
Chapter 1. Introduction

2. Chapter 3 describes the generation process of malware datasets and their

evaluation, aiming to assess the efficacy of malware defense systems. The

characteristics of the generated dataset along with its performance evalua-

tion are also reported.

3. Chapter 4 presents a supervised filter-based feature selector. The proposed

method selects the optimal feature subset by considering the relevance and

significance criteria of each feature. For this, rough set theory is used and

also, a new criterion is introduced to select the optimal feature subset. The

performance of the proposed method is also reported.

4. Chapter 5 presents a fast, yet reliable ransomware defense solution, referred

to as ERAND, powered by an optimal feature selection method to discrim-

inate the ransomware class as a whole, as well as the variants of the ran-

somware family from the goodware instances.

5. Chapter 6 presents an ensemble approach called FRAMC to identify the

key features that contribute significantly to the detection of malware. The

effectiveness of FRAMC is assessed using different types of classifiers on a

number of real-world malware datasets.

6. Chapter 7 introduces TUKNN, a parallel version of the k-Nearest Neighbors

(KNN) algorithm designed to improve speed and efficiency through parallel

processing. The chapter includes an extensive experimental study on var-

ious proximity measures, recommending the most effective ones for better

accuracy with TUKNN. Additionally, it identifies the optimal range of k

values for malware and malware-based attack datasets to ensure the best

performance.

7. Chapter 8 presents a Convolutional Neural Network (CNN)-based malware

defense solution. This chapter explores various CNN methods for the classi-

fication and detection of malware, leveraging their advanced capabilities to

identify and recognize complex patterns within the data.

8. Chapter 9 presents a Graph Neural Network (GNN)-based malware defense

solution. This method leverages the unique capabilities of GNNs to model

and analyze function call graphs of malware, enabling effective detection and

classification of malware.

9. Finally, Chapter 10 summarizes the overall contributions of this thesis and

identifies future research directions in the domain of malware detection and

defense.

12

Chapter 2

Background

2.1 Networks

A network refers to a collection of interconnected devices that can communicate

and share resources with each other. These devices could include computers,

servers, routers, switches, printers, and other types of hardware. Computer net-

works are designed to enable the exchange of data, information, and resources

between devices, regardless of their physical location. Computer networks come

in various sizes and scopes. Local Area Networks (LANs) cover small areas like a

single building or home, connecting devices in close proximity using technologies

such as Ethernet or Wi-Fi. On a larger scale, Wide Area Networks (WANs) ex-

tend over greater distances and often utilize the internet to link multiple LANs.

Falling between these, Metropolitan Area Networks (MANs) connect various lo-

cations within a city or metropolitan area, offering a compromise in geographical

coverage. Networks can also be classified based on their purpose. In a Client-

Server Network, dedicated servers provide services or resources to client devices.

Clients, such as computers or smartphones, request services from servers, which

respond to these requests. In a Peer-to-Peer network, all devices are considered

equal, with each device acting as both a client and a server. Direct communication

and resource sharing occur without reliance on a central server. Hybrid Networks

represent a combination of client-server and peer-to-peer architectures, offering

flexibility to accommodate various applications and goals [4].

13

Chapter 2. Background

2.2 Network Components and Protocols

Computer networks are systems that allow devices to share data and communicate

with each other. At their core, these networks rely on a variety of components

and protocols to ensure efficient and secure information flow. Network compo-

nents encompass devices such as routers, switches, servers, and client machines,

each playing a specific role in the network’s functionality. Routers manage data

traffic between different networks, while switches facilitate communication within

a local network. Servers store and provide access to shared resources, and client

devices request and utilize these resources. The smooth operation of these com-

ponents is governed by a set of protocols, most notably the Transmission Control

Protocol (TCP) and Internet Protocol (IP) suite. TCP/IP defines the rules for

data transmission, addressing, and routing, providing a standardized framework

for communication across diverse networks. Additionally, other protocols such as

HTTP, HTTPS, and FTP dictate specific rules for web browsing and file transfer.

Together, these components and protocols form the foundation of computer net-

works, enabling the seamless exchange of information in the digital world [4] [5]

.

2.3 Network Architectures and Topologies

Network architecture refers to the design and organization of a network’s compo-

nents, structures, and functionalities. It defines how devices are interconnected

and how data flows within the network [4] [5]. There are two primary network

architecture models:

• Client-Server Architecture: In a client-server architecture, the network is

organized around a central server that provides resources, services, or data

to client devices. Clients, such as computers or devices, make requests to the

server, which responds by fulfilling those requests. This model centralizes

control, simplifying resource management and data storage. It is commonly

used in enterprise environments, where servers host databases, applications,

or shared files while clients access and utilize these resources.

• Peer-to-Peer Architecture: In a peer-to-peer (P2P) architecture, devices in

the network, known as peers, have equal status and can act both as clients

and servers. Peers share resources, such as files or processing power, directly

14

2.3. Network Architectures and Topologies

Figure 2-1: A conceptual framework of client-server architecture

with one another without relying on a centralized server. This decentralized

approach fosters collaboration and can be more resilient, as there’s no single

point of failure. A P2P architecture is often found in file-sharing applications

and distributed computing environments.

Figure 2-2: A conceptual framework of peer-peer architecture

Network architectures can also be categorized based on their topology,

which describes the arrangement of nodes and links. Different topologies offer

varying levels of redundancy, scalability, and fault tolerance.

• Star Topology: In a star topology, devices are connected to a central hub,

which serves as a focal point for communication. The hub can simplify

management and troubleshooting, but if the hub fails, the entire network

may be affected.

• Mesh Topology: A mesh topology involves direct connections between all

devices, providing high redundancy and fault tolerance. While resilient, this

topology can be complex and resource-intensive to implement and maintain.

