

Declaration of Academic Integrity

I do hereby declare that this thesis titled "Development of Polymeric Organogels for the Removal of Toxic Pollutants from Water" represents my ideas in my own words and where other's ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty, integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be caused for disciplinary action as per the rules and regulations of the Institute.

Due acknowledgement to all the related data used from different sources in order to support my research findings have been made wherever necessary. All funding agencies have been duly acknowledged for providing research grants to carry out my research work smoothly.

Kankana Baruah

Date:

Place: Tezpur University

(Kankana Baruah) Department of Chemical Sciences Tezpur University

तेजपुर विश्वविद्यालय / TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament)

Swapan Kumar Dolui Professor Department of Chemical Sciences

Mobile: +91-9957198489 Email: dolui@tezu.ernet.in

CERTIFICATE FROM SUPERVISOR

This is to certify that the thesis entitled "*Development of Polymeric Organogels for the Removal of Toxic Pollutants from Water*" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by Ms. Kankana Baruah under my supervision and guidance at Department of Chemical Sciences, Tezpur University, Assam. She has successfully completed the work.

She has fulfilled all the requirements for submitting the thesis for award of the Degree of Doctor of Philosophy in Science. All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: 16/09/24 Place: Tezpur University

16,9.2024

(Prof. Swapan Kumar Dolui) Supervisor School of Sciences Department of Chemical Sciences Tezpur University Assam, India – 784028

8तेजपुर विश्वविद्यालय / TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament)

Dr. Bipul Chandra Sarma Assistant Professor Department of Chemical Sciences Mobile: 91-8399936229 Phone: 03712 275066 Email: bcsarma@tezu.ernet.in

CERTIFICATE FROM CO-SUPERVISOR

This is to certify that the thesis entitled "Development of Polymeric Organogels for the Removal of Toxic Pollutants from Water" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by Ms. Kankana Baruah under my supervision and guidance at Department of Chemical Sciences, Tezpur University, Assam. She has successfully completed the work.

She has fulfilled all the requirements for submitting the thesis for award of the Degree of Doctor of Philosophy in Science. All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: 19-09-2024 Place: Teppur

Bipul Sarmy.

(Dr. Bipul Chandra Sarma) Co-Supervisor School of Sciences Department of Chemical Sciences Tezpur University Assam, India – 784028

TEZPUR UNIVERSITY

REPORT OF EXAMINERS OF ORAL DEFENCE EVALUATION COMMITTEE

The examiners of Oral Defense Evaluation Committee (ODEC) certify that the thesis entitled "Development of Polymeric Organogels for the Removal of Toxic Pollutants from Water" submitted by KANKANA BARUAH [Regn No. TZ 203897 of 2022] to the Tezpur University in partial fulfillment of requirement of the Ph.D. degree in the discipline of CHEMICAL SCIENCES under the school of SCIENCE has been examined on 7th OCT. 2024 and recommend that the degree be Awarded.

Signature of

Supervisor Name: Prof. Swapan Kumar Dolui [Tezpur University] Date: 08/10/2024

Co-supervisor Name: Dr. Bipul Chandra Sarma [Tezpur University] Date: 07/10/2024 Dr. Bipul Sarma Dept. of Chemical Sciences Tezpur University Tezpur, 784028, Assam, India

External Examiner Name: Prof. Pradeep Kumar Dutta [MNNIT Allahabad] Date: ./10/2024

ODE was conducted through Skype/Video Conferencing where DRC members, other faculty members, research scholars of the department were present, besides the supervisor, co-supervisor and the external examiner.

Memo No.:

Forwarded to Controller of Examination

Signature of Head of the Department

ACKNOWLEDGEMENT

This work would not have been possible to undertake and accomplish without the unwavering support and encouragement of numerous individuals. It is with great honour that I convey my profound gratitude to all those who have generously offered their assistance and steadfastly supported me throughout the arduous journey of attaining my doctoral degree.

I express my deepest appreciation to my esteemed supervisor, Professor Swapan Kumar Dolui, for his invaluable suggestions, constant encouragement, and enlightening mentorship throughout my research tenure. I extend my gratitude, Sir, for assuming the role of a paternal figure in my life and consistently steering me towards the right path, particularly during moments of adversity. Your proficiency and profound insights have significantly influenced the trajectory of my research as it introduced me to the realm of polymer science. I shall forever remain indebted to you.

