms

Trained Model

Unknown Data

Host Machine

Training
process

Resize

Cropping and
padding

Data
Augmentation

Malware

Goodware

Figure 8-3: Overview of the proposed method

8.4.1 Feature Data Generation

To convert a binary file into an image, we utilize the bytes sequence representing

the binary as the pixel values of a grayscale PNG image. A web-based tool is

developed to encode any binary file into a lossless PNG format, ensuring fidelity

175



Chapter 8. A Deep Learning Based Malware Detection Method

in the conversion process. This approach allows for the visualization of binary

data as images, facilitating interpretation and potential further analysis while

preserving the integrity of the original data. The screenshot of the web-based tool

used for this conversion process is shown in Figure 8-5. This tool was instrumental

in creating a diverse and robust dataset for training the CNN models.

The conversion process begins by determining the length of the binary data, mea-

sured in bytes. The binary data is then transformed into a numerical array, with

each byte represented as an unsigned 8-bit integer. A special indicator is added to

the beginning of the array to mark the length of the data. The necessary dimen-

sions to create a square image are calculated based on the square root of the data

length, with any decimal values rounded up. Padding is computed, and zeros are

appended to the array to ensure it fits neatly into the square image. The array is

then reshaped into a two-dimensional grid, forming the grayscale image.

In grayscale images, each pixel’s value represents its brightness, typically depicted

as a single number. The standard pixel format for grayscale images is the byte

image, where the brightness value is stored as an 8-bit integer, allowing for a range

of values from 0 to 255. Conventionally, zero signifies black, while 255 signifies

white, with intermediate values representing various shades of gray corresponding

to different brightness levels. Finally, the resulting image file is saved in PNG

format, facilitating the translation of binary data into an image format for further

analysis, as shown in Figure 8-4. The algorithm for grayscale image generation is

shown in Algorithm 3.

Applications 1D Array of bytes 2D conversion to
grayscale image

Appliaction binary

Figure 8-4: Feature Data Generation

176



8.4. The Proposed Method

Figure 8-5: Web-based tool for bi-
nary to image conversion

Figure 8-6: Example of Airpush
malware visualized as image

Algorithm 3: Generate Grayscale Images from Binary Files

Input: List of Binary files

Output: Grayscale images

initialization;

input files← list all files ;

Function create GrayImage(input file, output dir, imgFormat,

imageSize, resampling filter):

file content← read binary file input file;

data← convert file content to byte array of uint8;

image size← ceil(sqrt(length(data)));

padded data← pad data with zeros to length image size2;

image array ← reshape padded data to 2D array of size

(image size, image size);

image← convert image array to grayscale image;

resized image← resize image to (imageSize, imageSize) using

resampling filter;

output file path← generate output path in output dir;

save resized image to output file path;

foreach file in input files do

output dir ← generate output directory;

create GrayImage(file, output dir, imgFormat, imageSize,

resampling filter);

end

The total time complexity of the grayscale image generation algorithm is

O(n +m2), where n represents the size of the input file and m is the dimension

177



Chapter 8. A Deep Learning Based Malware Detection Method

of the output image. Significant steps in the algorithm include resizing the image

and saving it. The algorithm processes the input file data linearly, contributing

O(n) to the complexity, while the image handling operations, such as resizing,

contribute O(m2). This quadratic time complexity is still more efficient compared

to dynamic analysis methods, which involve computationally intensive operations

like runtime behavior monitoring and result in much higher time complexity. The

grayscale image generation algorithm, therefore, provides a balance between pro-

cessing efficiency and computational cost, making it suitable for malware analysis

tasks.

8.4.2 Data Preprocessing

Data preprocessing is a crucial step before feeding the data into a Convolutional

Neural Network (CNN) model, as it significantly enhances model accuracy. One

of the primary preprocessing steps is ensuring that all images are of the same

dimension. In this case, the images in the dataset are resized to 256x256 pixels.

During each epoch, these images are then randomly cropped to the full height or

width to ensure consistency in input size. For image resizing, bilinear non-adaptive

interpolation is employed, which helps maintain the quality of the images while

changing their dimensions. Following resizing, a variety of data augmentation

techniques are applied to generate transformed versions of the original data, while

preserving their class labels. These techniques include:

• Rotation: Rotating the images by a certain angle.

• Flipping: Horizontally and/or vertically flipping the images.

