Dedicated to

My beloved family

Declaration

I certify that

- The work contained in the thesis is original and has been done by myself under the general supervision of my supervisors.
- The work has not been submitted to any other institute for any degree or diploma.
- I have followed the guidelines provided by Tezpur University in writing the thesis.
- I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the university.
- Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.

Meenakshi Sharma.

Meenakshi Sharma

Department of Computer Science & Engineering Tezpur University

Napaam, Tezpur- 784028, Assam, India.

Dr. Nityananda Sarma Professor Phone: 03712-275356 Fax:03712-267005 E-Mail : nitya@tezu.ernet.in

Certificate

This is to certify that the thesis entitled "Collaborative Approaches to Overlay Spectrum Sharing in Cognitive Radio Networks" submitted to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a record of research work carried out by Meenakshi Sharma under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been submitted else where for award of any other degree.

21.10.2.24

Signature of Supervisor (Nityananda Sarma) Professor Department of Computer Science and Engineering Tezpur University Assam, India-784028

Declaration

I certify that

- The work contained in the thesis is original and has been done by myself under the general supervision of my supervisors.
- The work has not been submitted to any other institute for any degree or diploma.
- I have followed the guidelines provided by Tezpur University in writing the thesis.
- I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the university.
- Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.

Meenakshi Sharma

Dr. Nityananda Sarma Professor Phone: 03712-275356 Fax:03712-267005 E-Mail : nitya@tezu.ernet.in

Certificate

This is to certify that the thesis entitled "Collaborative Approaches to Overlay Spectrum Sharing in Cognitive Radio Networks" submitted to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a record of research work carried out by Meenakshi Sharma under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been submitted else where for award of any other degree.

Signature of Supervisor (Nityananda Sarma) Professor Department of Computer Science and Engineering Tezpur University Assam, India-784028

Certificate

This is to certify that the thesis entitled "Collaborative Approaches to Overlay Spectrum Sharing in Cognitive Radio Networks" submitted by Mrs. Meenakshi Sharma to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science and Engineering has been examined by us on and found to be satisfactory.

The Committee recommends for award of the degree of Doctor of Philosophy.

Signature of Principal Supervisor

Signature of External Examiner

Acknowledgment

I am deeply grateful to everyone who has offered guidance and support throughout my doctoral journey at Tezpur University. Achieving success would not have been possible without the collective effort of numerous individuals who generously extended their support. I extend my heartfelt thanks to all those who supported and assisted me during my time at Tezpur University.

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Nityananda Sarma, for his unwavering support, trust, valuable feedback, encouragement, and countless pieces of advice. He provided me with the freedom to explore my ideas and work at my own pace, and was always accessible to discuss any challenges I encountered. His encouragement and guidance have been instrumental in laying the foundation for the completion of my research work. I have thoroughly enjoyed the years spent with him, both at work and otherwise.

I would like to express my deep appreciation to all the members of my research doctoral committee—Prof. Dilip Kr. Saikia, Dr. Sanjib Kr. Deka, and Dr. Arindam Karmakar—for their invaluable comments and suggestions. I also want to acknowledge the assistance and support provided by the faculty members of the Department of Computer Science and Engineering throughout the course of my research. My heartfelt thanks go out to all the non-teaching staff of the Department for their generous assistance in various aspects of completing this work. Additionally, I extend my sincere gratitude to the members of my thesis review committee and the anonymous reviewers for their invaluable comments and feedback.

I am profoundly thankful to all my friends and juniors, specially Prakash, Monisha, Parhajit, Upasana, Koushik, Prathana, Kunal, Tapas, Pinki, Linus, Amit, Bhargav, Abhinash, and other colleagues from this department. I had the privilege of engaging in intellectual discussions, receiving their encouragement and support, and sharing countless unforgettable moments throughout my PhD journey.

I will forever be thankful to my parents, my in-laws, my sister Neelakshi and all my family members who have consistently provided encouragement and support in every walk of my life. I want to give a special mention to my children, Naman and Pihu, whose love and trust have strengthened me and motivated me to achieve my goals.

