
8.6. Discussion

The experimentation with different CNN architectures, including ResNet and

DenseNet variants, highlighted the strengths and limitations of each approach.

For instance, ResNet50 consistently outperformed other models in terms of ac-

curacy, precision, and F1 score, suggesting its superior ability to learn complex

features from the datasets. On the other hand, models like AlexNet and VGG,

while still effective, showed slightly lower performance, indicating potential areas

for further optimization.

Furthermore, the use of data augmentation techniques was crucial in enhancing

the generalizability of the models, ensuring robust performance across varied and

unseen samples. This aspect is particularly important in real-world scenarios

where the diversity of malware is constantly evolving. Overall, the findings from

this study not only validate the efficacy of CNNs in malware detection but also

emphasize the importance of careful hyperparameter tuning and architecture se-

lection. Future work could further investigate the integration of additional data

sources and advanced augmentation techniques to continue improving model per-

formance and adaptability.

187

Chapter 9

A Graph Neural Network Based

Malware Detection Method

9.1 Introduction

IT-enabled services are deeply integrated into every aspect of our society. With

the rapid growth of technology and IT-enabled services, the lifestyles of people

have changed. People make use of services available on top of the Internet for

numerous purposes. Unfortunately, these services can be exploited by enemies

and cyber criminals to fulfill their ulterior motives. Attackers can launch various

types of attacks using malicious software called malware to break into intercon-

nected systems by exploiting the vulnerabilities found in devices, systems, and

software applications. As a result, they can disrupt the ongoing services, block

access to critical services, steal sensitive information, corrupt important files and

exhaust the resources of servers. Malware are continuously evolving with the

change in technology. Day by day, cyber-attacks involving malware are targeting

systems with continuously improved evading techniques. The methods used in cy-

ber attacks are becoming more complex with enhanced stealth, and frequencies of

attacks. Cyber threats are not limited to computer networks where all devices are

desktop computers or mobile devices. They are moving into Internet-of-Things

(IoT) and critical infrastructure networks. Attackers can now compromise IoT

devices to become a part of a zombie network to launch targeted attacks. Mal-

ware encompasses a wide range of malicious code designed to compromise the

security, integrity, and functionality of computer systems. The proliferation and

sophistication of malware pose significant threats to personal, industrial as well

as national security. The rapidly evolving nature of malware like ransomware ne-

188

9.1. Introduction

cessitates robust and adaptive detection systems to ensure the safety of digital

environments.

Traditional anti-malware solutions are mainly based on signature-based detec-

tion techniques, which rely on the analysis and comparison of malware attack

signatures to a list of pre-identified signatures. However, this method of tra-

ditional detection methods cannot effectively detect unknown malware variants,

such as zero-day malware. In contrast, machine learning-based methods and deep

learning-based methods have emerged as widely used approaches for the detection

of malware variants. While machine learning-based methods have demonstrated

good predictive performance, the utilization of deep learning models such as Con-

volutional Neural Networks [105] (CNN), and Graph Neural Networks [106] (GNN)

in malware detection have further improved the predictive accuracy of malware

detection.

Recently, GNN-based models have garnered significant attention and achieved

promising results based on the extracted high-level structure features. Unlike

traditional neural networks that operate on fixed-size inputs, GNNs are designed

to work with data represented as graphs, where entities and their relationships

are naturally encapsulated. This capability makes GNNs particularly well-suited

for malware detection, as the behavior and structure of malicious software can be

effectively captured and analyzed through graph representations.

9.1.1 Motivation

The escalating frequency and sophistication of malware attacks pose a severe and

persistent threat to individuals, organizations, and national security infrastruc-

tures worldwide. As malware authors employ increasingly advanced techniques

to create and deploy malware, traditional malware detection systems, primarily

reliant on signature-based methods, are becoming less effective. These conven-

tional approaches often fail to recognize new and polymorphic malware variants

that do not match known signatures, leaving systems vulnerable to zero-day at-

tacks. To address these limitations, there is a pressing need for innovative and

more resilient detection methodologies. Machine learning has shown considerable

promise in enhancing malware detection by learning patterns and behaviors from

data. However, many machine learning techniques struggle to capture the com-

plex and dynamic relationships inherent in malware behavior. By utilizing GNNs,

which are specifically designed to operate on graph-structured data, we can cap-

ture these relationships more accurately and robustly than traditional machine

189

Chapter 9. A Graph Neural Network Based Malware Detection Method

learning methods. The motivation behind this research is to harness the power of

GNNs to develop a more effective and adaptive malware detection system.

9.1.2 Contribution

In this chapter, we explore a novel approach to malware detection utilizing Graph

Neural Networks (GNNs). The goal of this work is to investigate malware classi-

fication techniques using graph-based learning, relying solely on graphs generated

from raw malware binaries, without typical features such as permissions and API

calls. By representing malware as graphs, where nodes signify various function

calls and edges denote the interactions between them, we leverage the strengths of

GNNs to uncover intricate patterns and behaviors indicative of malicious activity.

This method enables a more nuanced and comprehensive analysis compared to

traditional techniques, which often miss subtle and complex relationships within

the data.