• Bus Topology: In a bus topology, devices are connected in a linear fashion

along a single communication path. It is simple and cost-effective but can

15

Chapter 2. Background

suffer from performance degradation if multiple devices transmit simultane-

ously.

• Ring Topology: A ring topology features devices connected in a circular

arrangement. Data circulates around the ring, and while it offers some fault

tolerance, a single device failure can disrupt the entire network.

• Hybrid Topology: Hybrid topologies combine multiple basic topologies to

suit specific needs. For instance, a combination of star and mesh topologies

can provide redundancy and centralized management.

2.4 Network Devices

Network devices are essential components that facilitate the efficient flow of data

within computer networks, ensuring seamless communication between connected

devices. These devices play distinct roles in managing and directing data traffic,

enhancing network performance, and enforcing security measures [4] [5]. Some of

the common network devices are discussed below.

• Hubs: Hubs are simple networking devices operating at the physical layer

(Layer 1) of the OSI model. Unlike more intelligent devices, hubs lack the

ability to selectively transmit data to specific devices within a network. In-

stead, they broadcast incoming data to all connected devices, creating po-

tential for increased network congestion. Hubs serve as basic connectivity

points, linking multiple devices within a local network.

• Routers: Routers are crucial for directing data between different networks,

determining the optimal path for information to travel. They operate at the

network layer (Layer 3) of the OSI model and use routing tables to make

decisions about the most efficient routes for data transmission.

• Switches: Switches are fundamental components in computer networking

that operate at the data link layer (Layer 2) of the OSI model. Unlike tra-

ditional hubs, switches intelligently manage and forward data within local

networks. These devices use MAC addresses to selectively direct data pack-

ets to the specific devices for which they are intended, reducing unnecessary

network traffic and enhancing overall efficiency.

• Gateways: A network device that connects different networks, serving as a

translator that enables communication between devices using distinct com-

16

2.5. Operating Systems

munication protocols. Positioned at the intersection of disparate networks,

gateways facilitate the seamless exchange of information by interpreting and

converting data between incompatible formats. Essentially, gateways bridge

the language gap between networks, ensuring that data can flow smoothly

across heterogeneous environments.

• Access Points: Access Points (APs) are critical components in wireless net-

working that facilitate the connection between Wi-Fi-enabled devices and a

wired local area network (LAN). Operating within the framework of wireless

communication standards, such as Wi-Fi, APs serve as communication hubs,

enabling seamless access for devices like laptops, smartphones, and tablets

to the broader network infrastructure.

2.5 Operating Systems

An Operating System (OS) is a fundamental software component that acts as an

intermediary between computer hardware and user applications [6]. It provides a

set of essential services and functionalities, including process management, mem-

ory management, file systems, and user interface interactions. The OS is vital for

coordinating hardware resources and enabling communication between software

and hardware components. Various operating systems cater to different computing

environments [7]. Windows, developed by Microsoft, is a widely used OS known

for its user-friendly interface and extensive software compatibility. Linux, an open-

source Unix-based OS, is acclaimed for its stability and security, commonly used in

server environments. macOS, developed by Apple, powers their personal comput-

ers and emphasizes sleek design and integration. Android, an open-source mobile

OS by Google, dominates the smartphone market, offering flexibility and a vast

app ecosystem. iOS, also developed by Apple, powers iPhones and iPads, focusing

on user privacy within a closed ecosystem. Operating systems are the backbone of

computing, providing a platform for software applications and enabling efficient

hardware use.

Each operating system creates a unique environment that can be targeted by

various forms of malware. Windows, widely used in personal and enterprise set-

tings, is a common target for malware due to its popularity, making it crucial for

users to employ robust security measures like regular updates and antivirus soft-

ware. Linux, known for its security features and open-source nature, is generally

more resistant to malware but attracts sophisticated attacks in server environ-

17

Chapter 2. Background

ments. macOS, with its closed ecosystem and strict app store policies, experiences

fewer malware incidents, but the growing popularity of Apple devices makes them

increasingly attractive to attackers. Android, an open-source mobile OS, faces

diverse threats, including malicious apps and phishing attacks. iOS, operating

exclusively on Apple devices, benefits from a controlled environment, but users

are not entirely immune to security risks.

2.6 Security Vulnerabilities

A security vulnerability is any weakness or flaw in a system’s implementation,

configuration, or design that could allow attackers to compromise the system’s

availability, integrity, or confidentiality. Both hardware and software can have

vulnerabilities caused by factors like code errors, human mistakes, and outdated

software [8].

Software vulnerabilities are weaknesses in the design, implementation, or con-

figuration of software applications that can be exploited by malicious entities.

These vulnerabilities pose significant risks to the security and integrity of com-

puter systems, offering entry points for various cyber threats, including malware.

A common software vulnerability is unpatched or outdated software. Failing to

apply timely security updates and patches leaves systems exposed to known vul-

nerabilities that attackers can exploit [8].

Hardware vulnerabilities are potential weaknesses in the physical components of

computing systems that can be exploited by malicious actors to compromise de-

vice security and functionality [9]. These vulnerabilities can arise from flaws in

design and manufacturing processes or specific hardware components. Attacks

targeting hardware vulnerabilities may exploit weaknesses in firmware or chipsets,

compromising the device’s integrity at a foundational level. Unauthorized physical

access to devices also poses a significant risk, as attackers can manipulate or ex-

tract sensitive information directly from the hardware. Hardware vulnerabilities

highlight the importance of robust physical security measures, including secure

boot processes, encryption, and protection against tampering.

18

2.7. Malware Authors

2.7 Malware Authors

In the complex world of cybersecurity, different groups of malware authors create

and spread malicious software for various reasons and with varying degrees of

skill. Script kiddies, who often lack deep technical expertise, use existing tools or

scripts to launch attacks, driven more by a desire for fame than by financial gain.

