
3.7. Discussion

• Graph Construction: These graphs are built from the binaries’ execution

flow, showing the actions and interactions within the malware.

• Feature Extraction: Features from these graphs capture complex rela-

tionships and execution patterns, aiding in the detection of sophisticated

malware.

Chapter 9 provides a detailed discussion on constructing function call graphs,

extracting features, and using Graph Neural Networks (GNNs) for malware de-

tection. The datasets are publicly available and are reported in Table 3.5.

Table 3.5: Datasets and Their Availability Sources

Dataset Availability Source
Windows Malware Dataset https://forms.gle/iDqw9jGv84tqgxwZ8
Android Malware Dataset https://t.ly/vDRy9

Image-Based Malware Feature Dataset https://forms.gle/iDqw9jGv84tqgxwZ8
Function Call Graph (FCG) Dataset https://forms.gle/iDqw9jGv84tqgxwZ8

3.7 Discussion

In this chapter, the importance of malware datasets and their pivotal role in

evaluating malware detection systems are explored. Assessing malware detection

systems requires a robust foundation of diverse and representative datasets for

thorough testing and validation. Recognizing this need, two novel malware feature

datasets tailored for distinct platforms—Windows and Android—are introduced.

The TUMALWD dataset is meticulously curated for the Windows platform, incor-

porating host-level and network-level features. By encompassing a wide variety of

malware characteristics, this dataset enables a more thorough and effective evalua-

tion of malware detection systems. For the Android platform, the TUANDROMD

dataset is presented. This dataset consists of permission and API-based features,

acknowledging the distinct attributes of the Android platform. Together, these

datasets serve as invaluable resources for benchmarking and refining malware de-

tection systems and contribute to a more nuanced understanding of the challenges

posed by malicious activities across different operating systems.
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Chapter 4

An Enhanced Feature Selection

Method for Imprecise Data

4.1 Introduction

In machine learning and data science, a dataset comprises of a set of data points,

each of which is represented by a set of numbers or values. These numbers are

called variables, attributes, or features of the data point. The cardinality of the

feature set is also called the dimensionality of the dataset. The dimensionality

of data plays an important role while building machine learning models. When

the dimensionality of data is very high, a set of issues known as the curse of

dimensionality arises which affects the performance of the learning model [35]. In

addition, the high dimensional feature space make the learning model overfitted

and also increases the memory requirements and computational cost. To address

these issues, feature selection is used as a data preprocessing approach to reduce

the dimensionality [36] [37]. All the features present in the real world are not

useful; the feature selection strategy helps to select a relevant feature subset

using some evaluation criteria [38] [39] [40] [41]. The feature selection has

several advantages like it improves the performance and generalization ability

of the learning model, the computational efficiency, and decreases the memory

requirements.

Feature selection algorithms are classified based on class label information and

selection strategies [42]. Based on the availability of ground truth knowledge,

there are three types of such methods, namely, supervised, unsupervised, and

semi-supervised. Supervised approach [43] aims to select a relevant feature

subset by taking into consideration of the class label information. The feature
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relevance is usually calculated by using various measures like mutual information

and correlation. The selected feature subset helps to build a better learning

model. Unsupervised approach [44] [45] [46] produces a relevant feature subset

from unlabeled data. Since the ground truth knowledge is not present, the

feature relevance is usually calculated using different measures such as data

similarity, and local discriminative information. The selected subset of features is

able to extract clusters of all instances. Semi-supervised approach [47] [48] [49]

generates a relevant feature subset by taking into consideration of both labeled

and unlabeled samples. It is similar to the supervised approach except it uses the

partial label information.

Based on the selection strategy there are three types of feature selection tech-

niques, namely, filter, wrapper, and embedded [37]. Filter methods [50] produce

the optimal feature subset by studying the characteristics of data using some

statistical criteria. It does not use the learning algorithms during the feature

selection phase which makes them computationally efficient. On the other hand,

wrapper methods [51] use the learning algorithms as selection criteria. The

wrapper method selects an optimal feature subset in such a way that it achieves

improved predictive accuracy for a given classifier. It is computationally very

intensive when the dimension of the dataset is very high and also biased to the

given classifier. The wrapper methods are considered to be performed better

than filter methods but it is computationally expensive than filter methods. The

embedded methods [52] are intermediate warppers and filters. It exploit the

benefits of both the methods. First, it selects subsets of candidate features using

some statistical measure like filter methods and then it selects the optimal subset

with the highest classification accuracy. It is computationally less expensive than

a wrapper.