I am deeply indebted to my husband - Dr. Nabin Sarmah, whose unending support, inspiration, understanding, trust and love made me pursue my dreams.

I would like to thank the Almighty for giving me the opportunity and blessings to fulfilling my dream.

Finally, I would like to thank those who have directly or indirectly helped me to complete my research work in different capacities.

Meenakshi Sharma

List of Figures

1-1	Frequency allocation chart for United State [36]	2
1-2	Opportunistic Use of Spectrum Holes [7]	3
1-3	Cognitive Radio Network Architecture $[8], [84] \ldots \ldots \ldots$	4
1-4	(a) Bandwidth Sharing (b) Time Sharing	8
2-1	Classification of spectrum sharing techniques	20
2-2	SWIPT architectures $[2, 132]$	31
3-1	Cooperative communication among PU and SU for considered CRN scenario	40
3-2	Generic time-bandwidth sharing model of PU band	41
3-3	(a) Case 1: Bandwidth sharing model (b) Case 2: Time sharing model	41
3-4	Considered PU-SU distribution for proposed scheme	49
3-5	Considered scenario for case analysis	56
3-6	(a) Bandwidth sharing on PU Channel 2 (b) Time sharing on PU channel 1	57
3-7	Workflow diagram of the proposed schemes	58
3-8	Simulation setup for the considered CRN scenario	59
3-9	U_{PU} achieved for corresponding profit and cost value (for Case 1) .	60

3-10	W_A allocation by PU with relay 2 (for Case 1)	61
3-11	U_{PU} achieved for corresponding profit and cost value (for Case 2) .	63
3-12	T_A allocation by PU with relay 3 (for Case 2) $\ldots \ldots \ldots$	63
3-13	Different delays incur in the proposed scheme	65
3-14	Performance comparison of the proposed scheme vs. conventional schemes	69
3-15	Performance comparison of the proposed scheme vs. conventional schemes	70
4-1	Proposed cooperative communication among selected PU-SU pair for considered CRN scenario	77
4-2	Time-slot division model of each frame for PU band	78
4-3	Performance comparison analysis of avg. SUs utility vs. avg. β^*	92
4-4	Avg. utility of PUs	93
4-5	Avg. utility of SUs	93
4-6	Avg. utility of SUs for different number of SUs and PUs $\ . \ . \ .$.	94
4-7	Avg. satisfaction of SUs for different number of SUs and PUs $\ . \ .$.	95
4-8	Performance comparison of proposed approach with existing and random approaches	97
5-1	Proposed cooperative communication scheme among PUs and SUs for considered CRN scenario	103
5-2	Frame wise time-slot division structure of PU band \ldots	104
5-3	Block diagram for many-to-one matching based cooperative com- munication framework	106
5-4	Proposed M20 matching based cooperative communication framework	108
5-5	Avg. utility of PUs vs. varying no. of PUs and SUs in the network	119

5-6	Avg. utility of SUs vs. varying no. of PUs and SUs in the network . 120
5-7	Avg. satisfaction of SUs vs. varying no. of PUs and SUs in the network
5-8	Participation of SUs vs. varying no. of PUs and SUs in the network 124
5-9	Fairness performance of the proposed approach vs. considered approaches
6-1	Considered PU-SU scenario for energy efficient cooperative commu- nication
6-2	Frame-wise time-slot division structure of a PU band for EH and ID 135 $$
6-3	Max. harvested energy vs. optimal allocation of α^* and ρ^* 146
6-4	Max. harvested energy vs. optimal allocation of α^* and ρ^* for varying distances between PT and ST
6-5	Performance analysis of harvested energy vs. achievable rate among different approaches
6-6	Max. system utility vs. optimal allocation of x^* and y^*
6-7	Max. system utility vs. optimal allocation of x^* and y^* for varying distances between ST and PR
6-8	Performance analysis of achievable system utility vs. harvested power among different approaches
6-9	Block diagram for proposed cooperative communication framework 154
6-10	Considered PUs with associated frames
6-11	Preference List (PL) of PUs maintained by SU_i
6-12	Preference Matrix (PM) with dimensions $8 \times 5 \dots \dots \dots \dots \dots \dots 159$
6-13	Final mapping among the cooperative SUs and preferred PU $\ . \ . \ . \ . \ 161$
6-14	Overall utility of secondary network vs. varying no. of PUs and SUs in cooperation process