Hacktivists use malware to promote their ideological or political causes, aiming to

disrupt or deface systems for social or political impact. Cybercriminals, motivated

by financial gain, develop sophisticated malware to compromise systems, steal

sensitive data, or engage in activities such as ransomware attacks. State-sponsored

actors, backed by governments, use advanced and targeted malware for espionage

or cyber warfare, focusing on gathering intelligence or disrupting adversaries. A

growing concern is the rise of ”malware-as-a-service” providers who offer malicious

tools or services on the dark web, allowing individuals or groups to deploy malware

without extensive technical expertise. Recognizing the diverse motivations and

capabilities of malware authors is critical for developing effective cybersecurity

strategies and mitigating the evolving threats posed by different actors in the

digital realm.

2.8 Malware Attack Categories

Malware plays an important role in all kinds of network intrusion and security

attacks. Any software that disrupts user data, computer, or network can be con-

sidered malware, including viruses, trojan horses, worms, rootkits, scareware, and

spyware. We can categorize malware based on its ways of propagation, target

platforms, infected objects, and evasion mechanisms. A taxonomy of malware is

presented in Figure 2-3.

2.8.1 Propagation Methods

To invade the victim machine, the malware uses different transport mechanisms.

These mechanisms enable malware propagation among information devices and

systems, including mobile devices it seeks to infect. Some of the common malware

propagation techniques are listed below. Table 2.1 lists the common propagation

methods used by malware.

19

Chapter 2. Background

Malware

Targeted
Platform

Infection
Object

Evasion
Methods

PPropagation
Tactic

Social Engineering

Removable Media

Bluetooth

Network

P2P Network

Metamorphic

Polymorphic

Oligomorphic

Encyption

Windows

Multipartite

Memory Resident

File

Macro

Boot Sector

Linux

MacOs

Android

Unix

iOS

Figure 2-3: Taxonomy of malware

a) Social engineering : Attackers often employ techniques of social engineering

to distribute malware over the Internet. It uses different elements of social

engineering to lure victims to click on malicious links or to launch an infected

file or to open a malicious email attachment. For example, the LoveLetter
1 worm uses the social engineering tactics to propagate and compromise the

victim’s system.

b) Removable media: This is the dominant propagation medium for malware.

Malware often uses the USB and Flash drive devices to propagate. This

propagation medium is particularly effective in crossing the physical air gap

that exists between the Internet and some internal networks [10]. For ex-

ample, the stuxnet2 malware attaches itself to a USB device, and once on

such a device; it propagates itself to machines that the USB device comes

in contact with.

c) Network : Malware often propagates to a large number of systems connected

to a network by exploiting the vulnerabilities in client side and server side

applications. For example, the Blaster 3 malware spreads via network and

infects the users system.

d) P2P Network : Due to increase in the users of peer to peer networks, attackers

often use such networks to launch the malware onto the victim systems.

One prerequisite to launch malware into a P2P network is the installation

1http://virus.wikidot.com/loveletter
2https://en.wikipedia.org/wiki/Stuxnet
3https://en.wikipedia.org/wiki/Blaster

20

2.8. Malware Attack Categories

of a vulnerable application on the client side. By exploiting vulnerabilities,

malware can crawl through the network. For example, Alureon 4 malware

uses the P2P network for propagation.

e) Bluetooth: Malware also uses Bluetooth as a medium to propagate among

nearby Bluetooth enabled devices. Bluetooth is a wireless Personal Area

Network (PAN), which can be compromised by malware using techniques

such as bluejacking5. For example, the BlueBorne malware spreads via blue-

tooth.

2.8.2 Evasion Methods

Malware can be categorized based on the evasive techniques it uses to thwart

detection systems. Below are the categories of malware evasive techniques. Table

2.2 lists some commonly used evasive techniques by malware to thwart malware

detectors.

1. Encrypted Malware: This type of malware has two parts: encrypted body

and decryptor code. The encrypted body contains the actual contents of the

malware, and the decryptor code is used to decrypt the body into machine

executable code. As the decryptor code is constant, this kind of malware can

be easily detected with anti-malware programs. The CASCADE6 malware

is an example of encrypted malware.

2. Oligomorphic Malware: It is an enhanced version of the encrypted malware.

It uses a collection of decryption keys which are used randomly for different

target machines. Whale7 is an example of oligomorphic malware.

3. Polymorphic Malware: It is designed to take advantage of weaknesses associ-

ated with signature based detection. Such malware creates a new decryption

routine to unpack a constant malware body each time it executes. The func-

tionality of the new decryption routine remains the same, but the sequence

of instructions may be different [11]. It makes use of an encryption routine

to encrypt the malware body and the new decryption routine is appended to

create a variant of it. The first polymorphic malware family, the Chameleon

4https://en.wikipedia.org/wiki/Alureon
5https://en.wikipedia.org/wiki/Bluejacking
6https://en.wikipedia.org/wiki/Cascade
7http://malware.wikia.com/wiki/Whale

21

Chapter 2. Background

family (1260, V2P1, V2P2, and V2P6) was developed by Mark Washburn

and Ralf Burger [12].

4. Metamorphic Malware: It is also known as body polymorphic malware [13].

It transforms its code in every iteration, making difficult for anti-malware

programs to recognize it. Like polymorphic malware, it does not use any

decryption routine to unpack a constant malware body, instead it generates

a new body with the same fucntionality. It also uses different obfuscation

techniques [14] to create new variants of a malware. Zmist8 and Simile9 are

examples of metamorphic malware.