• Perspective Warping: Applying slight perspective transformations to the

images.

• Brightness Changes: Adjusting the brightness levels of the images.

• Contrast Changes: Modifying the contrast of the images.

• Noise Addition: Adding random noise to the images to simulate real-world

variability.

• Resolution Adjustment: Changing the resolution of the images.

Data augmentation is particularly beneficial when the available data is

limited. It increases the variability in the images and acts as a regularizer at

178



8.4. The Proposed Method

the dataset level, which helps prevent overfitting and improves the generalization

ability of the model.

8.4.3 Selection of CNN architectures

In the realm of Convolutional Neural Networks (CNNs), several models such as

ResNet, DenseNet, AlexNet, and others have been introduced to handle large

volumes of data efficiently. However, the performance of these models can vary

significantly depending on the availability and quality of the data, as well as

the number of samples. Therefore, to determine the effectiveness of different

CNN architectures in the context of malware detection, eight CNN models were

considered in this experimental research. The performance of these models was

evaluated based on accuracy, precision, recall, and F1-score.

This study includes CNN architectures from four prominent categories: ResNet

[99], DenseNet [100], AlexNet [101], and VGG [102]. Specifically, the architectures

considered are ResNet18, ResNet34, ResNet50, AlexNet, VGG, DenseNet121,

DenseNet161, and DenseNet169. By comparing these models, the aim is to iden-

tify the most effective architecture for detecting malware. Table 8.1 provides a

comparative overview of various deep learning models in terms of their computa-

tional efficiencies.

Table 8.1: Comparison of Model Computational Efficiencies

Model Inference Time Training Time No. of Parameters Memory

ResNet18 Fast Moderate Low Low
ResNet34 Moderate Moderate Medium Medium
ResNet50 Moderate High High High
DenseNet121 Moderate High Medium High
DenseNet161 Slow Very High Very High Very High
DenseNet169 Moderate High High High
AlexNet Fast Short Moderate Moderate
VGG Slow Long Very High Very High

8.4.4 Transfer Learning and Fine-tuning Approaches

Training an entire Convolutional Neural Network (CNN) from scratch is challeng-

ing because it requires a relatively large dataset and is very time-consuming due

to the need for significant computational and memory resources. Therefore, we

179



Chapter 8. A Deep Learning Based Malware Detection Method

utilize the benefits of transfer learning. In transfer learning, a pre-trained model

that has already been trained on a very large dataset from a different domain is

fine-tuned for another domain. Figure 8-7 provides an overview of the transfer

learning approach.

Generally, the first few layers of a CNN encode low-level features that

are common across most computer vision tasks. The later layers, before the final

layer, learn more complex features. In transfer learning, these layers are retained

and adjusted as needed to solve a specific task. The final fully connected layer

of the pre-trained CNN model is replaced with a new fully connected layer that

has as many neurons as the number of classes in the new target application. In

our approach, we replace the fully connected layer of the pre-trained model with

a new fully connected layer tailored to our problem. The last layer contains two

neurons, representing the application’s two target classes: malware and goodware.

The random weights of this newly introduced layer need to be appropri-

ately adjusted. To maintain the layer weights from the pre-trained network, the

network optimizer adjusts the weights of the newly added layer while freezing the

previous layers. To determine an optimal range for the learning rate without ex-

tensive experimentation, we use a technique known as cyclical learning rate before

training. Initially, with all previous layers frozen, we train the newly inserted layer

for one epoch to adjust its random weights. Subsequently, the layers are unfrozen,

and the entire network is trained for the specified number of epochs.

Source data

Source model

Target labelsSource labels

Target model

Target data

Figure 8-7: Illustration of transfer learning

180



8.5. Experimental Results

8.5 Experimental Results

We implement all deep learning models using PyTorch 1.9.0. The experiments are

performed on a Dell Precision 7810 Tower with 2x Intel Xeon E5-2600 v3 consisting

of 8 cores, 64GB RAM, and NVIDIA Tesla K80 GPU with 12GB VRAM.

8.5.1 Datasets

This section provides a summary of the datasets used in evaluating the proposed

method and presents the experimental results. The evaluation is performed using

two different datasets. The first dataset is the MALNET-IMAGE TINY dataset

[103], which consists of a total of 61,201 images for training, 8,743 images for

validation, and 17,486 images for testing.

