
Chapter 2. Background

2.18 Discussion

In this chapter, an extensive survey covering the fundamentals of malware, includ-

ing its taxonomy, various detection approaches, and tools for malware analysis, is

carried out. The classification of malware into different types, is explored, high-

lighting their unique characteristics and behaviors. Various malware detection

techniques are discussed, including signature-based, and anomaly-based, empha-

sizing their strengths and limitations. The tools and frameworks commonly used

in malware analysis, such as sandboxing, static and dynamic analysis tools, and

reverse engineering techniques, are also reviewed. By establishing a thorough

understanding of the current state-of-the-art in this domain, the research contri-

butions are presented in the subsequent chapters.

42

Chapter 3

Malware Dataset Generation and

Evaluation

This chapter explores the generation process of malware datasets and their eval-

uation, aiming to assess the efficacy of malware defense systems.

3.1 Introduction

The Internet is a complex and global networked system that interconnects various

networks of networks. The Internet has developed rapidly in the past twenty-five

years and is now regarded as a vital organ undergirding the economy of the world.

The whole world now can be conceptualized as a ’global village’ where one can

connect and communicate with any other remote person. The current growth of

the Internet is being fueled by the explosion of new sophisticated Internet-enabled

devices, rapid growth in the number of ISPs and increasing affordability of Internet

services across the globe. Today, a wide range of devices connected to the internet

such as cell phones, tablets, phablets, laptops, and netbooks provide hassle-free

connectivity. The growth of technology and its services has changed the lifestyles

of people. Now, people make use of services available on top of the Internet for

numerous purposes. Unfortunately, these services can be exploited by enemies and

criminals to fulfill nefarious. They can launch various types of attacks to sweep into

interconnected systems by exploiting the vulnerabilities found in different devices

and software applications. As a result, they can disrupt ongoing services, steal

sensitive information, corrupt important files, and exhaust the resources of servers.

To counter such attacks, various defense mechanisms have been proposed in recent

43

Chapter 3. Malware Dataset Generation and Evaluation

times. It is also important to note here that over the years, various patterns

of malware have been introduced from time to time. So, a detection system

is required to adapt itself to detect even the most recent malware attacks. The

performance of these detection methods is usually established using raw or feature

datasets. The non-availability of adequate datasets often becomes a bottleneck in

malware research.

3.1.1 Importance of Malware Datasets and Their Desired

Characteristics

A number of malware defense systems [21][22][23][24] have been developed to

counter malware attacks, each with its own merits and demerits. One common

trait of any intrusion detection system is that the system needs to learn a profile

or create a model of intrusive traffic or behaviour. This process needs a suitable

dataset containing ample examples of intrusive behaviour. However, the nature

and type of the dataset that is used for training may vary from one defense system

to another. A dataset is represented in a tabular form or a data matrix, where each

row represents the samples or observations, and each column contains the value of

an attribute or feature for each sample or observation. The caliber of such training

datasets plays an important role in the level of performance a detection system

can achieve. In the case of malware attacks, a few datasets are available publicly,

but most are outdated. As a result, malware detection approaches are difficult to

train on the current distribution of malware and hence are likely to not perform

accurately and consistently when deployed in real environments. Since the mal-

ware patterns change day by day, it is necessary to update a training dataset in

order to incorporate the most recent attack experiences. Below we discuss some

significant characteristics that a standard dataset should have.

a. Labels in the data: The instances in the dataset are labeled into two groups

namely malware and benign. The labeling is done manually and requires

analysis of raw data. However, it is very difficult to collect substantial num-

bers of examples of all varieties of malware or benign behaviour compared

to raw unlabeled data, and even labeled data can be full of bias. In data

labeling, human experts need to pay a high level of attention and effort be-

cause any mistake affects the quality of the malware dataset, and ultimately

the performance of the trained machine learning model degrades. It is worth

mentioning here that the malware data are more difficult to collect than the

44

3.1. Introduction

benign instances due to various reasons like security, liability, and precau-

tions. Depending on the total presence or absentee or partial presence of

label on the dataset, a defense system can built in one of the three modes:

supervised, unsupervised, and semi-supervised.

b. Adequate number of instances: The dataset should have an adequate number

of quality instances in order to ensure the high predictive ability of the

trained defense model on unseen data. The number of instances required

to improve the performance of the machine learning model depends on the

quality of the instances as well as the nature of the undergoing malware.