Table 2.1: Malware Propagation Methods

Propagation Methods Examples

1) Social Engineering LoveLetter worm

2) Removable Media Stuxnet

3) Network Blaster

4) P2P Network Alureon

5) Bluetooth Blueborne

Table 2.2: Common Malware Evasion Techniques

Evasion Methods Examples

1) Encryption CASCADE

2) Oligomorphic Whale

3) Polymorphic 1260

4) Metamorphic Zmist

2.8.3 Targeted Platform

Based on the target platform it is created for, malware can be categorized into

various types. For example, there are malware groups for Windows, Linux, Unix,

Android, MS-DOS, iOS and Mac OS X operating systems. Some modern malware

can infect multiple platforms. For example, Banloader10 and Adwind Rat11 can

infect multiple platforms.

8https://en.wikipedia.org/wiki/Zmist
9https://en.wikipedia.org/wiki/Simile

10https://securityintelligence.com/news/java-malware-becomes-a-cross-platform-threat/
11https://blog.malwarebytes.com/threat-analysis/2016/07/cross-platform-malware-adwind-

infects-mac/

22

2.8. Malware Attack Categories

2.8.4 Infected Objects

Malware often targets an object to infect it. The type of infected objects varies

among different forms of malware. Below, we present types of malware based on

infected objects. Table 2.3 lists the common malware infectors.

a) Boot Sector Infectors : Such malware infects the boot sector or the Master

Boot Record (MBR) of a hard disk to get control over the system. It is exe-

cuted when the system is booted from an infected disk. The most common

boot sector malware include Elk Cloner12 and Stoned13.

b) Macro Infectors : This type of malware is written in a macro language em-

bedded inside a software application like Microsoft Word and Excel. It

generates a sequence of malicious actions when the infected application is

opened. The Melisa14 virus is a macro virus.

c) Direct File Infectors : Such malware infects the host file in the system as soon

as it is executed. It overwrites the host file with its code, and sometimes

it attaches itself to the host file during infection. Rugrat15 is a direct file

infector virus.

d) Memory Resident Infectors : Such malware copies itself to the system mem-

ory and infects any file that is executed by the system. Sometimes it attaches

itself to even anti-malware programs. The Onehalf16 virus is a memory res-

ident malware.

e) Multipartite: Multipartite malware poses the characteristics of more than

one type, and infects both files and boot sector. It infects and spreads

in multiple ways. Ghostball17 is the first multipartite virus discovered by

Fridrik Skulason in 1989.

12http://virus.wikidot.com/elk-cloner
13http://virus.wikidot.com/stoned
14https://en.wikipedia.org/wiki/Melissa
15https://www.f-secure.com/v-descs/rugrat.shtml
16https://en.wikipedia.org/wiki/OneHalf
17https://en.wikipedia.org/wiki/Ghostball

23

Chapter 2. Background

Table 2.3: Malware Infectors

Infected Objects Examples

Boot Sector Infectors Elk Cloner

Macro Infectors Melisa

Direct File Infectors Rugrat

Memory Resident Infectors Onehalf

Multipartite Ghostball

Although there are different classes of malware, the classes are not mutually exclu-

sive. In other words, some malware instances may successfully integrate malicious

techniques used by other contemporary malware classes.

2.9 Sandboxes and Its Types

Sandboxes are controlled and isolated environments designed for the safe execution

and analysis of potentially malicious software, providing security professionals and

researchers with a crucial tool for understanding and combating malware. These

environments aim to minimize the risks associated with handling unknown or

suspicious code by containing their impact within a confined space. Sandboxes

typically employ various techniques to simulate a real-world computing environ-

ment while maintaining strict controls to prevent the spread of malware beyond

the controlled environment [15]. The three types of sandboxes that are commonly

found are explained below.

• Hardware-Based Sandboxes: Hardware sandboxes utilize physical devices,

often separate from the host system, to create isolated environments for mal-

ware analysis. This approach ensures a high level of isolation, as the hard-

ware sandbox is distinct from the actual computing infrastructure. However,

it may involve more logistical challenges and expenses.

• Software-Based Sandboxes: Software sandboxes are virtualized environ-

ments created through software emulation or virtual machines. These sand-

boxes run on the host system and provide a controlled space for executing

and observing potentially malicious code. They are more flexible and cost-

effective than hardware-based alternatives but may be susceptible to certain

evasion techniques.

24

2.10. Honeynet System

• Cloud-Based Sandboxes: Cloud sandboxes leverage remote servers and re-

sources to execute and analyze suspicious code. This approach allows for

scalability and collaboration among researchers but may introduce latency

and reliance on external networks. Cloud-based sandboxes are particularly

useful for handling large-scale malware samples.

2.10 Honeynet System

A honeynet is a specialized network designed to emulate a real production network

but is used solely for the purpose of observing and analyzing malicious activities.

The primary goal of a honeynet is to attract and study attackers, understanding

their tactics, techniques, and procedures without putting a legitimate network at

risk [16].

2.10.1 Honeypots

Honeypots are essential components of a honeynet, designed to simulate vulnerable

systems and services to attract attackers.

• Low-Interaction Honeypots: These emulators simulate vulnerable services

and applications with limited functionality, providing basic information

about an attacker’s activities without exposing the system to significant

risks.

• High-Interaction Honeypots: These are real systems or applications that

are intentionally left vulnerable, allowing for in-depth analysis of attacker

behavior. High-interaction honeypots provide a more realistic environment

but come with greater risks.

2.10.2 Honeynet Architecture

The architecture of a honeynet involves a strategic setup of various components

to effectively monitor and analyze malicious activities.

• Sensor Networks: Honeynets are often composed of a network of sensors

strategically placed to monitor and capture malicious activities. These sen-

25

Chapter 2. Background

sors can include both low and high-interaction honeypots.

• Data Capture and Logging: The honeynet system records and logs all activi-

ties within the network, capturing information about the attackers’ methods,

the malware used, and any other relevant details.