9.2 Background

9.2.1 Graph

A graph is a mathematical and data structure concept used to represent relation-

ships or connections between objects. It consists of two main components: nodes

(or vertices) and edges. Graphs are often used to model and analyze various

real-world problems and systems, such as social networks, transportation net-

works, and computer networks. Nodes represent individual entities or points in

the graph, each with specific characteristics. Edges are the connections between

nodes and are typically represented by lines or arcs. Edges can be directed or

undirected. In a directed graph, an edge from vertex u to vertex v indicates a one-

way relationship from u to v. In an undirected graph, an edge between vertices u

and v indicates a two-way relationship between them. Some graphs have weights

associated with their edges to represent additional information, such as distances

or costs [107].

190

9.2. Background

A

B

C

D

Figure 9-1: A simple graph with directed and undirected edges

9.2.2 Function Call Graph

A Function Call Graph (FCG) is a directed graph G = (N,E), where N is a

set of nodes representing functions and E represents the set of inter-procedural

calls. An FCG shows the relationships and dependencies between functions or

subroutines in a software program. It illustrates how functions call each other

within the program, which is valuable for understanding program flow, identifying

performance bottlenecks, and debugging. In an FCG, functions are represented as

nodes, and the edges between nodes represent the flow of control from one function

to another through function calls [108]. For example, when an app sends an SMS

message, it performs a series of API calls on the Android platform. An FCG

consists of all possible execution paths called during its runtime. For instance, a

function to gather sensitive information might call other functions to access phone

contacts, SMS, browser bookmarks, etc., and then use another function to send

the data back to an attacker.

function A

function B

function C

call

call

Figure 9-2: Function Call Graph

9.2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a type of machine learning model that can

learn from and make predictions on graph data. Graphs provide a powerful way

191

Chapter 9. A Graph Neural Network Based Malware Detection Method

to represent data with relationships between different entities, such as social net-

works, road networks, and molecular structures. GNNs can solve a wide range

of tasks, including node classification, edge prediction, graph classification, and

graph generation.

GNNs work by iteratively aggregating information from neighboring nodes in a

graph. In each iteration, each node updates its representation based on the repre-

sentations of its neighbors. This process allows GNNs to learn global patterns in

the graph from local information. This is typically done through a series of layers,

similar to traditional neural networks, where each layer refines the node represen-

tations, enabling the network to capture complex patterns and dependencies in

the graph structure.

Node Features

Node Features

...

Node Features

GNN Layer 1

GNN Layer 2

GNN Layer 3

Graph Embedding

Figure 9-3: Graph Neural Network Architecture

9.2.3.1 Graph Convolutional Networks

Graph Convolutional Networks [109] (GCNs) are a type of GNN used to learn from

and make predictions on graph data. GCNs iteratively aggregate information

from neighboring nodes in a graph. In each iteration, each node updates its

representation based on the representations of its neighbors. This process allows

GCNs to learn global patterns in the graph from local information.

GCNs have achieved state-of-the-art results on various graph-related tasks, such

as node classification, edge prediction, graph classification, and graph generation.

Let G = (V,E) be a graph, where V represents the set of nodes and E represents

the set of edges. Each node vi is associated with a feature vector Xi. The goal of

a GCN is to learn a new feature representation Hi for each node vi by aggregating

192

9.2. Background

information from its neighbors, expressed as:

Hi = σ

 ∑
j∈N(vi)

1

cij
·WXj

 (9.1)

Here, N(vi) represents the neighbors of node vi, W is a learnable weight

matrix, σ is an activation function (e.g., ReLU), and cij is a normalization factor.

This process is typically performed iteratively through multiple layers to capture

increasingly complex relationships in the graph.

9.2.3.2 Graph Isomorphism Network

Graph Isomorphism Networks [110] (GINs) are designed for graph classification

and graph matching. GINs learn graph representations invariant to graph isomor-

phism, meaning they can determine whether two graphs are structurally equiv-

alent. Let G = (V,E) be a graph, where V represents the set of nodes and E

represents the set of edges. The goal of a GIN is to learn a representation hG

for the entire graph G. This is done by iteratively updating node representations

based on the aggregation of features from their neighbors and then applying a

readout function.

h(k+1)
v = MLP(k)

(1 + ϵ(k)
)
· h(k)

v +
∑

w∈N(v)

h(k)
w

 (9.2)

Here, h
(k)
v represents the feature representation of node v at iteration k,

N(v) represents the neighbors of node v, ϵ(k) is a learnable parameter, and MLP(k)

is a multi-layer perceptron applied to update node features. The readout function

aggregates the node representations to obtain the graph representation hG.

9.2.3.3 Graph Attention Network (GAT)

Graph Attention Networks [111] (GATs) extend the concept of self-attention to

graphs. GATs compute a new feature representation h
(l+1)
v for each node v at layer

l + 1 based on the features of its neighbors and dynamically computed attention

193

Chapter 9. A Graph Neural Network Based Malware Detection Method

weights.

h(l+1)
v = σ

 ∑
u∈N(v)

α(l)
vu ·W (l)h(l)

u

 (9.3)

Here, h
(l)
v represents the feature representation of node v at layer l, and

α
(l)
vu are attention weights computed using a learnable function that considers the

features of connected nodes and a shared attention parameter vector. GAT’s

ability to capture adaptive relationships among nodes makes it popular for graph-

based tasks.