c. Adequate number of features: Features are the derived or observed properties

of instances in the dataset. Features represent an instance to a machine

learning model so that it can learn a model to make decisions on unseen

data. The extracted features on a dataset should be relevant i.e., they should

have high correlations with the class labels. A high number of features in

a dataset may also create problems. The curse of dimensionality issue may

arise in the presence of too many features. As a result, learning models

may overfit, and memory requirements and computational costs may also

increase. On the other hand, too few features may not be able to distinguish

different classes. So, for any particular problem, the dataset should have an

adequate number of features such that the class profile is properly defined

as well as overfitting can be avoided.

d. Balance between classes: The distribution of each class in a dataset should

be balanced. That means the number of instances that belong to each class

should be almost equal. If the classes are not balanced, the learned model

may produce misleading results as it usually tends to favor the bigger classes.

The class imbalance problem can be resolved by sampling techniques like

oversampling, undersampling or hybrid sampling.

e. Recency : The data constituting the dataset should not be outdated. They

should be from recent times so that they cover the newer, recently evolved

attack strategies. For instance, if the data are outdated and the defense

mechanism is trained using such data, it will fail to identify newly evolved

unknown attack instances. So, the dataset should be updated from time to

time to incorporate recent relevant data.

f. Lack of inconsistency : Data in a standard dataset should be consistent.

Defense mechanisms trained using inconsistent data are never reliable and

will result in wrong decision making.

45

Chapter 3. Malware Dataset Generation and Evaluation

g. Relevance: The features present in the dataset should be relevant to the

problem at hand. Irrelevant features are likely to bring down the perfor-

mance of the defense mechanism. The feature to class relevance should be

high, and only then good performance can be expected.

3.1.2 Motivation

To counter malware attacks, the development of malware defense systems is on the

rise. However, to measure the efficiency and effectiveness of such defense systems,

we need featured malware datasets. At this time, only a very few such featured

malware datasets are publicly available. Additionally, with the evolving behav-

ioral patterns of malware, these datasets become outdated, and hence inadequate.

Therefore, it is necessary to generate unbiased datasets of malware from time to

time to ensure accurate evaluation of malware detection methods.

3.1.3 Contributions

This chapter details the creation of two comprehensive malware feature datasets

tailored for two different platforms: Windows and Android. To facilitate this, we

developed two specialized frameworks, each consisting of several phases and mod-

ules that collaboratively generate the datasets. These datasets are designated as

TUMALWD (for Windows) and TUANDROMD (for Android). Furthermore, this

research introduces two additional feature datasets. The first is an image-based

malware feature dataset, which converts malware binaries into visual formats to

leverage image-based analysis techniques. The second is a function call graph

(FCG) dataset, which maps the relationships and interactions between various

functions within the malware binaries to uncover complex behaviors and patterns.

To support the creation and visualization of these datasets, a web-based tool has

been developed. This tool allows users to input raw malware binaries and gen-

erate the aforementioned datasets. All the datasets developed in this research

are publicly available and listed in Table 3.5. This ensures that the broader re-

search community can access and utilize these resources for further studies and

advancements in malware detection and analysis.

46

3.2. Background

3.2 Background

Malware plays an important role in all kinds of network intrusions and security

attacks. Any software that disrupts user data, computers or networks can be

considered malware, including viruses, trojans, worms, rootkits, scareware, and

spyware. The concept of a malicious program is not new. The theoretical idea

behind malware was introduced by Jon von Neumann in his article ”Theory of self-

reproducing automata” [25]. Till the early 80s, malware was created with benign

intent. Most malware was written just for fun or to try out experiments or just to

annoy others. Starting from the late 80s, malware have been created with mali-

cious intent, and since then incidents of malware attacks have grown tremendously,

and in the present era cyber threats have evolved to a feverish level, hazardously

infecting systems and platforms which were not known to be vulnerable earlier.

With each passing day, the structures and methods of cyber-attacks are becoming

more complex, working with increasing stealth and frequencies of attack. These

include clickless threats, and Internet-of-Things (IoT) attacks. For example, the

Mirai1 malware was created to infect Internet-of-Things (IoT) devices like ther-

mostats, webcams, home security systems and routers.