4.1.1 Motivation

The motivation for implementing a feature selection method is to create more

efficient and interpretable machine learning models. Many datasets contain nu-

merous features, some of which are redundant or minimally contribute to model

performance. By selecting the most informative features, model accuracy can

be improved, computational complexity reduced, and data patterns better under-

stood. This enhances the overall efficiency of machine learning models for practical

applications. In malware detection, feature selection is crucial as it helps identify

key characteristics that distinguish malware from goodware. Focusing on these key
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features improves detection accuracy and speed, essential for combating evolving

malware threats.

4.1.2 Contribution

Rough set theory is a mathematical approach used to handle the uncertainty

present in data. It has been widely applied in various feature selection methods.

This chapter introduces a supervised filter-based feature selector that leverages

rough set theory. The method utilizes class-label information to calculate the

significance of each feature, introducing a new criterion for identifying the most

relevant features. The proposed feature selection method, referred to as FSR, has

demonstrated superior performance compared to other competing methods. Its

effectiveness has been evaluated on datasets related to malware and malware-based

attacks, where it has shown promising results.

4.2 Background

Feature selection is a crucial step in the process of preparing data for machine

learning models. It involves choosing a subset of relevant features from the origi-

nal set of features to improve model performance, reduce overfitting, and enhance

interpretability. Feature selection approaches are classified into four categories

as shown in figure 4-1, such as filter approach, wrapper approach, embedded ap-

proach, and hybrid approach.

Feature Selection

Filter Wrapper Embedded Hybrid

Figure 4-1: Feature selection methods
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4.2.1 Filter Methods

Filter methods are a class of feature selection techniques that operate indepen-

dently of a particular machine learning algorithm, focusing on the inherent char-

acteristics of individual features. These methods involve evaluating each feature’s

relevance to the target variable through statistical measures or heuristics. For in-

stance, correlation-based filter methods assess the statistical correlation between

each feature and the target variable, ranking or selecting features based on these

relationships. Variance thresholding, another filter method, eliminates features

with low variance, assuming they contribute less information. Filter methods are

computationally efficient and serve as a preprocessing step before model training,

aiding in dimensionality reduction by selecting a subset of the most informative

features. While filter methods may overlook feature interactions, their speed and

simplicity make them particularly valuable for high-dimensional datasets where a

quick assessment of feature importance is needed.

4.2.2 Wrapper Methods

Wrapper methods for feature selection involve evaluating the performance of a

machine learning model with different subsets of features. Unlike filter methods,

wrapper methods incorporate the actual learning algorithm in the evaluation pro-

cess, using a specific model’s performance as the criterion for feature selection.

Recursive Feature Elimination (RFE) is a common wrapper method that itera-

tively removes the least important features based on the model’s performance until

a desired number of features is reached. Forward selection adds features one at

a time, selecting the one that maximizes model performance at each step. Back-

ward elimination starts with all features and eliminates one at a time based on

their impact on performance. Wrapper methods are computationally more inten-

sive than filter methods since they involve training the model multiple times, but

they can capture feature interactions and dependencies more effectively, making

them suitable for scenarios where the relationship between features is crucial for

accurate modeling.

4.2.3 Embedded Methods

Embedded feature selection methods seamlessly integrate the feature selection

process into the model training itself. These methods optimize both the model’s
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predictive performance and the relevance of features simultaneously. Lasso regres-

sion, a popular embedded method, introduces a regularization term based on the

absolute values of the coefficients during the model training process. This encour-

ages sparsity in the coefficient values, effectively performing feature selection by

driving some coefficients to zero. Similarly, tree-based methods, such as Random

Forest and Gradient Boosting, inherently perform feature selection as they build

decision trees by selecting features that contribute the most to reducing impurity

or error. Embedded methods are advantageous because they consider feature im-

portance within the context of the specific algorithm, making them more sensitive

to the model’s intricacies and potentially resulting in more accurate and efficient

feature selection.

4.2.4 Hybrid Methods

Hybrid feature selection methods combine elements from different types of feature

selection approaches to capitalize on their respective strengths. These methods

often leverage the advantages of filter, wrapper, or embedded techniques to create

a more robust and effective feature selection strategy. For example, genetic algo-

rithms, a popular hybrid approach, simulate the process of natural selection and

evolution to optimize feature subsets based on their performance with a particular

model. Simulated annealing, another hybrid method, iteratively explores the solu-

tion space, allowing moves that decrease performance to escape local optima. By

integrating diverse techniques, hybrid methods aim to exploit the complementary

nature of different feature selection strategies, providing a more comprehensive

and flexible approach to identifying the most relevant features for a given machine

learning task.