9.2.3.4 GraphSAGE (Graph Sample and Aggregated)

GraphSAGE [112] is a versatile GNN model supporting inductive learning for

various graph-based tasks. GraphSAGE defines a node embedding function by

first sampling a fixed-size set of neighbors N (vi) for a target node vi and then

aggregating their feature representations. The aggregation operation is defined

as:

h(l+1)
v = AGGREGATE

({
h(l)
u ,∀u ∈ N (vi)

})
(9.4)

The final embedding h
(l+1)
v is obtained by projecting the aggregated rep-

resentation through a neural network function:

h(l+1)
v = σ

(
W (l) · h(l+1)

v

)
(9.5)

GraphSAGE’s ability to generalize to unseen nodes and its adaptability to

various aggregation functions make it a popular choice for graph-based machine-

learning tasks.

9.2.4 Node Feature Generation

In GNN-based malware detection, generating effective node features is crucial for

capturing the structural and functional characteristics of nodes within a control

flow graph (CFG). Key features include centrality measures like degree centrality,

betweenness centrality, closeness centrality, and eigenvector centrality, which help

identify the importance and influence of functions in the execution flow. Addi-

tionally, Local Proximity Distribution (LPD) captures local structural properties

194

9.2. Background

by examining the distribution of distances to a node’s neighbors. Other valu-

able metrics include node degree, PageRank, Graphlet Degree Vector (GDV), and

clustering coefficient, each providing insights into a node’s connectivity, influence,

and local topology. These features collectively enable the GNN to learn patterns

indicative of benign or malicious behavior, enhancing the model’s accuracy and

effectiveness in malware detection.

9.2.5 Types of Tasks in Graph Learning

Graph learning focuses on understanding and analyzing complex structures and

relationships in graph data. It includes three main task categories: node-level,

edge-level, and graph-level, each with specific objectives and methodologies.

a. Node-level tasks: These tasks focus on individual nodes within the graph.

• Node classification: This task aims to assign each node to a predefined

class based on its features and its position within the graph.

• Node regression: Instead of classifying nodes, this task predicts a con-

tinuous value for each node, such as a score or measurement.

• Node clustering : The goal here is to group nodes into clusters such that

nodes within the same cluster are more similar to each other than to

those in other clusters. This can be useful for identifying communities

or similar entities within the graph.

b. Edge-level tasks: These tasks involve the edges, or connections, between

nodes.

• Edge classification: This task involves determining the type or label

of each edge. For example, in a social network, edges could represent

different types of relationships such as friends, family, or colleagues.

• Link prediction: The aim here is to predict whether an edge should

exist between two nodes. This can be used for recommending new

connections in social networks or identifying potential interactions in

biological networks.

c. Graph-level tasks: These tasks consider the graph as a whole.

• Graph classification: This task involves assigning an entire graph to a

predefined class. For example, different graphs could represent different

195

Chapter 9. A Graph Neural Network Based Malware Detection Method

types of molecules, and the task would be to classify them based on their

structure.

• Graph regression: Similar to node regression, but for entire graphs.

The task is to predict a continuous value for each graph, such as the

graph’s overall activity or property.

• Graph matching : This task involves comparing two graphs to determine

their similarity or correspondence. This can be useful in applications

like finding similar molecules in drug discovery or matching patterns in

social networks.

9.2.6 Loss Function

A suitable loss function for multiclass classification tasks is essential in GNN mod-

els for function call graph classification. Cross-entropy loss [113], also known as

Log Loss or Softmax Loss, is commonly used for multiclass classification issues.

It measures the dissimilarity between predicted class probabilities and true class

labels. Given N samples, K classes, predicted class probabilities log(P (yi = j|xi))

for each sample i and class j, and true labels yi, the Cross-Entropy Loss is defined

as:

Cross-Entropy Loss = − 1

N

N∑
i=1

K∑
j=1

(yi,j log(P (yi = j|xi))) (9.6)

Here,

• N is the number of samples.

• K is the number of classes.

• yi,j is an indicator variable that is 1 if the true class of sample i is j and 0

otherwise.

• P (yi = j|xi) is the predicted probability of sample i belonging to class j

based on the GNN model.

9.3 Problem Statement

The problem at hand is to develop an effective and efficient malware classification

system using Graph Neural Networks (GNNs). Given a dataset of executable files

196

9.4. Proposed Method

represented as control flow graphs, the objective is to classify each file as either

benign or malicious. Formally, we can define the problem as follows:

Let G = {G1, G2, . . . , GN} be a dataset of control flow graphs, where N

is the number of samples. Each control flow graph Gi represents an executable

file. We aim to design a GNN modelM that can predict the binary label yi for

each control flow graph, where yi indicates whether the file is benign (yi = 0) or

malicious (yi = 1). Mathematically, the classification problem can be stated as:

M : Gi 7→ yi, ∀Gi ∈ G

The goal is to trainM to achieve high accuracy in malware classification

while ensuring that the model generalizes well to unseen malware samples.

9.4 Proposed Method

The proposed model for the detection of malware is illustrated in Figure 9-4. The

model aims to classify a given data into two categories, malware, and goodware

with minimum false alarms.