I would like to express my sincere thanks to my Co-Supervisor, Dr. Bipul Sarma Sir for his guidance and recommendations throughout the process of completing this thesis. The constructive feedback received were of immense help throughout my research work.

I remain obliged to my doctoral committee members, Prof. Robin K. Dutta and Prof. Apurba K. Das Sir for their valuable input and suggestions during the development of this thesis. Their thoughtful critiques and expert advice have significantly enriched the quality of my work. I take this opportunity to offer thanks to the Head, Department of Chemical Sciences, Tezpur University for providing access to the departmental facilities for my research work.

My sincere appreciation to all the technical and non-teaching staff of the Chemical Sciences Department and SAIC for their constant help throughout this journey.

I extend my warm thanks to all my lab mates Priyankamoni Ba, Riku da, Shahnaz, Suman and Asfi along with my lab seniors Simanta Da, Jayashree Ba, Anindita Ba, and Junali ba for their love and encouraging words making this journey fun and beautiful. I would also like to thank members from Crystal Lab, Himanshu, Bikash, Priya, Archita, Akangsha, and Shaswat for their help and support throughout this journey. I express my heartiest love to my friends Rituporno, Shamiran, Snigdha, Nayab, Deepsikha, and Ankita for their good wishes, support, and motivation in all aspects of my research journey.

I gratefully acknowledge Tezpur University for the Research and Innovation Grant alongside the Institutional fellowship for providing financial assistance during my Ph.D tenure.

I am grateful to Mrs. Sutapa Dolui for her motherly care, kindness, and encouragement.

Furthermore, I would like to extend my sincere appreciation and loving gratitude to my mother for her tireless efforts in accompanying me on this arduous journey. Her constant prayers and moral support have served as a pillar of support for my professional aspirations. My sincere love to my sister and brother-in-law for being the biggest support throughout this endeavor. Their belief in my abilities has consistently given me the strength to overcome obstacles encountered during this pursuit. I am thankful to my best friend Gayatri for her unwavering support, understanding, and encouragement which immensely helped me in handling the challenges faced during this phase. And finally, my obeisance to Krsnà for keeping me safe and providing me strength to confront any hurdles that may arise along my path.

Thank you everyone.

April, 2024 Tezpur University

Kankana Baruah

ABBREVIATIONS AND SYMBOLS

%	percentage
٥C	degree centigrade
μm	micrometer
Å	angstrom
λ_{max}	Absorbance maxima
π	pi
δ	delta
θ	theta
a.u.	arbitrary unit
cm	centimetre
As	Arsenic
AMPS	Acrylamido methylpropane sulfonic acid
AO	Acridine orange
APS	Ammonium persulphate
Al-MMT	Aluminium montmorillonite
BET	Brunauer-Emmett-Teller
BET C	Brunauer-Emmett-Teller carbon
С	carbon
C C _i	carbon Initial concentration
C C _i C _f	carbon Initial concentration Final concentration
C Ci Cf Cd	carbon Initial concentration Final concentration Cadmium
C C _i C _f Cd Co	carbon Initial concentration Final concentration Cadmium Cobalt
C Ci Cf Cd Co Cr	carbon Initial concentration Final concentration Cadmium Cobalt Chromium
C Ci Cf Cd Co Cr Cu	carbon Initial concentration Final concentration Cadmium Cobalt Chromium Copper
C Ci Cf Cd Co Cr Cu CBz	carbon Initial concentration Final concentration Cadmium Cobalt Chromium Copper Chlorobenzene

CR	Congo Red
CV	Crystal Violet
D	dipole moment
DCM	Dichloromethane
DEG	Diethylene glycol
DMA	Dimethylacetamide
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
DSC	Differential scanning colorimetry
DTG	Differential thermogram
eV	Electron volt
EBT	Eriochrome black T
EDX	Energy dispersive X-ray spectroscopy
EV	Ethyl Violet/ Ethyl purple
FPBA	Formylphenylboronic acid
FT-IR	Fourier Transform Infrared spectroscopy
g	gram
g/mol	gram per mole
G′	Storage modulus
G″	Loss modulus
hr	hour
Hg	Mercury
H-bonding	Hydrogen bonding
HC1	Hydrochloric acid
HRXRD	High resolution X-ray diffractometer
Hz	Hertz
IR	Infrared
kg	kilogram
Κ	Pottasium