Feature selection approaches are also classified into supervised, unsuper-

vised, and semi-supervised categories as shown in figure 4-2 based on the availabil-

ity of labeled data and the nature of the learning task. The classification serves to

highlight the different strategies and considerations involved in feature selection,

depending on the context of the problem being addressed.
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Feature Selection

Supervised Unsupervised Semi-supervised

Figure 4-2: Feature selection methods

4.2.5 Supervised Method

Supervised feature selection methods take advantage of labeled training data,

where both the input features and corresponding target variables are known.

These methods assess the relevance of features with respect to the target variable

and aim to retain those that contribute most to predictive accuracy. Common

techniques include filter methods, wrapper methods, and embedded methods. Fil-

ter methods evaluate feature importance independently of the learning algorithm,

wrapper methods use the predictive performance of a specific model for selection,

and embedded methods incorporate feature selection within the model training

process. Supervised feature selection is particularly useful in classification and

regression tasks where the goal is to build predictive models.

4.2.6 Unsupervised Method

Unsupervised feature selection methods operate in scenarios where the data lacks

labeled data. Instead of relying on explicit class information, these methods ex-

plore the inherent structure and relationships within the feature space. Clustering-

based approaches, such as hierarchical clustering or k-means clustering, can be

employed to group similar features and identify representative ones from each

cluster. Additionally, techniques like Principal Component Analysis (PCA) and

autoencoders aim to capture the most important information in the data with-

out requiring labeled information. Unsupervised feature selection is valuable in

exploratory data analysis and dimensionality reduction tasks.
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4.2.7 Semi-supervised Method

Semi-supervised feature selection methods strike a balance between the availabil-

ity of labeled and unlabeled data. In scenarios where obtaining labeled data is

expensive or time-consuming, these methods leverage a combination of labeled and

unlabeled samples. Techniques like self-training or co-training use the available

labeled data to iteratively label unlabeled instances and refine feature selection.

This approach is particularly beneficial when only a fraction of the data is labeled,

making it more adaptable to real-world situations where obtaining fully labeled

datasets can be challenging. Semi-supervised feature selection bridges the gap be-

tween the advantages of supervised and unsupervised methods, offering a flexible

solution for various applications.

Each type of feature selection approach has its strengths and weaknesses,

and the choice depends on the specific characteristics of the dataset and the goals

of the analysis. Smith et. al. introduces a hybrid feature selection method com-

bining genetic algorithms and classification performance evaluation. The authors

propose an evolutionary approach to optimize feature subsets, demonstrating im-

proved classification accuracy on various datasets. Xi et. al. explores sparse

feature learning within Convolutional Neural Networks (CNNs). By leveraging

the sparsity-inducing properties, the authors demonstrate enhanced interpretabil-

ity and efficiency in extracting discriminative features from image data. Zhang et.

al introduces an embedded feature selection method within deep neural networks

for natural language processing tasks. By integrating feature selection within the

network architecture, the authors enhance the model’s ability to capture salient

linguistic features. Mitchell et. al addresses feature selection in financial time

series forecasting using an ensemble learning approach. The authors propose an

algorithm that combines multiple feature selection methods to improve the sta-

bility and accuracy of predictions in dynamic financial markets. Ryan C. Turner

et. al presents a semi-supervised feature selection method tailored for cybersecu-

rity applications, with a case study in intrusion detection. The authors leverage

both labeled and unlabeled data to identify relevant features, enhancing the ro-

bustness of intrusion detection systems. Ren et. al proposes a feature selection

method based on regularized regression. The authors address the challenges of

high-dimensional remote sensing datasets and demonstrate the efficiency of their

approach in extracting relevant features for accurate environmental monitoring.
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4.3 Problem Statement

For a given dataset D of sizeM×N with M instances and N features, with a feature

set F ={f1, f2, f3, ....., fN}, the goal is to find an optimal feature subset F ′ such that

F ′ ⊂ F and for F ′, the learning model will give the best possible generalization

performance. In other words, we aim to reduce the dimension of the dataset

D by removing the unimportant features without compromising the performance

of the learning model. The reduced feature set is obtained by minimizing the

redundancies among features and maximizing the feature-class relevance.