9.4.1 Function Call Graph Generation

The process of generating the Function Call Graph (FCG) from an APK file starts

with decompiling the APK using the Androguard tool to access the embedded

DEX files that hold the executable bytecode as shown in Figure 9-6. This step

is crucial as it lays the foundation for the entire analysis by providing the raw

data necessary for graph construction. Following decompilation, the DEX files

are meticulously analyzed to extract details about the methods and their interac-

tions. These interactions are critical for constructing the call graph as they define

the edges between nodes, where each node represents a method within the ap-

plication. Utilizing Androguard’s robust analysis capabilities, systematically map

out the relationships between these methods, thus forming the backbone of the

FCG. Figure 9-5 presents example of Function Calls for various methods, high-

lighting the interaction between methods across different classes. It showcases

the relationships and data flow through these function call graphs, illustrating

sequences and dependencies among the methods. This graph is then program-

197

Chapter 9. A Graph Neural Network Based Malware Detection Method

Malware/Benign
Applications

Collected Data

Euphony

Data Label

Decompile

DEX

Call Graph

NetworkX

FCG

Androguard

Vi
rtu

al
N

et
w

or
k

Call Graphs

Data
Peprocessing

Validation

Training

Learning
 algorithms

Trained Model

Unknown Data

Host Machine

Malware

Goodware

Figure 9-4: Overview of the proposed method

matically constructed using the NetworkX library, ensuring a structured format

for visualization. Additionally, the graph is saved as an edge list file, serving

as a crucial input for subsequent analysis using Graph Neural Networks (GNN).

Furthermore, to streamline this process, a web-based tool has been developed to

automate the generation of the FCG. The interface of this tool and the output of

the generated FCG are illustrated in Figures 9-8 and 9-9 respectively. Addition-

ally, for this study, an FCG dataset comprising 21000 instances(20000 malware

and 1000 goodware) has been created and made available to the public, enhancing

the accessibility and applicability of this research. The algorithm for function call

graph generation is shown in Algorithm 4.

198

9.4. Proposed Method

LPacket/TransportPacket;->parse([B)V [access_flags=public] @ 0xb19c Ljava/nio/ByteBuffer;->remaining()I

LPacket/TransportPacket;->parse([B)V [access_flags=public] @ 0xb19c Ljava/nio/ByteBuffer;->get()B

LPacket/TransportPacket;->parse([B)V [access_flags=public] @ 0xb19c Ljava/nio/ByteBuffer;->getInt()I

LPacket/TransportPacket;->parse([B)V [access_flags=public] @ 0xb19c Ljava/nio/ByteBuffer;->getShort()S

LPacket/TransportPacket;->parse([B)V [access_flags=public] @ 0xb19c Ljava/nio/ByteBuffer;->wrap([B)Ljava/nio/ByteBuffer;

LPacket/TransportPacket;->parse([B)V [access_flags=public] @ 0xb19c Ljava/nio/ByteBuffer;->get([B I I)Ljava/nio/ByteBuffer;

Lutils/EncoderHelper;-><init>()V [access_flags=public constructor] @ 0xb6a0 Ljava/lang/Object;-><init>()V

Figure 9-5: Example of Function Calls

Decompile DEX Call Graph NetworkX

FCG

Figure 9-6: Process of binary to
FCG generation

APK Analysis Results
File Hash (SHA-256): 34138501918285ea9645f2e206e2e2e1ae07c7e8660a3a3c682a7902498d5aa4

Number of Permissions: 15

Number of External Methods: 77

Number of Nodes in FCG: 685

Number of Edges in FCG: 1046

View Network Graph Download Function Call Graph Download file as grey scale image

Permissions

1. android.permission.SEND_SMS 2. android.permission.RECEIVE_SMS 3. android.permission.VIBRATE 4.
android.permission.RECEIVE_BOOT_COMPLETED 5. android.permission.READ_PHONE_STATE 6.
android.permission.PROCESS_OUTGOING_CALLS 7. android.permission.READ_CONTACTS 8. android.permission.RECORD_AUDIO 9.
android.permission.CAMERA 10. android.permission.WRITE_EXTERNAL_STORAGE 11. android.permission.ACCESS_FINE_LOCATION 12.
android.permission.ACCESS_NETWORK_STATE 13. android.permission.INTERNET 14. android.permission.READ_SMS 15.
android.permission.CALL_PHONE