3.2.1 Representation of Malware and Their behavior

To effectively understand and combat malware, it is crucial to recognize the various

types of data and files it exploits for attacks. Malware often uses file attachments

in emails as common threat vectors, but the danger is not limited to executable

files alone. Various file types can harbor threats, including executable files such as

.exe, .bat, and .com, which can directly run malicious code and cause immediate

harm. Office documents with extensions like .doc, .docx, .xls, .xlsx, .ppt, and .pptx

can contain embedded macros or scripts that activate malicious activities when

opened. Script files with extensions like .js, .vbs, and .ps1 can execute scripts that

perform harmful actions on a system. Compressed files, such as .zip and .rar, can

conceal malicious files that execute when decompressed, making them a sneaky

vector for malware delivery. Additionally, PDF documents can include embedded

scripts or links to malicious websites, posing risks even in seemingly benign files.

By understanding these diverse data types and their potential for exploitation,

one can better detect and mitigate the various methods malware uses to infiltrate

and compromise systems, thereby enhancing overall defense strategies. To build

1https://github.com/jgamblin/Mirai-Source-Code

47

Chapter 3. Malware Dataset Generation and Evaluation

effective defense systems, malware can be represented in various forms such as raw

data, feature data, function call graph data, and greyscale images.

1. Raw Data: Raw malware binaries are unprocessed executable codes used by

malware to carry out attacks. These binaries can be found in various forms

and are not specific to any operating system or file format. They can be

distributed through email attachments, compromised websites, or hidden in

legitimate software. Once executed, raw malware binaries can exploit sys-

tem vulnerabilities, install backdoors, steal sensitive information, or disrupt

normal operations. Understanding these binaries is crucial for developing

effective security measures, as it helps in recognizing and mitigating threats

before they cause significant harm.

2. Feature Level Data Features are characteristics extracted from raw data

that are relevant to a specific problem, such as malware detection. These

features play a crucial role in determining the complexity, readability, and

functionality of the data. In the context of malware, features are categorized

into the following types:

• Host-based Features: These features are derived from the malware or

benign programs present in system logs or malware analysis reports.

Host-based features enumerate the activities that programs can perform

to interact with the system. Examples include:

– File Operations: Creating, modifying, or deleting files.

– Registry Changes: Adding or altering registry entries.

– Process Behavior: Starting, stopping, or manipulating system pro-

cesses.

– Memory Usage: Accessing or modifying memory regions.

– System Calls: Specific calls made to the operating system’s API.

• Network Traffic Features: These features are extracted from network

traffic logs generated by programs under analysis. Network traffic fea-

tures help distinguish between malware and benign programs by ana-

lyzing their network behavior. Examples include:

– Connection Patterns: The number and frequency of connections

made to various IP addresses.

– Data Transfer: The volume and type of data being sent or received.

– Protocols Used: Specific protocols (e.g., HTTP, FTP) used for com-

munication.

48

3.2. Background

– Anomalous Behavior: Unusual traffic patterns, such as connections

to known malicious IP addresses or domains.

Understanding and extracting these features from raw data are essential

steps in developing robust malware detection systems. These features en-

able the identification of malicious activities and help in distinguishing mal-

ware from benign software, thereby enhancing the effectiveness of security

measures.

3. Image data: Malware can be converted into image representations through a

process known as binary visualization. In this technique, the binary code of

the malware, which is typically a sequence of ones and zeros, is transformed

into a pixel-based image. Each binary digit is mapped to a pixel’s grey value

or intensity value, creating a visual pattern. This conversion preserves the

structural and sequential information of the malware, making it possible to

analyze the malware’s code and behavior in a more visual and interpretable

format.

4. Graph data: Malware can be represented as a control flow graph (CFG),

which provides a visual and structural depiction of its execution path and

behavior. In this representation, the various code blocks, functions, and

instructions within the malware are represented as nodes in the graph. The

edges between these nodes illustrate the order in which these elements are

executed, creating a directed graph that reveals the flow of control and data

within the malware.

3.2.2 Benchmark Datasets

In our research, the benchmarking datasets we use are crucial for validating and

improving the effectiveness of our proposed methods. These datasets provide the

foundation for evaluating the performance of our models in real-world situations,

enabling a thorough assessment of their strength and adaptability. Although the

benchmark datasets for the evaluation of malware detection systems are limited,

we have collected different categories of malware datasets, namely, graph data,

image data, and tabular data from trusted sources. This diversification of data

sources allows for a more comprehensive and nuanced understanding of the char-

acteristics of malware.

49

Chapter 3. Malware Dataset Generation and Evaluation

3.2.2.1 MALNET-Graph

MALNET-Graph proposed by Freit et. al. [26] is a large-scale dataset comprising

1,262,024 function call graphs representing 47 types and 696 families of malware.