2.10.3 Deployment Strategies

Deployment strategies for honeynets vary depending on the specific goals and

requirements of the deployment.

• Research Honeynets: These are set up by security researchers and organiza-

tions to study the global threat landscape. They are often large-scale and

distributed, capturing a wide range of malicious activities.

• Production Honeynets: These are deployed within an organization’s produc-

tion network to detect and analyze internal threats. Production honeynets

are valuable for understanding the risks and attack vectors specific to the

organization.

2.11 Malware Analysis

To counter a network intrusion event, we require knowledge of malware instances

and their behaviors. To acquire such information, we need to acquire and analyze

the malware. Although, malware appears in many different forms, certain common

techniques are used to analyse malware in order to discover the risks it poses

and intention with which it was created. Malware analysis helps to identify the

indicators of compromise, based on which the detection model can be built. There

are four fundamental approaches to malware analysis: static, dynamic, automated

and manual code reversing. This taxonomy of malware analysis presented in

Figure 2-4.

2.11.1 Static Analysis

In static analysis, we analyse a program without actually executing it. Static

properties of a binary program include its string signature, hash, byte n-gram

26

2.11. Malware Analysis

Malware Analysis

Static Analysis

Dynamic Analysis

Automated Analysis

Manual Code
Reversing

Figure 2-4: Types of malware analysis

sequences, packer signatures, and opcode frequency distributions. Such details can

be obtained quickly because it does not require any execution. This is typically

done by using tools such as disassemblers, debuggers, and decompilers to extract

information from the file. However, static analysis can be easily evaded by malware

authors using obfuscation techniques. As a result, properties that can be gained

from the binary representation by static analysis are not extensive.

2.11.2 Dynamic Analysis

Dynamic analysis focusses on runtime behavior of executables. In dynamic analy-

sis, we analyse a program as it executes. It is carried out by executing the binary

program in an emulated environment so that the malicious program cannot infect

a real system. The behavioral changes made to the file system, registry, processes

and network communication are monitored and recorded for further investigation.

Unlike static analysis, dynamic analysis allows one to observe the real functionality

of malware binaries. Various techniques that can be applied to perform dynamic

analysis include function call monitoring, function parameter analysis, informa-

tion flow tracking, instruction traces and use of autostart extensibility points [17].

The control flow for dynamic analysis is presented in Figure 2-5.

Dynamic analysis is time consuming and it has difficulty in analyzing

multipath malware. The rate of false alarm generated is also high compared

to static analysis. In addition, the malware may behave differently in a virtual

27

Chapter 2. Background

environment than in a real system. Some malware execution requires access to the

external environment, and in such a case dynamic analysis cannot be performed.

Execution Model

Success Result
server

Test instance

IS
O

LA
TE

D
 E

N
V

IR
O

N
M

EN
T

Further Investigation

Yes

No

Figure 2-5: Flow diagram of dynamic analysis

2.11.3 Automated Analysis

The rapid growth of malware and its evolving nature have rendered manual mal-

ware analysis inefficient and time intensive. Hence, the focus of the security ana-

lysts has shifted towards automated malware analysis. Automated analysis tools

aid in quick analysis and assessment of large scale threats that a malicious pro-

gram poses. These tools detonate suspicious programs in a safe enivronment and

generate detailed reports outlining the activities of such programs without user

intervention. The automated analysis tools use static or dynamic analysis or com-

bination of both to perfrom their tasks. However, automated analysis does not

provide crucial insigths into suspicious programs as maunal analysis does. Several

tools available for automated analysis are listed in table. The basic architecture

of an automated malware analysis system is presented in Figure 2-6.

2.11.4 Manual Code Reversing

To understand the internal characteristics of a suspicious program, sometimes

thorough analysis of the source code is essential. This can be achieved with the

help of manual reverse engineering. It is carried out by taking apart the different

components of the binary file without executing it, followed by examination of

each component. The binary program is disassembled to obtain the assembly

code. This assembly code is human readable and hence the job of the analysts

28

2.11. Malware Analysis

Host Machine …………………

VM1 VM2 VMn

Input
file(PDF,EXE,WORD etc)

Output
File(XML,JSON,HTML,PDF

etc)

Database
User

Interface

Enulated Environment

Figure 2-6: A generic architecture of an automated analysis system

becomes easier. The analyst can hypothesize what the program intends to do. The

main limitation of manual analysis is that it is very time consuming. Sometimes

it may take several days, weeks or months to obtain the complete source code

of a single malware binary. For example Symantec took nearly six months to

completely reverse engineer the stuxnet malware.

2.11.5 Recent advances in Malware Analysis

Recent advances in malware analysis have witnessed significant strides in the realm

of cybersecurity, driven by the evolving sophistication of malicious threats. Ma-

chine learning and artificial intelligence have emerged as powerful tools, enabling

more efficient and proactive detection of malware. Behavioral analysis, a cor-

nerstone of modern malware analysis, has become increasingly nuanced, allowing

security professionals to identify and understand the subtle patterns and tactics

employed by advanced malware strains. Cloud-based malware analysis solutions

offer scalability and real-time threat intelligence, enhancing the ability to handle

large-scale and dynamic threats. Additionally, the integration of threat intelli-

gence feeds, sandboxing, and automated incident response mechanisms has forti-

fied the overall cybersecurity posture, enabling organizations to swiftly adapt to

emerging threats. These collective advancements mark a pivotal shift towards a

more proactive and adaptive approach in the ongoing battle against evolving and

sophisticated malware threats.

29

Chapter 2. Background

2.12 Representation of Malware Data

Malware data can be represented in various ways for a malware defense system

to effectively detect and mitigate cyber threats. These representations serve as

input data for malware defense models and security measures. Malware data can

be categorized into distinct formats, including tabular data, image data, graph

data, sequence data, and text data.