4.4 Proposed Method: FSR

The proposed method selects the optimal feature subset based on rough set. The

method uses the concepts of indiscernibility relation, approximation of sets, and

attribute dependency for the generation of the optimal feature subset. The theo-

retical basics that are used in the design of FSR are described next.

4.4.1 Rough Set

Amathematical procedure that is used in data mining for the analysis of imprecise,

vague and uncertain data [53]. The indiscernibility relation is the main basis of the

rough set theory. Data objects that share the same knowledge or information are

called as indiscernible. There exists some boundary line elements in each rough

set and these elements can neither be the members of the set or its complement

with certainty. A non-empty boundary region defines the target set as rough set

otherwise, it is a crisp set [54].

For a given dataset in a tabular form where each row represents a data

object or instance and each column represents the attribute value of each data

instance. Such table, in the concepts of rough set theory is termed as data or

information table. More formally, the pair I = (U,A) is the data table, here U

represents the universal set which is finite and A represents the set of attibutes

such that x : U × A→ Vx, where x ∈ A and Vx is the set of values of a.
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4.4.1.1 Indiscernibility Relation

For a given set B⊆A of an I = (U,A), the indiscernibility realtion IB is stated as

follows.

IB={(x, y)ϵU2| ∀a ϵB, a(x) = a(y)}

where, a(x) is the attribute value for the element x. If any (x, y) ϵ IB,

then x, y are cannot be distinguishable by B. The relation IB is also called an

equivalence relation. The U/B or U/IB i.e., the partition of U based on B can be

stated as follows.

U/IB={[xi]B | xi ϵ U}

where, [xi]B is equivalence class of IB. The equivalence classes of IB and

the empty set ϕ are referred to as B − elementary concepts.

4.4.1.2 Approximation of sets

For a given data or information table I = (U,A), let B ⊆ A and X ⊆ U , the set

X cannot be expressed precisely based on the knowledge available in B but it can

be approximated by the formation of two crisp sets namely, B −Upper(BX) and

B − Lower(BX) approximations of X respectively.

The BX consists of all the elementary sets which are subsets of X. This

is stated as follows.

BX=∪{[xi]B | [xi]B ⊆ X}

In other words, the BX consists of all the elements that belong to the

target set X with probability 1. The BX is also known as the positive region of

X. Based on this, the set approximation accuracy is calculated as follows.

αB(X) = |BX|
|BX|

The BX comprises a set of elementary sets and the intersection of it with

the target set X is non-empty. This is stated as follows.
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BX=∪{[xi]B | [xi]B ∩X ̸= ϕ}

In other words, BX comprises a set of elements that belong to the target

set X with some probability. The set BX is also called the negative region.

The difference BX - BX which is denoted as BR(X) that contains the

boundary elements of X. The BR(X) comprises all the elements that are not

possible to assign to the target set X or its complement based on the information

contained in B.

4.4.1.3 Dependency of attributes

For a given dataset or data table, if it contains the class label for each data

object present in the system, then the attribute set can be distinguished into two

sets namely, conditional and decision attributes. The data objects are uniquely

classified into one of the decision attribute values based on information contained

in conditional attributes. However, sometimes it is not possible to predict the

ground truth of the data objects with the available conditional attribute values

but can be determined with some approximations. Approximations help determine

the relationship between conditional and decision attributes or any two attribute

variables. For a given I(U, A), here A = C ∪D, the dependency of D (dependency

attribute) on C (conditional attributes) can be stated as follows.

γ(C,D) =
|POSC(D)|
|U |

(4.1)

where POSC(D) = ∪CX i.e., the members of U/C which are positively belong to

the partition of U/D and — . — is the length of the set. Depending on the value

of γ(C,D), there are three types of dependency as follows.

γ(C,D)=1, D completely dependent on C

0¡γ(C,D)¡1, D partially dependent on C

γ(C,D)=0, D does not depends on C

Similarly, the dependency measure also helps to determine the feature or at-

tribute’s significance pertaining to the decision attribute. The change in depen-

dency is the measure of an attribute’s significance after it has been deleted from
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the conditional attribute set. For example, consider an attribute A ϵ C and its

significance is calculated as follows:

δC(D,A) = γ(C,D)− γ(C − A,D) (4.2)

The zero value of δC(D,A) indicates that the attribute A is not useful. The

higher value of δC(D,A) signifies that the attribute a is of higher significance and

the lower value indicates the attribute is less significant.