The dataset is stored in edge list format, occupying 443 GB on disk. Each graph,

on average, consists of 15,378 nodes and 35,167 edges.

3.2.2.2 MALNET-Image

MALNET-Image proposed by Freit et. al.[27] is a large-scale dataset comprising

1,262,024 images representing 47 types and 696 families of malware.

3.2.2.3 Malimg

Malimg dataset proposed by Natraj et. al.[28] contains a database of 9,458 samples

with 25 different malware families.

3.2.2.4 Ransomware Dataset

The dataset proposed by Sgandurra et al. [29] contains 582 samples of ransomware

with 11 variants and 942 samples of benign programs. The dataset has 30,962

attributes which represent all instances of both goodware and ransomware present

in the dataset.

3.2.2.5 SWaT Dataset

SWaT [30] represents a scaled down version of a real-world industrial water treat-

ment plant producing 5 gallons per minute of water filtered via membrane based

ultrafiltration and reverse osmosis units. The main purpose of the dataset, carried

out by the research team (Sridhar Adepu and team) was to design secure and safe

CPS (Cyber Physical System). SWaT has six main processes corresponding to the

physical and control components of the water treatment facility. In total, 946,722

samples comprising of 51 attributes were collected over 11 days. The dataset con-

sists of two labels- “Attack” and “Normal”, where all the different types of attacks

are merged into a single class under label - “Attack”.

50

3.3. TUMALWD: Windows Malware Dataset Creation Framework

3.3 TUMALWD: Windows Malware Dataset

Creation Framework

The dataset creation framework describes the process and the computing environ-

ment needed to create the dataset, which we call TUMALWD. The preparation

framework handles three phases, namely data collection and storage, data anal-

ysis, and feature engineering. In Phase 1, data are collected and stored. The

Second Phase is responsible for data analysis. In Phase 3, we get the dataset

TUMALWD as output. Figure 6.3 shows the dataset generation pipeline. The

process begins with malware collection from both honeynet environments and the

broader internet. Once the malware samples are amassed, the next stage involves

malware analysis. This step is crucial for understanding the characteristics and

behaviors of the collected malware. Automated tools and manual inspection are

utilized to extract features such as file attributes, behavior patterns, and network

interactions. Following malware analysis, the dataset undergoes a careful curation

process. Irrelevant or redundant samples are filtered out, ensuring that the final

dataset is both manageable and highly informative. With the curated and labeled

dataset in hand, the evaluation phase begins. Machine learning models are trained

on a subset of the dataset and then evaluated on a separate, unseen portion.

The entire pipeline, from malware collection and analysis to dataset cura-

tion and machine learning model evaluation, is iterative. As the threat landscape

evolves, the dataset creation pipeline is revisited to incorporate new samples and

adapt to emerging trends, ensuring that the machine learning models remain ef-

fective in addressing the latest malicious samples.

3.3.1 Phase 1: Data Collection and Storage

For collecting malware, an automated honeynet system is set up to automatically

store the collected malware binaries in a centralized server. The whole system is

based on a client-server architecture where the client module is responsible for data

collection and the server module is used for data storage. A generic architecture

of the data collection framework is shown in Figure 3-2.

a). Honeynet Client : On the client side, two virtual honeypots are set up and

configured in a workstation with Linux-based OS using a Virtual box. This

virtualization offers an emulated environment and also mimics the operating

51

Chapter 3. Malware Dataset Generation and Evaluation

Internet
Data Labelling

Model Evaluation

Honeywall

Virtual Switch

Virtual Switch

Honeypot

Honeypot

Malware Goodware

Host
Machine

Vi
rtu

al
N

et
w

or
k

Virtual
Machine

Analysis
Database

Data
Engineering Feature

Engineering

Train Data Validation Data

Learning
Algorithms

Trained Model

Model Deployment

Sandbox Environment

Virus Total

Training
process

Trustworthiness

Test Data

Figure 3-1: Dataset Generation and Evaluation Pipeline

systems services and ports. The honeypots used in the system are run on the

Windows platform. As shown in the figure, a honeywall is used as a gateway

for the honeypots. This allows for complete control of all the inbound and

outbound traffic. During the operation period of five months i.e., August

2019 to December 2019, 4000 malware binaries were collected.

b). Honeynet Server : This module stores all the malware binaries and network

traffic files collected at the honeynet clients. Further, all the collected bina-

ries are transferred to an Analysis Server for further processing and analysis.