• Tabular data: Tabular data represents malware features in a structured,

spreadsheet-like format. Each row corresponds to a malware sample, and

each column represents a specific attribute or feature of that sample such as

file size, file type, API calls, or permission.

• Image data: Malware can be converted into image representations through a

process known as binary visualization. In this technique, the binary code of

the malware, which is typically a sequence of ones and zeros, is transformed

into a pixel-based image. Each binary digit is mapped to a pixel’s grey value

or intensity value, creating a visual pattern. This conversion preserves the

structural and sequential information of the malware, making it possible to

analyze the malware’s code and behavior in a more visual and interpretable

format.

• Graph data: Malware can be represented as a control flow graph (CFG),

which provides a visual and structural depiction of its execution path and

behavior. In this representation, the various code blocks, functions, and

instructions within the malware are represented as nodes in the graph. The

edges between these nodes illustrate the order in which these elements are

executed, creating a directed graph that reveals the flow of control and data

within the malware.

• Sequence data: Malware activities can be represented as sequences of events

or commands. These sequences may include system calls, API calls, or

instructions executed by malware. Each sequence is a time-ordered list of

actions.

• Text data: Text data represents malware in the form of textual code or

strings. This may include disassembled code, scripts, or other textual rep-

resentations of malware content.

30

2.13. Malware as a Service (MaaS) Model

2.13 Malware as a Service (MaaS) Model

Malware-as-a-Service (MaaS) is a modern form of cybercrime that allows any-

one to initiate a cyberattack, irrespective of their technical expertise. Much like

Software-as-a-Service (SaaS), where users pay to utilize software online instead of

managing it themselves, MaaS provides easily accessible malware, tools, and in-

frastructure for a fee. In the MaaS model, individuals purchase access to malware

and the required resources for carrying out cyberattacks [18][19]. Because MaaS

providers frequently design their malicious software and tools to circumvent tradi-

tional security measures, this advancement simplifies the execution of complex and

targeted attacks. Additionally, MaaS represents a lucrative opportunity for cyber-

criminals, posing a significant threat to both businesses and individuals due to the

increased potential for successful, hard-to-detect cyberattacks. Consequently, it’s

crucial to acknowledge the MaaS threat and implement defensive measures. The

Malware-as-a-Service (MaaS) ecosystem involves several key actors as shown in

Figure 2-7, each playing a specific role in this underground cybercrime ecosystem.

The common steps in the MaaS model are listed below.

MaaS
Actors

VICTIMS

BROKER

CYBERSECURITY
PROFESSIONALS AND
LAW ENFORCEMENT

BOTNET OPERATORS

MaaS
PROVIDERS

MaaS
USERS

MaaS
DEVELOPERS

DISTRIBUTOR

Figure 2-7: Actors involved in MaaS ecosystem

• Development of Malware: The first step in MaaS is the development of mali-

cious software by cybercriminals or groups specializing in malware creation.

This software can include various types of malware, such as ransomware, key-

loggers, Trojans, and more. These malicious tools are designed to exploit

vulnerabilities, compromise systems, or steal data.

• MaaS Platform Setup : Once the malware is developed, the creators establish

31

Chapter 2. Background

a MaaS platform, often on the dark web or hidden parts of the internet.

This platform serves as the hub for their criminal operations. Access to this

platform is typically restricted, and potential users may need an invitation

or some form of authentication to gain entry.

• Service Offerings: Once the MaaS platform is set up, the creators list their

malicious tools and services for sale. These listings often include detailed

descriptions, pricing, and the terms of use. Users can select from a menu of

options, choosing the malware and services that suit their needs.

• Subscription or Payment: Users who want to utilize the malware and services

must pay a fee. The payment structure can vary, with options like one-time

payments, subscription models, or even pay-per-use arrangements.

• Access and Deployment: After paying for access, users gain access to the

malware and related tools. They download or receive the malware, along

with instructions on how to deploy it. This step might also involve down-

loading any additional tools or resources necessary for the attack, such as

server infrastructure, botnets, or proxy services.

• Customization and Targeting: MaaS users can often customize the malware

to suit their specific objectives. They may adjust settings, tailor the attack to

specific targets, or modify the code to evade antivirus and intrusion detection

systems.

• Delivery and Execution: With the malware ready, users deploy it through

various means. This can include sending phishing emails, exploiting software

vulnerabilities, or infecting websites. The goal is to compromise the target

system or network.

• Monitoring and Data Theft: As the attack unfolds, users monitor its

progress. They can steal data, access systems, or employ malware for their

malicious purposes. They may also take steps to avoid detection and main-

tain control over the compromised systems.

• Payment for Services: In many cases, MaaS providers expect a share of the

profits generated by their customers’ criminal activities. This might be a

percentage of any ransom paid in a ransomware attack, for instance. This

revenue-sharing model incentivizes the MaaS provider to provide ongoing

support and updates.

• Recurrence or Further Services: MaaS users can renew their subscriptions,

purchase additional services, or engage in recurring attacks as needed. The

32

2.14. Feature Selection

MaaS provider continues to offer support, updates, and new malware vari-

ants to keep their customers satisfied.

• Staying Anonymous: Throughout the process, MaaS users often take pre-

cautions to remain anonymous, such as using proxy servers, encrypted com-

munication channels, and other techniques to conceal their identities.