6-15	Overall satisfaction of SUs vs. varying no. of PUs and SUs in the
	cooperative process
6-16	Participation of SUs vs. varying no. of PUs and SUs in the cooperative process
6-17	(a) Average cooperative capacity of PU (b) Average utility of PUs for varying no. of PUs and SUs

List of Tables

3.1	Notations and Symbols used
3.2	Simulation parameters and their values
4.1	Notations and Symbols used
4.2	Simulation parameters and their values
5.1	Notations and Symbols used
5.2	Simulation parameters and their values
6.1	Notations and Symbols used
6.2	Comparison analysis with existing methods
6.3	Simulation parameters and their values

List of Algorithms

1	Optimal relay selection and W_A allocation for cooperative commu- nication	51
2	Optimal relay selection and T_A allocation for cooperative communication	52
3	Heuristics algorithm to obtain near-optimal resource allocation among PUs and SUs	53
4	Computation of α^* and β^*	34
5	Stable PU-SU pair formation for cooperative communication 8	38
6	Formation of Set NC with tuples of cooperative SUs $\ldots \ldots \ldots$	12
7	M2O matching among cooperative SUs and preferred PUs 11	15
8	Computation of α^* and ρ^* for energy harvesting in Phase 1	14
9	Computation of x^* and y^* for Power Allocation in Phase 2 and 3 14	19
10	Cluster formation and cooperative communication among SUs and preferred PU	57

Glossary of Terms

$5\mathrm{G}$	Fifth-Generation
3G	Third-Generation
AWGN	Additive White Gaussian Noise
AF	Amplify and Forward
BS	Base Station
bps	bits/second
\mathbf{CCC}	Common Control Channel
CR	Cognitive Radio
CRN	Cognitive Radio Network
CSS	Cooperative Spectrum Sharing
CSSC	Cooperative Spectrum Sharing and Communication
CSI	Channel State Information
DF	Decode and Forward
DPS	Dynamic Power Splitting
DSA	Dynamic Spectrum Access
D2D	Device to Device
EE	Energy Efficiency
EH	Energy Harvesting
FCC	Federal Communication Commission
GSM	Global System for Mobile Communication
IEEE	Institute of Electrical and Electronics Engineers
IoT	Internet of Things
ID	Information decoding
MAC	Medium Access Control
Mb	Megabits
MHz	MegaHertz
MIMO	Multiple Input Multiple Output
M2O	Many-to-One
NP-HARD	Non-Deterministic Polynomially Hard

O2O	One-to-One
O2M	One-to-Many
PU	Primary User
\mathbf{PS}	Power Splitting
QoS	Quality of Service
RF	Radio Frequency
SDR	Software Defined Radio
SNR	Signal-to-Noise Ratio
SU	Secondary User
sec	seconds
Avg.	Average
no.	Number
coop.	Cooperative
comm.	Communication
SWIPT	Simultaneous Wireless Information and Power Transfer
TDMA	Time Division Multiple Access
TS	Time Switching
TV	Television
VANET	Vehicular Ad-hoc Network
WRAN	Wireless Regional Area Network