API

[<analysis.ClassAnalysis Ljava/lang/Object; EXTERNAL>, <analysis.ClassAnalysis Ljava/nio/ByteBuffer; EXTERNAL>, <analysis.ClassAnalysis
Ljava/net/Socket; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/InputStream; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/System;
EXTERNAL>, <analysis.ClassAnalysis Landroid/content/BroadcastReceiver; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/Class;
EXTERNAL>, <analysis.ClassAnalysis Landroid/util/Log; EXTERNAL>, <analysis.ClassAnalysis Landroid/content/Intent; EXTERNAL>,
<analysis.ClassAnalysis Landroid/os/Bundle; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/StringBuilder; EXTERNAL>,
<analysis.ClassAnalysis Landroid/content/Context; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/Exception; EXTERNAL>,
<analysis.ClassAnalysis Landroid/app/Activity; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/String; EXTERNAL>, <analysis.ClassAnalysis
Landroid/os/Handler; EXTERNAL>, <analysis.ClassAnalysis Landroid/os/Message; EXTERNAL>, <analysis.ClassAnalysis Landroid/app/Service;
EXTERNAL>, <analysis.ClassAnalysis Ljava/io/PrintStream; EXTERNAL>, <analysis.ClassAnalysis Landroid/content/IntentFilter; EXTERNAL>,
<analysis.ClassAnalysis Ljava/lang/Thread; EXTERNAL>, <analysis.ClassAnalysis Ljava/util/Calendar; EXTERNAL>, <analysis.ClassAnalysis
Landroid/app/PendingIntent; EXTERNAL>, <analysis.ClassAnalysis Landroid/app/AlarmManager; EXTERNAL>, <analysis.ClassAnalysis
Landroid/telephony/SmsMessage; EXTERNAL>, <analysis.ClassAnalysis Ljava/util/ArrayList; EXTERNAL>, <analysis.ClassAnalysis
Ljava/util/Iterator; EXTERNAL>, <analysis.ClassAnalysis Landroid/net/ConnectivityManager; EXTERNAL>, <analysis.ClassAnalysis
Landroid/net/NetworkInfo; EXTERNAL>, <analysis.ClassAnalysis Landroid/widget/EditText; EXTERNAL>, <analysis.ClassAnalysis
Landroid/text/Editable; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/Integer; EXTERNAL>, <analysis.ClassAnalysis Landroid/widget/Button;
EXTERNAL>, <analysis.ClassAnalysis Landroid/preference/PreferenceActivity; EXTERNAL>, <analysis.ClassAnalysis
Landroid/content/SharedPreferences; EXTERNAL>, <analysis.ClassAnalysis Landroid/content/SharedPreferences$Editor; EXTERNAL>,
<analysis.ClassAnalysis Ljava/util/StringTokenizer; EXTERNAL>, <analysis.ClassAnalysis Landroid/widget/Toast; EXTERNAL>,
<analysis.ClassAnalysis Ljava/util/Map; EXTERNAL>, <analysis.ClassAnalysis Landroid/telephony/SmsManager; EXTERNAL>,
<analysis.ClassAnalysis Landroid/net/Uri; EXTERNAL>, <analysis.ClassAnalysis Landroid/os/Vibrator; EXTERNAL>, <analysis.ClassAnalysis
Landroid/telephony/TelephonyManager; EXTERNAL>, <analysis.ClassAnalysis Landroid/hardware/SensorManager; EXTERNAL>,
<analysis.ClassAnalysis Ljava/util/List; EXTERNAL>, <analysis.ClassAnalysis Landroid/hardware/Sensor; EXTERNAL>, <analysis.ClassAnalysis
Ljava/util/concurrent/LinkedBlockingQueue; EXTERNAL>, <analysis.ClassAnalysis Landroid/media/AudioRecord; EXTERNAL>,
<analysis.ClassAnalysis Ljava/util/concurrent/BlockingQueue; EXTERNAL>, <analysis.ClassAnalysis Landroid/content/ContentResolver;
EXTERNAL>, <analysis.ClassAnalysis Landroid/database/Cursor; EXTERNAL>, <analysis.ClassAnalysis Ljava/lang/Boolean; EXTERNAL>,
<analysis.ClassAnalysis Ljava/util/HashSet; EXTERNAL>, <analysis.ClassAnalysis Landroid/content/ContentUris; EXTERNAL>,
<analysis.ClassAnalysis Landroid/provider/ContactsContract$Contacts; EXTERNAL>, <analysis.ClassAnalysis Landroid/graphics/BitmapFactory;
EXTERNAL>, <analysis.ClassAnalysis Ljava/io/ByteArrayOutputStream; EXTERNAL>, <analysis.ClassAnalysis Landroid/graphics/Bitmap;
EXTERNAL>, <analysis.ClassAnalysis Landroid/os/Environment; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/File; EXTERNAL>,
<analysis.ClassAnalysis Ljava/io/FileInputStream; EXTERNAL>, <analysis.ClassAnalysis Landroid/location/LocationManager; EXTERNAL>,
<analysis.ClassAnalysis Landroid/location/Location; EXTERNAL>, <analysis.ClassAnalysis Landroid/hardware/Camera; EXTERNAL>,
<analysis.ClassAnalysis Landroid/content/pm/PackageManager; EXTERNAL>, <analysis.ClassAnalysis Landroid/view/SurfaceView;
EXTERNAL>, <analysis.ClassAnalysis Ljava/util/Hashtable; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/ObjectOutputStream; EXTERNAL>,
<analysis.ClassAnalysis Ljava/net/ServerSocket; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/DataInputStream; EXTERNAL>,
<analysis.ClassAnalysis Ljava/io/DataOutputStream; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/IOException; EXTERNAL>,
<analysis.ClassAnalysis Ljava/lang/NullPointerException; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/ByteArrayInputStream; EXTERNAL>,
<analysis.ClassAnalysis Ljava/io/ObjectInputStream; EXTERNAL>, <analysis.ClassAnalysis Ljava/io/FileOutputStream; EXTERNAL>,
<analysis.ClassAnalysis Ljava/lang/Short; EXTERNAL>]

Hardcoded URLs

['']

Figure 9-7: Application analysis re-
sults

Algorithm 4: Process APKs and Generate Call Graphs

Input: list of apks

Output: list of call graphs

forall apk in list of apks do

a, d, dx ← AnalyzeAPK(apk);

call graph ← dx.get call graph();

node to number ← Encode each function name in call graph to a

unique number;

numbered graph ← label call graph using node to number;

return (numbered graph, call graph);

end

Table 9.1 displays the snapshot of the Function Call Graph of Airpush

malware, including the source and target functions along with descriptions of the

calls.
Table 9.1: Snapshot of Function Call Graph (FCG) for Airpush Malware

Source Function Target Function Description
HttpPostDataTask.<init>
(Context, List, String, Listener)

Util.printDebugLog(String)
Constructor of HttpPostDataTask calls the static method
printDebugLog in the Util class.