The second dataset TUANDROMD-X was generated using a specific process de-

tailed in Section 9.4.1. To construct this dataset, 20000 samples of raw malware

binaries are obtained from [34]. Additionally, we curated a set of the top 1,000

Android applications from Google Play, which served as representative examples

of benign applications. The dataset is categorized into 72 distinct classes, with 71

classes dedicated to various types of malware and one class for goodware. This

approach allowed us to create a dataset that encompasses a diverse range of data

points, including both malicious and benign software instances. The detailed

dataset statistics are presented in Table 8.2. To provide a visual representation

of the data distribution, Figure 8-8 illustrates the overall class distribution, while

Figure 8-9 shows the top 10 categories within the dataset.

Table 8.2: Dataset Statistics

Characteristic Count
Total Instances 21,000
Malware Instances 20,000
Goodware Instances 1,000
Total Classes 72
Malware Classes 71
Goodware Class 1

181



Chapter 8. A Deep Learning Based Malware Detection Method

0 1000 2000 3000 4000 5000 6000
Sample Count

Fobus
Lnk

VikingHorde
Ogel

Tesbo
FakeUpdates

FakeAV
Ramnit
Finspy

Opfake
Obad

Univert
SmsZombie
SpyBubble
FakeAngry

Svpeng
Vmvol
Utchi

FakeTimer
Steek

Kemoge
MobileTX
Spambot

Mmarketpay
Fjcon
Cova

Winge
Penetho

Vidro
Zitmo
Ztorg

UpdtKiller
Aples

FakePlayer
Stealer

FakeDoc
Gorpo
Ksapp
Roop

AndroRAT
Erop

Boxer
Andup

GoldDream
Koler

Mtk
Bankun

Nandrobox
GingerMaster

Leech
Gumen
SmsKey

SlemBunk
Kyview

SimpleLocker
Triada

Minimob
Boqx
Mseg

Lotoor
RuMMS

Jisut
BankBot

DroidKungFu
Kuguo
Good
Fusob
Youmi
Mecor

FakeInst
Dowgin
Airpush

Ca
te

go
ry

4
4
4
4
5
5
5
6
6
8
8
8
8
8
8
9
9
9
10
11
11
11
12
12
13
14
14
16
17
18
18
19
19
19
19
20
29
30
35
35
36
36
40
42
55
59
59
59
94
97
113
129
136
141
145
165
166
178
201
235

328
433

525
545

954
1000
1013
1017

1431
1714

2834
6500

Class Distribution of TUANDROMD-X

Figure 8-8: Class Distribution of TUANDROMD-X

8.5.2 Results

The training phase of the neural network focused particularly on tuning the

weights of the newly added layers. Optimization for these weights was performed

using the Adam optimizer and the cross-entropy loss function. Precise hyper-

182



8.5. Experimental Results

Airpush

37.1%

Dowgin

16.2%

FakeInst

9.8%

Mecor

8.2%

Youmi

5.8%

Fusob

5.8%

Goodware

5.7%

Kuguo

5.4%

DroidKungFu

3.1%

BankBot

3.0%

Figure 8-9: Top 10 categories of TUANDROMD-X

parameters were used for configuring the Adam optimizer, including β1 = 0.98,

β2 = 0.979, and ϵ = 1×10−8. These hyperparameter values were obtained through

an extensive grid search to ensure optimal performance.

For the optimization of the learning trajectory, a Cyclical learning rate [104] policy

targeting a learning rate value of 0.003 was adopted. Consistency across all tests

was ensured by standardizing batch sizes to 64. This methodological consistency

guarantees fairness and reliability in comparing model performances. The training

spanned over 50 epochs, during which the model weights showing the highest

validation accuracy were retained.

The performance metrics reported in Table 8.3 for Dataset 1 highlight the effi-

cacy of various deep learning models in malware detection. This table presents

an overview of the Accuracy, Precision, Recall, and F1 Score for different

models including ResNet18, ResNet34, ResNet50, DenseNet121, DenseNet161,

183



Chapter 8. A Deep Learning Based Malware Detection Method

DenseNet169, AlexNet, and VGG. Among the models evaluated, ResNet50 demon-

strates superior performance with an accuracy of 0.963, a precision of 0.943, a

recall of 0.948, and an F1 score of 0.954. DenseNet169 also performs well, with an

accuracy of 0.960 and the highest F1 score of 0.958, indicating its robustness in

handling this dataset. Other models like ResNet18 and ResNet34 also perform very

well, with accuracy values of 0.956 and 0.955 only slightly lower than ResNet50

and DenseNet169. DenseNet121 and DenseNet161 show consistent results with

accuracy scores of 0.953 and 0.952, respectively. AlexNet and VGG, while per-

forming lower relative to ResNet and DenseNet variants, achieved accuracy scores

of 0.936 and 0.944, respectively.