2.14 Feature Selection

In machine learning and data science, a dataset comprises a set of data points,

each of which is represented by a set of numbers or values. These numbers are

called variables, attributes, or features of the data point. The cardinality of the

feature set is also called the dimensionality of the dataset. The dimensionality

of data plays an important role in building machine learning models. When the

dimensionality of data is very high, a set of issues known as the curse of dimen-

sionality arises, which affects the performance of the learning model. In addition,

the high-dimensional feature space makes the learning model overfitted and also

increases the memory requirements and computational cost. To address these

issues, feature selection is used as a data preprocessing approach to reduce di-

mensionality. All the features present in the real world are not useful; the feature

selection strategy helps to select a relevant feature subset using some evaluation

criteria. Feature selection has several advantages like improving the performance

and generalization ability of the learning model, the computational efficiency, and

decreasing the memory requirements. Feature selection approaches are classified

into four categories: filter approach, wrapper approach, embedded approach, and

hybrid approach.

2.14.1 Filter Approach

With this approach, a subset of features is chosen without the need for a learning

process. It is applied to numerous datasets with a large number of features. Fea-

ture selection techniques based on filters are quicker than those based on wrappers.

33

Chapter 2. Background

2.14.2 Wrapper Approach

This approach uses a learning algorithm to evaluate the accuracy produced by

the use of the selected features in classification. Wrapper methods can give high

classification accuracy for particular classifiers, but generally, they have high com-

putational complexity.

2.14.3 Embedded Approach

The embedded approach integrates feature selection directly into the process of

model training. Unlike filter and wrapper methods, which are separate prepro-

cessing steps, embedded methods incorporate the feature selection process as part

of the algorithm’s learning phase. This integration allows the model to simultane-

ously select the most relevant features while being trained, leading to potentially

better performance and efficiency.

2.14.4 Hybrid Approach

This approach is a combination of both filter and wrapper-based methods. The

filter approach selects a candidate feature set from the original feature set, and

the candidate feature set is refined by the wrapper approach. It exploits the

advantages of these two approaches.

2.15 Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence (AI) that focuses

on developing algorithms and models that enable computers to learn and make

decisions without explicit programming. This is achieved by training algorithms

to identify patterns and improve their performance over time. Machine learning

encompasses three main categories: supervised learning, where models are trained

on labeled data; unsupervised learning, where models identify patterns in un-

labeled data; and reinforcement learning, where models learn through trial and

error. Machine learning encompasses three main categories: supervised learning,

where models are trained on labeled data; unsupervised learning, where models

identify patterns in unlabeled data; and reinforcement learning, where models

34

2.15. Machine Learning

learn through trial and error.

2.15.1 Supervised Learning

Supervised machine learning is a type of machine learning algorithm that learns

from labeled data. In supervised learning, the algorithm is given a set of training

data that consists of input data and corresponding output labels. The algorithm

then learns to map the input data to the output labels. Once the algorithm has

been trained, it can be used to make predictions on new, unseen data.

2.15.2 Unsupervised Learning

Unsupervised machine learning is a type of machine learning algorithm that learns

from unlabeled data. In unsupervised learning, the algorithm is given a set of

training data that does not have corresponding output labels. The algorithm then

learns to identify patterns and structures in the data. Once the algorithm has

been trained, it can be used to perform a variety of tasks. The primary goal

is to allow algorithms to identify patterns within the data without predefined

categories. Clustering and dimensionality reduction are common techniques in

unsupervised learning, where algorithms autonomously find similarities or reduce

the complexity of the data.

2.15.3 Reinforcement Learning

Reinforcement machine learning is a type of machine learning algorithm that learns

through trial and error. In reinforcement learning, the algorithm is placed in an

environment and interacts with it by taking actions. The algorithm receives feed-

back from the environment in the form of rewards and punishments. The goal of

the algorithm is to learn a policy that maximizes the cumulative reward. Rein-

forcement machine learning is often used in situations where there is no labeled

data or where the environment is too complex for supervised learning.

35

Chapter 2. Background

2.15.4 Ensemble Learning

Ensemble machine learning is a powerful technique in the field of machine learning

that combines multiple models to achieve better predictive performance than any

individual model alone. It is based on the principle that combining the predictions

of multiple models can help reduce the overall error rate. Ensemble methods can

be used for both supervised and unsupervised learning tasks. There are three

main types of ensemble learning methods: Bagging, Boosting, and Stacking.

2.16 Deep Learning

Deep learning is a subset of machine learning that uses artificial neural networks

(ANNs) with multiple layers to learn from data. ANNs are inspired by the struc-

ture and function of the human brain. They are composed of layers of intercon-

nected nodes called neurons. Each neuron receives input from the previous layer

neurons or the input layer, applies an activation function to the input, and pro-

duces an output. The output of one neuron becomes the input to other neurons

in the next layer of the network, and this process continues until the final layer

produces the output of the network. Deep learning is particularly well-suited for

tasks that involve learning complex patterns from data, such as image and speech

recognition, natural language processing, and machine translation.

2.16.1 Aritifical Neural Networks

An ANN is based on a collection of connected perceptrons. The ANN is organized

as layers of neurons. The outputs of neurons in a layer serve as inputs to other

neurons in the next layer. The most common layer type is the fully-connected

layer in which neurons between two adjacent layers are fully pairwise connected,

but neurons within a single layer share no connections. The basic architecture of

an Artificial Neural Network is shown in figure 2-8. In the figure, the first layer of

neurons is called the input layer and the last layer with a single neuron is called the

output layer. The middle layer is called a hidden layer, since the neurons in this

layer are neither inputs nor outputs. An artificial neural network can have multiple

hidden layers. Such multiple layer networks, with only feedforward connections,

are called Multilayer Perceptrons (MLPs). In such an artifical neural network,

the output from one layer is used as input to the next layer. Such networks are

36

2.16. Deep Learning

Figure 2-8: Artiicial Neural Network

also called as feedforward neural networks. This means there are no loops in the

network - information is always fed forward, never fed back. However, there are

other models of artificial neural networks in which feedback loops are possible.

These models are called recurrent neural networks.