HttpPostDataTask.<init>
(Context, List, String, Listener)

AsyncTask.<init>()
Constructor of HttpPostDataTask calls the constructor
of AsyncTask from Android OS.

HttpPostDataTask.<init>
(Context, List, String, Listener)

StringBuilder.toString()
HttpPostDataTask constructor includes a call to
StringBuilder’s toString method.

Airpush$3.onTaskComplete(String)
AsyncTaskCompleteListener
.lauchNewHttpTask()

onTaskComplete method in Airpush$3 calls
launchNewHttpTask in AsyncTaskCompleteListener.

199

Chapter 9. A Graph Neural Network Based Malware Detection Method

TUANDROID
Analyzing applications for insights

Home About Us Contact

© 2024 BioNET Lab | Tezpur University. All rights reserved.

Function Call Graph Generation

Choose File b.apk

Upload

Figure 9-8: Web-based tool for bi-
nary to FCG conversion

Function Call Graph

Figure 9-9: Example of malware bi-
nary data visualized as a FCG

9.4.2 GNN method

The proposed method aims to develop a Graph Neural Network (GNN) architec-

ture specifically designed for control flow graphs of malicious files, with the goal

of enhancing malware detection and classification. Control flow graphs, which il-

lustrate the execution pathways of binary files, are ideal for graph-based analysis

due to their comprehensive representation of program behaviors. In this study,

we investigate three distinct GNN architectures—Graph Convolutional Network

(GCN), GraphSAGE, and Graph Isomorphism Network (GIN)—selected for their

proven effectiveness in handling graph data and their potential to accurately detect

and classify malware.

The proposed GNN architecture consists of the following components.

1. Feature Extractor: This component extracts relevant features from the

control flow graph of a malicious file.

2. Convolutional Layers: The extracted features are processed through

multiple convolutional layers to capture hierarchical patterns and relationships

within the graph structure.

3. Fully Connected Layer: After feature extraction and graph convolution,

the data is passed through a fully connected layer to further refine the represen-

tations.

4. Output Layer: The final layer produces binary classification results,

200

9.4. Proposed Method

Input Data
(Executable

Files)

Graph Construction
(Control Flow Graphs)

Graph Neural Network
(GNN Layers)

Output
(Classification:

Be-
nign/Malicious)

Figure 9-10: Pipeline of a GNN Model for Malware Detection

determining whether the file is malicious or benign.

The GNN consists of multiple layers, each with its own operations. We

consider the following components:

• Node Embedding: In the first layer, we initialize node embeddings based

on their features.

• Message Passing: We perform message passing between neighboring nodes

to capture dependencies. The aggregation function can be a weighted sum

or attention mechanism.

• Graph Pooling: We apply graph pooling to reduce graph size while retain-

ing important information.

• Classification Head: The final layer includes a classification head with

softmax activation to predict whether the CFG represents a malicious or

benign file.

The FCGs are featureless, meaning they do not contain any node or edge features.

In this method, the graph node feature initialization methods listed below are

used.

• Degree Centrality Initialization: It measures the number of edges connected

to a node, indicating its level of connectivity within the graph. To initialize

node features based on degree centrality, the following method is used.

201

Chapter 9. A Graph Neural Network Based Malware Detection Method

1. Calculate Degree Centrality Cd(v): For each node v in the graph G,

calculate the degree centrality using the formula:

Cd(v) =
Degree of v

Maximum Degree in G
(9.7)

2. Normalize Degree Centrality Scores: Normalize the degree centrality

scores to a range between 0 and 1 by dividing each Cd(v) by the maxi-

mum degree centrality score in the graph.

3. Initialize Node Features X(v): Based on the normalized degree central-

ity scores, initialize the node features as follows:

X(v) =


[1, 0] if Cd(v) is high

[0, 1] if Cd(v) is low

[0.5, 0.5] otherwise

(9.8)

• Betweenness Centrality Initialization: It quantifies the extent to which a

node lies on the shortest paths between other nodes in the graph. Nodes with

high betweenness centrality are critical for information flow. To initialize

node features based on betweenness centrality:

1. Calculate the betweenness centrality Cb(v) for each node v in the graph

G. The betweenness centrality Cb(v) of a node v in a graph G is given

by:

Cb(v) =
∑
s ̸=v ̸=t

σst(v)

σst

(9.9)

where:

– σst is the total number of shortest paths from node s to node t.

– σst(v) is the number of those shortest paths that pass through node

v.

2. Normalize the betweenness centrality scores to a range between 0 and

1 by dividing each Cb(v) by the maximum betweenness centrality score

in the graph.