Example: Consider a data table (U,A) which is shown in Table 4.1. Here,

Table 4.1: A data table

A1 A2 A3 Label
D1 1 2 0 C
D2 1 2 0 C
D3 2 0 0 D
D4 0 0 1 D
D5 2 1 0 C
D6 0 0 1 D
D7 2 0 0 C
D8 2 1 2 D
D9 2 1 0 D
D10 2 0 0 C

U=D1, D2, ...., D10 and A = C ∪ D where C={A1, A2, A3} and D={Label}.
According to indiscernibility relation, the set U can be partitioned based on

different subsets of attributes which are shown below.

• U/I{A1}={{D1, D2}, {D3, D5, D7, D8, D9, D10}, {D4, D6}}

• U/I{A2}={{D1, D2}, {D3, D4, D6, D7, D10}, {D5, D8, D9}}

• U/I{A3}={{D1, D2, D3, D5, D7, D9, D10}, {D4, D6}{D8}}

• U/I{A1,A2}={{D1, D2}, {D3, D7, D10}, {D4, D6}, {D5, D9}, {D8}}

• U/I{A1,A3}={{D1, D2}, {D3, D5, D7, D9, D10}, {D4, D6}, {D8}}

• U/I{A2,A3}={{D1, D2}, {D3, D7, D10}, {D4, D6}, {D5, D9}, {D8}}

• U/I{A1,A2,A3}=U/C={{D1, D2}, {D3, D7, D10}, {D4, D6}, {D5, D9}, {D8}}

• U/I{Label}=U/D={{D1, D2, D5, D7, D10}, {D3, D4, D6, D8, D9}}
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Consider a target set X={D |Label(D) = C}andC⊂ A, the approximation sets–

upper and lower approximation (CX and CX) are created using the available

knowledge contained in C.

CX = {D1, D2, D4, D6}
CX = {D1, D2, D3, D4, D5, D6, D7, D9, D10}

Based on lower and upper approximation sets, we can identify boundary region

elements of X as follows.

BR(X) = CX − CX = {D3, D5, D7, D9, D10}

The positive region POSC(D) consists of all the blocks of the partition U/C

which uniquely belong to the partition U/D.

POSC(D) = {{D1, D2}, {D4, D6}, {D8}} = {D1, D2, D4, D6, D8}

The dependency between D and C can be computed using the Equation 4.1.

γ(C,D) = |POSC(D)|
|U | = 5

10
= 0.5

Similarly, the relevance of each feature, Ai ϵ C can be computed using the Equation

4.1 and report in Table 4.2 below.

Table 4.2: Relevance score of each feature

γ(A1, D) γ(A2, D) γ(A3, D)
0.4 0.2 0.3

4.4.1.4 Proposed feature selection method

The proposed method-FSR uses the concepts of rough set to select the most effec-

tive subset of features from a given feature set. Initially, we compute the relevance

score γ(ai, D) for each feature, ai, in respect of the decision attribute using the
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Equation 4.1 and the feature with the highest feature-class relevance score is se-

lected. The feature is then removed from the initial feature set and added into

the newly selected feature subset.

If we select features based on only relevance score, then there is a possibility of

inclusion of redundant features. Suppose, if two features are selected based on

their high relevance score only but they are highly correlated and in that case,

any one of them should be removed. Therefore, we calculate the significance score

to identify the unnecessary features. To do so, for each aj, which is an unselected

feature, the significance score is calculated with respect to each selected feature,

ai.

The significance score Z(ai, aj) of aj in respect ai is calculated using equation 4.2

i.e.,

Z(ai, aj) = δai,aj(D, aj) = γ(ai, aj, D)− γ(ai, D) (4.3)

Now, for each unselected feature, we have a feature-class relevance score and a set

of k(k ≥ 1) significance values where k is the number of selected features. The

calculated values are used as input to a function given in Equation 4.4 based on

which the (k + 1)th feature is selected.

FS(aj) = γ(aj, D) +min((max−min)Z(ai, aj) + Z(ai, aj)) (4.4)

The feature that gives the maximum value of FS(aj) is selected as the (k + 1)th

feature. The flow-diagram of our method FSR is depicted in Figure 4-3. For

better understanding, following example is helpful.