Internet

Honeywall

Honeypot

Honeypot

Virtual Switch

Database Server

Switch

Analysis Server

Analysis Module

Figure 3-2: Testbed Architecture for malware collection

52

3.3. TUMALWD: Windows Malware Dataset Creation Framework

3.3.2 Phase 2: Data Analysis

After the Data collection and Storage phase, the collected malware binaries are

transfered to the Data Analysis phase where thorough malware analysis is con-

ducted. To accomplish the tasks of Phase 2, two modules come into action, namely

Analysis Client and Analysis Server respectively responsible for malware analysis

and storage of all analysis reports in a database server for further processing and

feature extraction. Steps followed to accomplish the tasks in Phase 2 are shown

in figure 3-3.

a). Analysis Client : This module receives the input from the Honeynet Server

module in the form of binary programs. For the analysis of the collected

malware binaries, we set up and configured an open source malware analysis

tool called the Cuckoo Sandbox 2. The Cuckoo Sandbox is an automated

system which can analyze different types of files in a realistic but isolated

environment. Initially, we installed the Cuckoo Sandbox in a worksation

where Ubuntu 16 is used as the host operating system. For the creation of

an isolated environment, we used Virtual Box where Winodws7 is installed

as a guest operating system to carry out all analysis tasks. For the analysis,

the Cuckoo Sandbox is fed with malware binaries and in return, it genertaes

a complete behavioral report for each malware binary. In addition to Cuckoo

Sandbox, we also installed an API monitor 3 in the guest operating system

to monitor and log the API calls made by malware applications.

b). Analysis Server : This component receives all the analysis reports as input

from the Analysis Client component and stores them in a database server

for further processing and feature extraction. It also receives all log files of

the API monitor as input and stores them in the database server.

3.3.3 Phase 3: Feature Engineering

Phase 3 is the final and main part of our dataset generation framework. To accom-

plish the tasks of Phase 3, two components come into action, namely preprocessing

and feature extraction.

2https://www.cuckoosandbox.org/
3https://www.apimonitor.com/

53

Chapter 3. Malware Dataset Generation and Evaluation

Virtual Network

1 2

3

4

5

1. User gives malware binary as input to the
host machine of the cuckoo sandbox.
2. Cuckoo sandbox transfer the binary files to
the virtual machine for execution
3. The analysis reports are generated for each
binary.
4. All the analysis reports are then stored in a
database server.
5. User access those analysis reports for further
processing and feature extraction

Analyst

Host machine Virtual machine

Database Server

Figure 3-3: Steps in data analysis phase

a). Preprocessing : In the preprocessing component, we discard all the analysis

report whose content is empty, i.e., those malware binaries that failed to

execute during analysis. For our conveninece and to carry forward the tasks

of preprocessing, we extract meaningful contents from the analysis reports

and stores them in a separate file. To accomplish this task, we wrote C

programs to extract information from the API calls for which the status

value is success. In other words, our programs takes the text file of the

analysis report as an input and searches for the status value of each API

block. Once it encounters the status tag and if its value is ”SUCCESS”, it

writes all the API call information to an another output file and this process

is goes on until the end of the file. Figure 3-4 is an example of API call

information of a binary file obtained during analysis. As seen in the figure,

the binary file successfully created a file in the system during execution.

{'api': 'CreateFileW', 'arguments':

[{'name': 'lpFileName', 'value': 'C:\\WINDOWS\\system32\\svchost.exe'}, {'name': 'dwDesiredAccess', 'value':

'GENERIC_READ'}], 'repeated': 1, 'return': '0x000000b4', 'status': 'SUCCESS', 'timestamp': '20111219100546.734'},

{'api': 'CreateProcessA', 'arguments':

[{'name': 'lpApplicationName', 'value': '(null)'},

{'name': 'lpCommandLine', 'value': 'svchost.exe'}], 'repeated': 0, 'return': '1548', 'status': 'SUCCESS', 'timestamp':

'20111219100546.734'},

{'api': 'VirtualAllocEx', 'arguments':

[{'name': 'th32ProcessID', 'value': '1548'},

{'name': 'szExeFile', 'value': 'svchost.exe'}, {'name': 'lpAddress', 'value': '0x00000000'}, {'name': 'dwSize', 'value': '0'},

{'name': 'flAllocationType', 'value': '0x00003000'}, {'name': 'flProtect', 'value': '0x00000040'}], 'repeated': 0, 'return': '',