Table 8.4 presents the performance metrics of various deep learning models eval-

uated on Dataset 2. As shown in Table 8.3, ResNet50 achieves the highest ac-

curacy of 0.945, along with a precision of 0.89, recall of 0.85, and an F1 score

of 0.87. DenseNet models (DenseNet161, DenseNet121, and DenseNet169) also

exhibit commendable results (Table 8.3). DenseNet161 achieves an accuracy

of 0.931, along with a precision of 0.90, a recall of 0.83, and an F1 score of

0.86. DenseNet121 and DenseNet169 show comparable performance, with accu-

racy scores of 0.924 and 0.919, respectively. Additionally, ResNet18 and ResNet34

perform reasonably, with accuracy scores of 0.912 and 0.897, respectively.

Table 8.3: Performance Metrics of Various Models on Dataset 1

Model Accuracy Precision Recall F1 Score
ResNet18 0.956 0.938 0.965 0.942
ResNet34 0.955 0.932 0.976 0.937
ResNet50 0.963 0.943 0.948 0.954
DenseNet121 0.953 0.951 0.970 0.949
DenseNet161 0.952 0.9489 0.967 0.946
DenseNet169 0.960 0.950 0.962 0.958
AlexNet 0.936 0.927 0.931 0.923
VGG 0.944 0.938 0.947 0.935

184



8.5. Experimental Results

Re
sN

et1
8

Re
sN

et3
4

Re
sN

et5
0

Den
seN

et1
21

Den
seN

et1
61

Den
seN

et1
69

Alex
Net

VGG

Models

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Model Performance Comparison
Accuracy Precision Recall F1 Score

Figure 8-10: Model Performance Comparison on Dataset 1

Table 8.4: Performance Metrics of Various Models on Dataset 2

Model Accuracy Precision Recall F1 Score
ResNet18 0.912 0.88 0.84 0.86
ResNet34 0.897 0.91 0.81 0.85
ResNet50 0.965 0.89 0.85 0.87
DenseNet121 0.924 0.88 0.84 0.86
DenseNet161 0.931 0.90 0.83 0.86
DenseNet169 0.919 0.89 0.84 0.86
AlexNet 0.908 0.89 0.83 0.86
VGG 0.895 0.91 0.82 0.86

185



Chapter 8. A Deep Learning Based Malware Detection Method

Re
sN

et1
8

Re
sN

et3
4

Re
sN

et5
0

Den
seN

et1
21

Den
seN

et1
61

Den
seN

et1
69

Alex
Net

VGG

Models

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Model Performance Comparison
Accuracy Precision Recall F1 Score

Figure 8-11: Model Performance Comparison on Dataset 2

8.6 Discussion

This study shows the experimentation with Convolutional Neural Network (CNN)

models for malware detection. The CNN models demonstrated a notable capabil-

ity to capture intricate patterns and characteristics from a varied set of malware

samples. The achieved accuracy highlights their effectiveness in differentiating

between benign and malicious files. Moreover, the exploration of hyperparameter

values within the CNN architectures allowed for a nuanced understanding of the

impact of these choices on model performance. The fine-tuning of parameters,

such as kernel sizes, stride lengths, and filter numbers, proved instrumental in

optimizing the accuracy and efficiency of the malware detection models.

This study explores the use of Convolutional Neural Network (CNN) models for

malware detection, demonstrating their notable capability to capture intricate

patterns and characteristics from a diverse set of malware samples. The high

accuracy achieved by these models underscores their effectiveness in distinguishing

between benign and malicious files. Additionally, the comprehensive exploration

of hyperparameter values within the CNN architectures provided valuable insights

into how these choices impact model performance. Fine-tuning parameters such

as kernel sizes, stride lengths, and the number of filters proved instrumental in

optimizing both the accuracy and efficiency of the malware detection models.

186


	12_chapter 8