Example: Let’s consider an information system given in Table 4.1 where each

object is of three features F={A1, A2, A3}. We compute the relevance scores of

each feature which are given in Table 4.2. Initially, we select the feature which

has highest relevance score. In our case, it is 0.4 for the feature A1. Next, the

significance score is calculated for unselected features using equation 4.3.

Selected features={A1}, Unselected features={A2, A3}

Z(A1, A2)=γ(A1, A2, D)− γ(A1, D)= 0.5− 0.4 = 0.1

Z(A1, A3)=γ(A1, A3, D)− γ(A1, D)= 0.5− 0.4 = 0.1

Now, based on the caluclated values, a feature score is calculated for each unse-
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lected feature using Equation 4.4.

FS(A2) = 0.2 + 0.1 = 0.3

FS(A3) = 0.3 + 0.1 = 0.4

Next, we select the feature which gives the highest feature score FS(aj). In our

case, it is A3. So, the final order of the selected features are {A1, A3, A2}. In case

of tie, we select the feature with highest value of γ(ai, D). If both parts of the

FS(aj) same for two features, then we select any one of them.

Algorithm 1: FSR

Input: The dataset(U,C,D), where U={o1, o2, ....om} is the number of

instances, C={f1, f2, ....fn} is the attribute set, and D=class label

Output: C
′
=the optimal feature subset

initialization;

C
′
=∅;

for i=1 to n do

for i=1 to m do
compute γ(fi, D)

end

end

Select the feature fi which gives the maximum value i.e.,

fi=argmax{γ(fi, D)};
C

′
=C

′
+ {fi};

C=C− {fi};
x=1;

while x ≤ k do

for each fj in C do

for for each fi in C
′
do

Compute Z(fi, fj)

end

Compute FS(fj)

end

Select the feature fi which gives the maximum value i.e.,

fj=argmax{FS(fj)};
C

′
=C

′
+ {fj};

C=C− {fj};
end

Return C
′
;
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Figure 4-3: Workflow of the proposed method

Complexity analysis: The proposed method, FSR, is composed of two major steps

a) finding the relevance score and b) the significance score. The total complexity

also depends on the size of the dataset. The time complexity for computing the

relevance score of n features with m instances is O(mn). The time complexity for

finding the top relevant feature out of n features is O(n). The time complexity

of calculating the significance score regarding the previously chosen k features is

O((k)(n− k)). So, the overall complexity of FSR is O(mn).

Proposition 1. The subset identified by FSR is optimal

Explanation: Suppose for the sake of contradiction, we assume that for a

dataset, the feature subset given by FSR is not optimal and |Featuresubset| = k.

Let’s say for the |Featuresubset| + 1, the highest classification accuracy is

obtained. However, Figure (4-4) to (4-8) shows the highest possible accuracy

obtained is for the top k features. So, there is no improvement in accuracy

after adding or deleting any further features. Hence, the initial non-optimality
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assumption is false. Hence, the feature subset is optimal.

4.4.2 Significance of FSR

There are some other methods of feature selection that use the rough set theory

approach. Maji et al. [55] use a rough set approach to select the relevant features.

But unlike our method, the author calculate significance score Z(ai, aj) of each

unselected feature aj with respect to the k selected features as average value i.e.,
1
k

∑k
i=1 Z(ai, aj). In this case, if an unselected feature has zero value of Z with

one of the selected features i.e, the unselected feature is redundant and if it has a

very large value of Z with one of the selected features, then the significance score

Z(ai, aj) of unselected feature will be high which result in the selection of the

feature though it is redundant. Similarly, in another literature, the significance

score is calculated as
min(Z(ai,aj))

max(Z(ai,aj))
min(Z(ai, aj)) for each unselected feature aj with

respect to the k selected features where i = 1 to k. In this case, if an unselected

feature has equal values of significance score with all of the selected features, then

that feature will always get preference over the other important unselected features

( if unselected features have equal values of γ(aj, D)).

Similarly, in [56], an incremental feature selector is proposed that uses the rough

set theory like our method. But they also use a genetic algorithm to select the op-

timal and relevant feature subset. Unlike our method, the proposed algorithm has

polynomial time complexity which limits its usability when the size of the dataset

is large. Zhang et al. [57] propose a feature selector that uses a fuzzy rough set-

theoretic approach for feature selection. They use a filter-wrapper approach along

with a novel entropy measure to select the optimal subset of features. Since they

use a hybrid method for feature selection, the time complexity is high compared

to our proposed method.