'status': 'FAILURE', 'timestamp': '20111219100546.734'},

{'api': 'ExitProcess', 'arguments':

[{'name': 'uExitCode', 'value': '0x00000000'}], 'repeated': 0, 'return': '', 'status': '', 'timestamp': '20111219100546.744'}],

'first_seen': '20111219100536.679', 'process_id': '764', 'process_name': 'binary.exe'}]

Figure 3-4: Example of API call information

b). Feature Extraction : In the Feature Extraction phase, two categories of fea-

54

3.3. TUMALWD: Windows Malware Dataset Creation Framework

tures, namely, host based and network based features, are extracted from the

preprocessed analyis reports. Host based features contain three feature sets

where the first set contains the API call sequences, the senond set comprises

the successful API call status and the third set contains the frequency of

each API call. On the other hand, network based feature set contain all the

flow information of malware binary applications.

3.3.4 TUMALWD: The Dataset and Its Characteristics

The processes and phases involved in the dataset creation framework have been

discussed in detail in the previous sections. The output of the framework is the

dataset TUMALWD comprising of two feature sets, namely host based and net-

work based features. Host based and network based features are for the system

based and the network based indicators, respectively.

3.3.4.1 Host-based features

For host based features, we consider Windows API functionality that helps distin-

guish between malware and benign programs. We extract all critical API functions

that malware used successfully in order to interact with the operating system’s

libraries. These features are extracted from the API call information. The list of

top ranked feature categories are enlisted in Table 3.1. The ranks are calculated

using three feature selectors [31][32] [33].

Table 3.1: List of top ranked feature categories for TUMALWD

Feature
Rank

Feature Category

1 RegistryKeysOperations
2 ProcessCalls
3 Strings
4 Filesoperations
5 Fileextensions
6 Directoryoperations
7 Droppedfiles

3.3.4.2 Network traffic features

To extract network level features, a malware program needs to perform activities

over the network during execution. The network activities of malware are captured

55

Chapter 3. Malware Dataset Generation and Evaluation

by executing them in the Cuckoo sandbox. Additionally, we collect network traces

that are captured in the honeynet. The traces are analyzed using an open source

tool called Wireshark. The raw traces are then preprocessed and filtered to extract

different features. We extract 27 different flow-based features from the traces. To

extract these features we wrtie Python scripts and also use an open source tool

called Flowtbag 4. These features can be specifically classified into basic features,

time-based and byte-based features.

1. Basic features: Unlike the standalone Malware, some variations perform

malicous activities based on the command they receive from a master pro-

gram. Consequently, the infected system needs to establish a connection to

the master machine. Basic network features help identify if the compromised

victim system performs any malicious activity over the network. For exam-

ple, if the victim system tries to establish an unwanted connection with a

blacklisted website, it can easily be detected based on the destination IP of

the blacklisted site.

2. Time-based features: Time-based features help distinguish malicious net-

work connections from legitimate ones. For example, the duration of the

flow, i.e., the start and end time of the flow can play a useful role in iden-

tifying malware compromised hosts as most follow similar communication

patterns with their masters, and the respective durations are almost similar.

3. Byte-based features: By monitoring the amount of data exchange between

two hosts, it is possible to infer whether the communication link is malicious

or not.

3.3.4.3 Characteristics of TUMALWD

As discussed in Section 3, the following are the particular characteristics of the

TUMALWD dataset that we create.

1. Labels in the data: The TUMALWD dataset has two labels, namely benign

and malware. The benign instances make up the benign class, while the

malicious instances make up the malware class.

2. Number of instances: There are a total of 5400 instances for the host-based

features, of which 4000 instances belong to the malware class and the rest

4https://github.com/DanielArndt/flowtbag

56

3.3. TUMALWD: Windows Malware Dataset Creation Framework

Table 3.2: Network level features

Category
Feature
name

Feature description

Src IP Source IP
Src port Source port
Dst IP Destination IP

Basic
features

Dst port Destination port no

Total pkts Total packets in the forward direction
Proto The protocol

total fvolume Total bytes in the forward direction
total bvolume Total bytes in the backward direction
min fpktl Smallest packet size (forward direction)
mean fpktl Average size of the packets (forward direction)

Byte based
features

max fpktl Maximum size of the packets (forward direction)

min bpktl Least packet size (backward direction)
mean bpktl Average size of the packets (backward direction)
max bpktl Maximum size of the packets (backward direction)
Duration The flow duration

min fiat
The least amount of times b/w two packets

(forward direction).