3. Initialize the node features X as follows:

X(v) =


[1, 0] if Cd(v) is high

[0, 1] if Cd(v) is low

[0.5, 0.5] otherwise

(9.10)

202

9.5. Experimental Results

• Eigenvector Centrality Initialization: Eigenvector centrality measures a

node’s importance based on its connections to other important nodes. It

assigns higher scores to nodes connected to other nodes with high centrality.

To initialize node features based on eigenvector centrality:

1. Calculate the eigenvector centrality Ce(v) for each node v in the graph

G. The eigenvector centrality Ce(v) for each node v in the graph G is

given by:

Ce(v) =
1

λmax

∑
u∈N(v)

AvuCe(u) (9.11)

where λmax is the largest eigenvalue of the adjacency matrix A, N(v)

denotes the set of neighbors of node v, and Avu is the element of the

adjacency matrix representing the edge between nodes v and u.

2. Normalize the eigenvector centrality scores to a range between 0 and 1

by dividing each Ce(v) by the maximum eigenvector centrality score in

the graph.

3. Initialize the node features X as follows:

X(v) = [Ce(v), 1− Ce(v)]

Here, Ce(v) represents the eigenvector centrality score of node v, and

[Ce(v), 1− Ce(v)] reflects the relative importance of the node in terms

of eigenvector centrality.

9.5 Experimental Results

We implement all Graph Neural Network (GNN) models using PyTorch 1.9.0,

specifically leveraging the PyTorch Geometric library. The experiments are per-

formed on a Dell Precision 7810 Tower with 2x Intel Xeon E5-2600 v3 consisting

of 8 cores, 64GB RAM, and NVIDIA Tesla K80 GPU with 12GB VRAM.

9.5.1 Dataset

For the evaluation, one relevant publicly available Android malware dataset, con-

sisting of different types of malware categories/families is used. Malnet an Android

203

Chapter 9. A Graph Neural Network Based Malware Detection Method

malware FCG dataset that was created by Scott et al.[26] from Georgia Tech Uni-

versity and the Microsoft APT team. The dataset consists of 4,500 malicious

FCGs, belonging to four different malware categories, and 500 benign FCGs. The

dataset is split into training, validation, and test sets, ensuring that each contains

a representative mix of malicious and benign FCGs.

The second dataset TUANDROMD-FCG was generated using a specific process

detailed in Section 9.4.1. To construct this dataset, 20000 samples of raw malware

binaries are obtained from [34]. Additionally, we curated a set of the top 1,000

Android applications from Google Play, which served as representative examples

of benign applications. The dataset is categorized into 72 distinct classes, with 71

classes dedicated to various types of malware and one class for goodware. This

approach allowed us to create a dataset that encompasses a diverse range of data

points, including both malicious and benign software instances. The detailed

dataset statistics are presented in Table 9.2. To provide a visual representation of

the data distribution, Figure 9-11 illustrates the overall class distribution, while

Figure 9-12 shows the top 10 categories within the dataset.

Table 9.2: Dataset Statistics

Characteristic Count
Total Instances 21,000
Malware Instances 20,000
Goodware Instances 1,000
Total Classes 72
Malware Classes 71
Goodware Class 1

9.5.2 Results

In this section, the outcomes of the experimentation with Graph Neural Network

(GNN) models for malware detection are presented. Three distinct GNN architec-

tures were employed, each configured with various hyperparameters to comprehen-

sively assess their performance in detecting malware. The models tested include

the Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism

Network (GIN).

The results in Table 9.3 for Dataset 1 show the performance of three Graph Neural

Network (GNN) models: GCN, GraphSAGE, and GIN. To optimize these mod-

els, hyperparameter tuning was performed using the latest techniques, including

Bayesian Optimization [114] and Grid Search [115]. This tuning process aimed to

204

9.5. Experimental Results

0 1000 2000 3000 4000 5000 6000
Sample Count

Fobus
Lnk

VikingHorde
Ogel

Tesbo
FakeUpdates

FakeAV
Ramnit
Finspy

Opfake
Obad

Univert
SmsZombie
SpyBubble
FakeAngry

Svpeng
Vmvol
Utchi

FakeTimer
Steek

Kemoge
MobileTX
Spambot

Mmarketpay
Fjcon
Cova

Winge
Penetho

Vidro
Zitmo
Ztorg

UpdtKiller
Aples

FakePlayer
Stealer

FakeDoc
Gorpo
Ksapp
Roop

AndroRAT
Erop

Boxer
Andup

GoldDream
Koler

Mtk
Bankun

Nandrobox
GingerMaster

Leech
Gumen
SmsKey

SlemBunk
Kyview

SimpleLocker
Triada

Minimob
Boqx
Mseg

Lotoor
RuMMS

Jisut
BankBot

DroidKungFu
Kuguo
Good
Fusob
Youmi
Mecor

FakeInst
Dowgin
Airpush

Ca
te

go
ry

4
4
4
4
5
5
5
6
6
8
8
8
8
8
8
9
9
9
10
11
11
11
12
12
13
14
14
16
17
18
18
19
19
19
19
20
29
30
35
35
36
36
40
42
55
59
59
59
94
97
113
129
136
141
145
165
166
178
201
235

328
433

525
545

954
1000
1013
1017

1431
1714

2834
6500

Class Distribution of TUANDROMD-X

Figure 9-11: Class Distribution of TUANDROMD-FCG

identify the best configurations for each model. As a result, GraphSAGE achieved

the highest validation accuracy at 0.9511, along with high precision (0.9375), recall

(0.9610), and an F1 score of 0.9491. GIN followed with a validation accuracy of

0.9207, precision of 0.898, recall of 0.928, and an F1 score of 0.914. GCN had the

lowest performance, with a validation accuracy of 0.768, precision of 0.729, recall

of 0.7590, and an F1 score of 0.7399. These results highlight the importance of

both model selection and effective hyperparameter tuning in GNN-based malware

detection.