2.16.2 Convolutional Neural Network (CNN)

A Convolutional Neural Network is a type of artificial neural network that uses

a special architecture which is particularly well-adapted to classify images. It

can also be thought as a regularized version of the multilayer perceptron which

prevents the overfitting problem. Three main types of layers are used in CNN

architectures: Convolutional layers, Pooling layers, and Fully-Connected layers.

Convolutional neural networks use three fundamental ideas: local receptive fields,

shared weights, and pooling

2.16.2.1 Local receptive field

It is the region of the input space connected to a hidden neuron in the convolutional

layer. It is a little window on the input pixels. As in figure 2-9, the input neurons

are the pixel intensities of an input image, and on the right is a hidden neuron

in the first hidden layer. Each neuron is connected to only a region of the input

layer; thus region in the input image is called the local receptive field for the hidden

neuron. In order to cover the entire input space, we slide the local receptive field

across the entire input image horizontally as well as vertically. For each local

receptive field, there is a different hidden neuron in the first hidden layer. To slide

37

Chapter 2. Background

the local receptive field, different stride lengths are used. If stride length is one,

the local receptive field is moved by one pixel at a time.

Figure 2-9: The local receptive field for a neuron

2.16.2.2 Shared weights and biases

In a CNN, the same weights and bias are used for each of the hidden neurons in a

certain layer. This means that all neurons in the first hidden layer detect exactly

the same feature, just at different locations in the input image. The shared weights

and bias are often said to define a kernel or filter. The repeated use of a kernel

reduces the number of weights that must be learned, which in turn reduces model

training time and cost. It also makes feature search insensitive to feature location

in the image. Several convolutional filters or kernel can be used in a convolutional

layer, not just one.

2.16.2.3 Pooling layers

A Convolutional neural network also contains pooling layers. A pooling layer is

usually used immediately after a convolutional layer. It simplifies the information

in the output from the convolutional layer. A pooling layer takes the output

from the convolutional layer and prepares a condensed version of the output.

One common procedure for pooling is known as max-pooling. In max-pooling, a

pooling unit simply outputs the maximum value among all the activations within

its purview. In figure 2-10, a pooling unit outputs the maximum activation in the

2×2 input region. There are other techniques available for pooling like l2 pooling

or average pooling.

38

2.16. Deep Learning

Figure 2-10: Illustration of max pooling

2.16.3 Generative Adversarial Networks

Generative Adversarial Networks [20] (GANs) are a type of machine learning

model that can be used to generate new data, such as images, videos, or text.

GANs are composed of two neural networks: a generator and a discriminator.

The generator’s job is to generate new data, and the discriminator’s job is to

determine whether or not the data is real or fake. GANs work by pitting the gen-

erator and discriminator against each other in a zero-sum game. The generator is

trained by feeding it random noise and then evaluating the output using the dis-

criminator. If the discriminator correctly identifies the output as synthetic, then

the generator is rewarded. If the discriminator mistakenly identifies the output as

real, then the generator is punished. In this way, the generator is encouraged to

generate more realistic data. The discriminator is trained by feeding it real data

and synthetic data and then evaluating its output. If the discriminator correctly

identifies the input as real, then it is rewarded. If the discriminator mistakenly

identifies the input as synthetic, then it is punished. In this way, the discriminator

is encouraged to become better at distinguishing between real and synthetic data.

2.16.4 Graph Neural Networks

Graph neural networks (GNNs) are a type of machine learning model that can

learn from and make predictions on graph data. Graphs are a powerful way to

represent data with relationships between different entities, such as social net-

works, road networks, and molecular structures. GNNs can be used to solve a

wide range of tasks, including node classification, edge prediction, graph classifi-

cation, and graph generation.

GNNs work by iteratively aggregating information from neighboring nodes

39

Chapter 2. Background

in a graph. In each iteration, each node updates its representation based on the

representations of its neighbors. It allow GNNs to learn global patterns in the

graph, even from local information. This process is often performed through a

series of layers, similar to traditional neural networks, where each layer refines

the node representations, enabling the network to capture complex patterns and

dependencies in the graph structure.

Node Features

Node Features

...

Node Features

GNN Layer 1

GNN Layer 2

GNN Layer 3

Graph Embedding

Figure 2-11: Graph Neural Network Architecture

2.17 Evaluation Metrics

Evaluation metrics are crucial tools in assessing the performance of models and

algorithms across various domains, including machine learning, data science, and

information retrieval. Different tasks and objectives require different metrics to

provide meaningful insights into the effectiveness of a model.

2.17.1 Accuracy

Accuracy is a commonly used metric in classification, representing the ratio of

correctly predicted instances to the total instances.

Accuracy =
True Positives + True Negatives

Total Instances
(2.1)

2.17.2 Precision

Precision measures the ratio of true positive predictions to the total predicted

positives, emphasizing the accuracy of positive predictions.

40

2.17. Evaluation Metrics

Precision =
True Positives

True Positives + False Positives
(2.2)

2.17.3 Recall

Recall, also known as sensitivity or true positive rate, measures the ratio of true

positive predictions to the total actual positives, emphasizing the model’s ability

to capture all relevant instances.

Recall =
True Positives

True Positives + False Negatives
(2.3)

2.17.4 F1 Score

The F1 score is the harmonic mean of precision and recall, providing a balance

between the two metrics.

F1 Score =
2× Precision× Recall

Precision + Recall
(2.4)

2.17.5 AUC-ROC

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a

performance metric used for binary classification models. It represents the area

under the ROC curve, which illustrates the trade-off between the true positive

rate (sensitivity) and the false positive rate (1-specificity).

AUC-ROC =

∫ 1

0

TPR(FPR−1(t)) dt (2.5)

where TPR is the true positive rate (sensitivity) and FPR is the false

positive rate (1-specificity).

41

	06_chapter 2