mean fiat
The average amount of times b/w two packets

(forward direction).

max fiat
The highest amount of times b/w two packets

(forward direction).

std fiat
The standard deviation from the mean amount of
times b/w two packets sent in the forward direction

min biat
The least amount of times b/w two packets

(backward direction)
Time based
features

mean biat
The average amount of times b/w two packets

(backward direction)

max biat
The max amount of times b/w two packets sent in

the backward direction

std biat
The standard deviation from the average amount of

times b/w two packets (backward direction)
min active The least amount of time of the active flow
mean active The average amount of time of the active flow
max active The max amount of time of the active flow
std active The standard deviation of the active flow

1400 instances belong to the benign class. For network-based features, there

are a total of 3000 instances, of which, 1600 instances are malware and the

rest 1400 instances are benign.

3. Number of features: For host-based features, all the successful API calls are

extracted as features. A total of 7545 calls are extracted. Additionally, 27

network-based features are extracted.

4. Balance between the classes: The dataset is not perfectly balanced i.e., the

dataset does not have an equal number of instances for both classes. This

slight imbalance can be easily handled by collecting more instances or sam-

pling techniques. The proposed dataset creation framework can handle such

adaptations.

5. Recency: The data collected for the creation of TUMALWD are recent

(dated to late 2019). As and when new malicious instances are available,

the dataset can be updated accordingly.

6. Relevance: The extracted features help distinguish between malware and

57

Chapter 3. Malware Dataset Generation and Evaluation

benign programs. To the best of our knowledge, these features are relevant

differentiating between the two.

3.4 TUANDROMD: The Proposed Android

Malware Dataset Creation Framework

The dataset creation framework describes the whole preparation process for the

created dataset: TUANDROMD. The preparation framework is divided into three

phases, namely data collection, data analysis, and feature engineering. In Phase 1,

benign and malware Android applications are collected for further analysis. In the

second phase, data analysis is carried out on the data collected in Phase 1. Finally,

Phase 3 takes the output of Phase 2 as input and performs feature engineering to

output the final dataset, which we call TUANDROMD.

Analysis Module Data Preprocessing Feature Extraction

F1 F2 F3 F4

TUANDROMD

Database

Android APKs

Figure 3-5: TUANDROMD: Dataset creation framework

3.4.1 Phase 1: Data Collection and Storage

For developing a featured dataset of Android malware, we need raw malware and

benign applications. For this, we collected 24,553 raw malware binaries from [34].

These malware binaries are further categorized into 135 varieties among 71 mal-

ware families. Additionally, we gathered the top 1000 Android applications from

Google Play as benign applications. Finally, all the collected Android applications

are stored in a database server for further processing and analysis.

58

3.4. TUANDROMD: The Proposed Android Malware Dataset Creation
Framework

3.4.2 Phase 2: Data Analysis

Unlike PC-based malware analysis, we have performed manual analysis on the

collected Android malware using a set of tools–Androguard5, ApkInspector6, Ap-

kAnalyser7 and Smali-CFGs8. For analysis, we consider each variant of malware

in each family. All analysis tasks are carried out in an isolated environment. For

the creation of isolated environment, we used Virtual Box where Winodws7 is

installed as a guest operating system in which all the analysis tasks are carried

out.

3.4.3 Phase 3: Feature Engineering

In the feature engineering phase, two categories of features namely permission-

based and API-based features are extracted from the analysis results. For

permission-based features, we extract all the install time and runtime permis-

sions required for an Android application to run smoothly on the device. For

API-based features, we extract all the APIs used by an application to carry out

all the tasks for the users.

3.4.4 TUANDROMD: The proposed dataset and its char-

acteristics

The processes and phases involved in the dataset creation framework has been

discussed in detail in the previous sections. The output of the framework is the

dataset TUANDROMD comprising of two feature sets namely permission-based

and API-based features.

1. Permission-based features:

Android has a built-in defense system which is termed as permission-based

system. This system defines a set of actions that an app is allowed or not

allowed to perform. That permission that requires user confirmation can

be exploited by the attackers to harm or compromise the system. These

permission-based features help to distinguish between malicious and benign

5https://github.com/androguard/androguard
6https://github.com/honeynet/apkinspector/
7https://github.com/sonyxperiadev/ApkAnalyser
8https://github.com/EugenioDelfa/Smali-CFGs

59

Chapter 3. Malware Dataset Generation and Evaluation

apps. These features are extracted from our analysis report using several

C routines. A total of 178 features are extracted out of which 15 top most

features are enlisted in table 3.3.