4.5 Performance Analysis

FSR has been implemented in Python using a Dell Precision 7810 workstation

with 2x Intel Xeon (R) W-2145 comprising 8 cores, 64GB RAM, NVIDIA Tesla

K80 GPU with 12GB VRAM, and Ubuntu OS. Materials used and performance

achieved are discussed next.
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Table 4.3: Dataset details

Dataset # Instances # Features # Classes

Sonar 208 60 2
Parkinson 756 754 2
Breast Cancer Wisconsin 569 32 2
Ionosphere 351 34 2
Wine 178 13 3
Pima 768 8 2
Seed 210 7 3
IRIS 150 4 3
TUANDROMD 4465 241 2
XSSD 1301 11 2

4.5.1 Datasets and Preprocessing

To understand the effectiveness of our method, it has been tested on ten real-

world datasets, including two datasets focused on malware attacks. This allows us

to observe the method’s effectiveness in both malware and malware-based attack

contexts. The attributes of these datasets include both numeric and categorical

values. The dimensionality of these datasets are ≥ 4. The datasets except the

XSSD are collected from UCI repository [58]. The XSSD dataset is collected from

[59]. The detailed description of these datasets are given in Table 6.3. We use

the data discretization technique [60] to convert the continuous attribute values

to discrete values since the rough set theory deals with discrete-valued attributes.

4.5.2 Result Analysis and Performance Comparison

The performance of our method is assessed based on the classification accuracy.

For this, we have used the Random forest classifier. The 10-fold cross valida-

tion is used to estimate the performace of the classifier on the selected features.

We also compare our method with seven filter-based feature selectors, namely,

Gain Ratio, Maximum Relevance Minimum Redundancy (MRMR), Information

Gain, Conditional Mutual Information Maximization Criterion (CMIM), ReliefF,

Mutual Information Feature Selection (MIFS), and Symmetric Uncertainty (SU) .

The comparison results of FSR with the other feature selectors for the ten datasets

are shown in Figure 4-4-4-8. From the experimental results, it can be observed

that the proposed method is a top performer on most of the datasets or atleast

at par with the seven other competing methods. The size of the optimal feature

subset selected by the FSR varies for different datasets because it depends on a

number of features (or dimensions), their relevance to the given class labels, and
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4.5. Performance Analysis

(a) Accuracy on breast cancer dataset (b) Accuracy on ionosphere dataset

Figure 4-4: Performance of FSR in terms of accuracy

(a) Accuracy on seed dataset (b) Accuracy on pima dataset

Figure 4-5: Performance of FSR in terms of accuracy

feature-feature correlations or redundancies. The top k features selected by each

of the eight methods including the proposed one are shown in Table 4.4a - 4.8. As

we can see from the table some common features are selected by each method.
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(a) Accuracy on IRIS dataset (b) Accuracy on wine dataset

Figure 4-6: Performance of FSR in terms of accuracy

(a) Accuracy on sonar dataset (b) Accuracy on XSSD dataset

Figure 4-7: Performance of FSR in terms of accuracy
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(a) Accuracy on parkinson dataset (b) Accuracy on TUNADROMD

Figure 4-8: Performance of FSR in terms of accuracy

(a) F1 score on breast cancer dataset (b) F1 score on ionosphere dataset

Figure 4-9: Performance of FSR in terms of F1 score

(a) F1 score on seed dataset (b) F1 score on pima dataset

Figure 4-10: Performance of FSR in terms of F1 score
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(a) F1 score on IRIS dataset (b) F1 score on wine dataset

Figure 4-11: Performance of FSR in terms of F1 score

(a) F1 score on sonar dataset (b) F1 score on XSS dataset

Figure 4-12: Performance of FSR in terms of F1 score

Figure 4-13: Performance of FSR in terms of F1 score for Parkinson dataset
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(a) Breast cancer dataset