Table 9.4 presents the performance metrics of the GCN, GraphSAGE, and GIN

models on Dataset 2, detailing accuracy, precision, recall, and F1 score. Hyperpa-

rameter selection played a crucial role in achieving these results, utilizing advanced

205

Chapter 9. A Graph Neural Network Based Malware Detection Method

Airpush

37.1%

Dowgin

16.2%

FakeInst

9.8%

Mecor

8.2%

Youmi

5.8%

Fusob

5.8%

Goodware

5.7%

Kuguo

5.4%

DroidKungFu

3.1%

BankBot

3.0%

Figure 9-12: Top 10 categories of TUANDROMD-FCG

Table 9.3: Performance of GNN Models on Dataset 1

Model Accuracy Precision Recall F1 Score
GCN 0.768 0.729 0.7590 0.7399
Graph SAGE 0.9511 0.9375 0.9610 0.9491
GIN 0.9207 0.898 0.928 0.914

tuning techniques such as Bayesian Optimization and Grid Search to identify the

optimal configurations for each model. GraphSAGE exhibited the highest perfor-

mance, achieving an accuracy of 0.9719, precision of 0.94, recall of 0.94, and an

F1 score of 0.92, highlighting its robust overall performance. GIN followed closely

with an accuracy of 0.907, precision of 0.89, recall of 0.897, and an F1 score of

0.899, demonstrating strong performance, though slightly below that of Graph-

SAGE. GCN showed the lowest performance among the three, with an accuracy of

0.887, precision of 0.829, recall of 0.864, and an F1 score of 0.8300. These results

underscore the importance of model selection and effective hyperparameter tuning

in maximizing the performance of GNN-based malware detection models.

206

9.5. Experimental Results

GCN Graph SAGE GIN
Models

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es
0.7680

0.9511
0.9207

0.7290

0.9375
0.8980

0.7590

0.9610
0.9280

0.7399

0.9491
0.9140

Performance Metrics of GNN Models

Accuracy
Precision
Recall
F1 Score

Figure 9-13: Performance of GNN Models on Dataset 1

Table 9.4: Performance of GNN Models on Dataset 2

Model Accuracy Precision Recall F1 Score
GCN 0.887 0.829 0.864 0.8300
Graph SAGE 0.9719 0.94 0.94 0.923
GIN 0.907 0.89 0.897 0.899

Table 9.5: Method Accuracy Comparison

Method Accuracy

Feather [26] 86.00%

DGCNN [116] 92.18%

GIN [26] 90.00%

GCN [26] 81.00%

SGC [116] 90.79%

UnetGraph [116] 95.81%

NoG [26] 77.00%

Slaq-VNGE [26] 53.00%

GCN-JK [117] 89.70%

GIN-JK [117] 90.00%

GraphSAGE 95.11%

GIN 92.07%

GCN 76.80%

Table 9.5 highlights the performance of various graph-based neural network mod-

els. The models used in our work, namely GraphSAGE, GIN, and GCN, demon-

207

Chapter 9. A Graph Neural Network Based Malware Detection Method

GCN Graph SAGE GIN
Models

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

0.8870

0.9719

0.9070

0.8290

0.9400

0.8900
0.8640

0.9400
0.8970

0.8300

0.9230
0.8990

Performance Metrics of GNN Models

Accuracy
Precision
Recall
F1 Score

Figure 9-14: Performance of GNN Models on Dataset 2

strate competitive performance compared to other methods. GraphSAGE achieves

the highest accuracy at 95.11%, followed by GIN with 92.07%, showcasing their

superior capability in handling graph data. Although GCN has a lower accuracy

of 76.80%, it still provides valuable insights. Other notable models include Unet-

Graph at 95.81%, DGCNN at 92.18%, SGC at 90.79%, and GIN-JK at 90.00%.

The comparison underscores the effectiveness of GraphSAGE and GIN, which out-

perform many existing methods, validating their selection for our study. However,

extensive comparison on more data is needed to further validate these findings

and ensure the robustness of these models across different datasets and scenarios.

9.6 Discussion

This chapter explores the use of Graph Neural Networks (GNNs) for detecting

and classifying malicious files by analyzing their control flow graphs. The special-

ized architecture and training strategy employed aims to improve both the accu-

racy and robustness of the detection system. GNNs demonstrated their capacity

to capture complex structural dependencies within malware graphs, effectively

identifying relationships among various components such as functions and control

structures. One of the significant advantages observed during our experiments was

the adaptability of GNNs to handle a wide range of malware families and vari-

ants. This flexibility is crucial in the ever-evolving malware landscape, where new

and diverse threats continually emerge. The experiments confirmed that GNNs

could generalize well across different types of malware, providing reliable detection

capabilities.

208

	13_chapter 9