Table 3.3: List of top-ranked features for TUANDROMD

Feature
Rank

Feature Name

1 SEND SMS
2 RECEIV E BOOT COMPLETED
3 GET TASKS
4 Ljava/net/URL;− > openConnection
5 V IBRATE
6 WAKE LOCK
7 KILL BACKGROUND PROCESSES
8 SY STEM ALERT WINDOW
9 ACCESS WIFI STATE
10 DISABLE KEY GUARD
11 Landroid/location/LocationManager;

− > getLastKnownLocation
12 READ PHONE STATE
13 RECEIV E SMS
14 CHANGE WIFI STATE
15 WRITE EXTERNAL STORAGE

2. API-based features:

The Android platform provides a framework API that consists of a core set

of packages and classes. Since most of the applications are dependent on a

large number of API calls, it seems all the more practical and sensible to use

API calls of each application as a feature to characterize and differentiate

malware from benign applications. These features are also extracted from

the analysis reports using several C routines. A total of 241 unique API calls

are extracted.

3.4.4.1 Characteristics of TUANDROMD

As discussed in Section 3, the following are the particular characteristics of the

TUANDROMD dataset that we created.

1. Labels in the data: The TUANDROMD dataset has 72 labels where 71 labels

represent the whole malware family and the remaining one label belongs to

the normal class.

60

3.5. Performance Evaluation and Validation

2. Number of instances: There are a total of 25,553 instances for both the

permission and API-based features, of which 24,553 instances belong to the

malware class and the rest 1000 instances belong to the benign class.

3. Number of features: For permission-based features, all the permissions used

by the applications are extracted as features. A total of 178 features are

extracted. Similarly, for API-based features, a total of 241 features are

extracted.

4. Balance between the classes: The dataset is not perfectly balanced i.e., the

dataset does not have an equal number of instances for both classes. This

slight imbalance can be easily handled by collecting more instances or sam-

pling techniques. The proposed dataset creation framework can handle such

adaptations.

5. Recency: The data collected for the creation of TUANDROMD are recent.

As and when new malicious and normal Android applications are available,

the dataset can be updated accordingly.

6. Relevance: The extracted features help distinguish between malware and

benign Android applications. To the best of our knowledge, these features

are relevant differentiating between the two.

3.5 Performance Evaluation and Validation

For evaluating the performance and also to form a benchmark on these datasets,

we used a total of five classifiers. For each classifier, the K-Fold cross-validation is

used where the value of K=10. The classification results are enlisted in table 3.4.

The reason we use classification algorithms for evaluation to assess the effectiveness

of the datasets so that machine learning-based malware defense systems can be

developed using these datasets.

Table 3.4: Benchmark on TUMALWD and TUANDROMD

Classifier Test Accuracy(%)
TUMALWD TUANDROMD

Random Forest 98.4 98.7
Extra Tree 97.6 98.8
Ada Boost 98.5 97.9
Xg Boost 97.8 97.8
Gradient boosting 96.3 97.4

61

Chapter 3. Malware Dataset Generation and Evaluation

3.6 Additional Malware Feature Datasets

In addition to the Windows and Android malware datasets, two more feature

datasets have been introduced to this research. These include an image-based

malware feature dataset and a function call graph (FCG) dataset, both derived

from collected raw malware binaries.

3.6.1 Image-Based Malware Feature Dataset

The image-based dataset converts malware binaries into grayscale images, captur-

ing their structural patterns for analysis using image processing and deep learning.

Key features of this dataset include:

• Image Conversion: Each byte of the malware binary is represented as a

pixel, with values from 0 to 255.

• Dataset Size: It contains 20,000 samples from various malware families,

providing a diverse set for analysis.

• Feature Extraction: Convolutional neural networks (CNNs) extract fea-

tures from these images, identifying intricate patterns within the malware

binaries.

Details on this dataset, including image conversion methods, CNN architectures,

and model performance, are covered in Chapter 8.

3.6.2 Function Call Graph (FCG) Dataset

The FCG dataset extracts function calls from raw malware binaries and represents

them as graphs, capturing their execution flow for analysis. Key features of this

dataset include:

• Nodes and Edges: Nodes are functions, and edges represent the calls

between them.

• Dataset Size: It contains 20,000 samples from various malware families,

providing a diverse set for analysis.

62

	07_chapter 3