Symbols and Notations

${\mathcal M}$	Set of PUs
\mathcal{N}	Set of SUs
M	Number of primary users
N	Number of secondary users
T	Total access time of PU band
lpha,eta	Time allocation factors
W	Bandwidth of PU band
γ	Bandwidth allocation factor
F	Number of frames in a PU band
P_{PT}	Transmission power of PU
P_{ST}	Transmission power of SU
$h_{PT,ST}$	Channel gain between PT and ST
$h_{ST,PR}$	Channel gain between ST and PR
$h_{PT,PR}$	Channel gain between ST and PR
$DV_{PT,ST}$	Decoding vector used by ST to obtain PT's signal
$EV_{ST,PR}$	Encoding vector used by ST to transmit PT's signal to-
	wards PR
$d_{PT,PR}$	Euclidean Distance between PT and PR (in m)
$d_{PT,ST}$	Euclidean Distance between PT and ST (in m)
$d_{ST,PR}$	Euclidean Distance between ST and PR (in m)
$d_{ST,SR}$	Euclidean Distance between ST and SR (in m)
TR_{PT}^{max}	Maximum transmission range of PT (in m)
$SNR_{PT,ST}$	SNR received at ST from PT
$SNR_{ST,PR}$	SNR received at PR from ST
$SNR_{PT,PR}$	SNR received at PR from PT
N_0	Noise power
$\sigma_{N_0}^2$	Noise variance
R_{PT}^{tar}	Targeted transmission rate of PU

RC_{PT}^{tar}	Targeted resource constraint (in terms of time \times bandwidth) of PU
RC_{ST}^{max}	Maximum PU resource (in terms of time \times bandwidth) used by SU for relaying PU service
RC_{ST}^{rel}	Allotted PU resource (in terms of time \times bandwidth) to SU for relaying PU service
RW_{ST}^{min}	Reward constraint (in terms of time \times bandwidth) of SU on behalf of relaying PU service
RW_{ST}	Allotted reward (in terms of time \times bandwidth) to SU on behalf of relaying PU service
$R_{T_1}^{max}$	Maximum possible decoding rate at ST during T_1 duration
$R_{T_1}^{prop}$	Achieved decoding rate at ST during T_1 duration in proposed scheme.
$EH_{T_1}^{max}$	Maximum possible energy harvesting at ST during T_1 duration
$EH_{T_1}^{prop}$	Achieved harvested energy at ST during T_1 duration in proposed scheme.
HP_{ST}^{prop}	Achieved harvested power at ST in proposed scheme.
$R_{T_2}^{prop}$	Instantaneous achievable rate at PR during T_2 duration in proposed scheme.
$R_{T_3}^{prop}$	Instantaneous achievable rate at SR during T_3 duration in proposed scheme.
TP_{ST}^{ava}	Total power available at ST after energy harvesting.
C_{PT}^{coop}	Cooperative capacity achieved by PU during cooperation with SU
C_{PT}^{direct}	Capacity achieved by PU via direct transmission
EN_{ST}	Energy consumption of SU
ER_{ST}	Expensive rate of SU
C_{ST}	Total capacity achieved by SU during secondary commu- nication
$P_n(\alpha,\beta,\xi)$	Penalty function set by PU for SU
t_{PT}	Tuple of cooperative SUs that prefer PT
PA_{list}	Priority access list
$EH_{T_1}^{prop}$	Achieved harvested energy at ST during T_1 duration through proposed scheme.
$R_{T_1}^{prop}$	Achieved decoding rate at ST during T_1 duration through proposed scheme.

HP_{ST}^{prop}	Achieved harvested power at ST through proposed
	scheme.
TP_{ST}^{ava}	Total power available at ST after energy harvesting.
U_{PU}	Utility of PU
U_{SU}	Utility of SU
GU_{SU}	Gross Utility of SUs
OU_{SN}	Overall utility of secondary networks
SAT_{ST}	Average satisfaction of SUs
$\%P_{ST}$	Percentage of SUs participated in coop. communication
Th_{ST}^{FI}	Throughput fairness index of SUs
λ	Per frequency transmission power rate of an ST
au	Energy consumption rate of ST
ϕ	Gain per unit of data transfer achieved at the Maximal
	Ratio Combining output
ω	Negligible value ≈ 0
δ_{ST}	Amplifying factor at ST
ρ	Power splitting factor
η	Energy conversion efficiency
x,y	Power allocation factors
π	Partition of SUs