Methods Selected features

Proposed 22,24,4,29,8,28,19,15,9,14

CMIM 7,0,6,8,12,15,20,21,25,26

Gain Ratio 22,20,23,27,7,6,26,2,3,0

Infogain 22,23,20,27,7,2,3,0,6,13

MIFS 7,20,24,8,0,4,27,1,18,9

MRMR 7,20,24,0,8,27,1,4,17,2

ReliefF 23,3,22,13,2,21,20,1,0,12

SU 22,20,23,27,7,2,6,3,0,26

(b) Ionosphere dataset

Methods Selected features

Proposed 0,3,1,2,13,15,9,7,4, 5

CMIM 26,14,2,23,6,4,7,18,32,21

Gain Ratio 0,26,16,3,5,18,22,31,4,25

Infogain 3,4,31,27,1,19,32,6,11,5

MIFS 26,0,3,1,5,13,27,29,7,11

MRMR 26,0,3,1,5,27,13,29,7,31

ReliefF 22,6,25,3,1,32,12,27,4,5

SU 3,5,4,26,31,27,1,25,19,32

Table 4.4: Top ten features of the datasets

(a) IRIS dataset

Methods Selected features

Proposed 2, 3, 1, 0

CMIM 3, 0, 2, 1

Gain Ratio 0,2, 3, 1

Infogain 3,0,2,1

MIFS 1, 2, 3, 0

MRMR 1, 2, 3, 0

ReliefF 3, 0, 2, 1

SU 2,0,3, 1

(b) Pima dataset

Methods Selected features

Proposed 0, 5, 7, 1, 2

CMIM 6, 1, 2, 5, 7

Gain Ratio 1, 5, 7, 0, 4

Infogain 1, 5, 7, 4, 3

MIFS 6, 0, 3, 2, 7

MRMR 6, 0, 3, 2, 7

ReliefF 1, 4, 7, 3, 5

SU 1, 5, 7, 4, 0

Table 4.5: Top five features of the datasets
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(a) Seed dataset

Methods Selected features

Proposed 0, 5, 6, 1, 3

CMIM 5, 0, 2, 3, 4

Gain Ratio 6, 0, 3, 1, 4

Infogain 0, 1, 4, 3, 6

MIFS 5, 1, 6, 4, 3

MRMR 5, 6, 1, 4, 3

ReliefF 0, 1, 5, 6, 3

SU 0, 6, 1, 4, 3

(b) Wine dataset

Methods Selected features

Proposed 9, 12, 6, 0, 10

CMIM 12, 4, 3, 9, 6

Gain Ratio 11, 6, 9, 12, 0

Infogain 6, 12, 9, 11, 10

MIFS 6, 3, 7, 4, 10

MRMR 6, 7, 3, 4, 10

ReliefF 12, 4, 3, 9, 6

SU 6, 11, 9, 12, 0

Table 4.6: Top five features of the datasets

(a) Sonar dataset

Methods Selected features

Proposed 11,35,29,36,30,31,23,15,16,27

CMIM 9,5,6,11,16,32,3,7,17,21

Gain Ratio 10,11,8,43, 12,53,9,44, 46,47,

Infogain 10,11,8,9,12,47,48,50,46,44

MIFS 9, 26, 59, 58, 56, 55, 57, 54, 53, 52

MRMR 9, 59, 58, 56, 57, 55, 54, 53, 52, 51

ReliefF 11, 35, 10, 9, 20, 8, 44, 36, 30, 19

SU 10,11, 8, 9,12,47,48,44,43,46

(b) XSSD dataset

Methods Selected features

Proposed 3, 6, 4, 0, 8, 2, 9, 1, 7, 5

CMIM 2, 8, 3, 9, 0, 6, 1, 7, 5, 4

Gain Ratio 0, 8, 6, 1, 3, 9, 7, 2, 4, 5

Infogain 6, 3, 8, 0, 1, 7, 9, 2, 4, 5

MIFS 2, 8, 3, 9, 0, 6, 1, 7, 5, 4

MRMR 2, 4, 7, 5, 1, 9, 6, 8, 0, 3

ReliefF 0, 2, 8, 9, 6, 1, 3, 7, 5, 4

SU 0, 8, 6, 3, 1, 7, 9, 2, 4, 5

Table 4.7: Top ten features of the datasets

Table 4.8: Top ten features for the Parkinson dataset

Methods Selected features

Proposed 116,58,118,132,404,419,427,121,23,134

CMIM 6, 4, 5, 10, 11, 139, 541, 565, 567, 568

Gain Ratio 532,389,272,339,354,355,746,356,345,419

Infogain 126,135,133,112,477,59,476,134,136,137

MIFS 6, 0, 230, 33, 505, 35, 10, 139, 517, 11

MRMR 6, 0, 230, 33, 505, 35, 517, 10, 139, 516

ReliefF 199, 198, 197, 196, 195, 194, 193, 192, 191, 190

SU 58,440,404,368,584,132,347,125,476,9
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