k ₁ , k ₂	rate constants
k _{id}	Intraparticle diffusion constant
K _F	Freundlich isotherm constant
K _L	Langmuir isotherm constant
K _T	Temkin isotherm constant
KBr	Pottasium bromide
log	Logarithm
ln	Natural log
L	litre
Li	Lithium
LMWGs	low molecular weight gelators
o/w	oil in water
mg	milligram
mL	millilitre
mmol	Milli molar
mol	mole
min	minute
М	molar
MB	Methylene blue
МСР	modified clay pani
MBA	Methylenebisacrylamide
МО	Methyl orange
MG	Malachite green
MMT	Montmorillonite
MPa	Mega pascal
MTBE	Methyl ter-butyl ether
MTMS	Methyltrimethoxysilane
MV	Methyl violet/ Gentian violet
MW	Molecular weight

nm	nanometre
Ν	nitrogen
Na	Sodium
Ni	Nickel
NaHCO ₃	Sodium hydrogencarbonate
NCI	non covalent interaction
0	oxygen
Oh	octahedral
ОН	Hydroxyl group
рН	potential of hydrogen
ppm	parts per million
<i>p</i> -TSA	para toluenesulfonic acid
PAni	Polyaniline
PDMS	Polydimethylsiloxane
Pb	Lead
POGs	polymeric organogelators
PPG	polypropyleneglycol
PVA	Polyvinyl alcohol
PVP	Polyvinyl pyrrolidone
PS	Polystyrene
Qe	Adsorption capacity
q _e	adsorption at equilibrium
q _t	adsorption at given time
q _{max}	maximum adsorption
\mathbb{R}^2	Regression coefficient
Re	Removal efficiency
R _L	Separation factor
RB	Round bottom flask
RhB	Rhodium Blue

S	sulphur
SA	Stearic acid
SEM	Scanning Electron Microscopy
t ^{1/2}	half life
Td	tetrahedral
T _d	Degradation temperature
T_{end}	End temperature
Tg	Glass transition temperature
T _m	Melting temperature
T_{max}	Maximum temperature
Tonset	Onset temperature
TDH	Tartaric acid dihydrazide
THF	Tetrahydrofuran
TGA	Thermogravimetric analysis
UV-Vis	Ultraviolet-visible
V	volume
w/o	water in oil
wt%	weight percentage
W	weight
WD	Dried weight
Ws	Swollen weight
WCA	Water contact angle
XRD	X-ray diffractometer
XPS	X-ray photoelectron spectroscopy

LIST OF FIGURES

Figure No.

Figure Caption

Page No.

Chapter 1

Figure 1.1	Polymers finding applicability in everyday life	1
Figure 1.2	Gelation behaviour obtained from solution phase	3
Figure 1.3	Products made up of gels used in daily life	3
Figure 1.4	Classification chart of polymer gels	4
Figure 1.5	Representation of physical crosslinking through hydrogen bonding, $\pi-\pi$ stacking, ionic bonding as well aspermanent crosslinking through the formation of N–C, S–C, Si–O, C–C bonding	6
Figure 1.6	Formation of hybrid crosslinking in polymeric network	7
Figure 1.7	Illustrated scheme of gelation mechanism involved in the formation of physical and chemical organogels	7
Figure 1.8	Types of methods involved in chemical and physical crosslinking	9
Figure 1.9	Thermal and photoresponsive property exhibited by the Azo-mLCP organogel	10
Figure 1.10	Conductive self-healing organogels with stable strain sensitivity at subzero temperatures	11
Figure 1.11	Organogels exhibiting biodegradable properties under ultraviolet radiation	11
Figure 1.12	Morphological images of organogel formed in ethyl acetate (a,b) and acetonitrile (c,d) with low and high magnification respectively	13
Figure 1.13	Pictorial representation of solvent and gelator assembling to form a three -dimensional network structure	14
Figure 1.14	Illustrative diagram of organogel formation through fluid matrix mechanism	17
Figure 1.15	Illustrative diagram of organogel formation through solid matrix mechanism	17

Figure 1.16	Illustrative diagram of organogel formation through polymeric matrix mechanism	18
Figure 1.17	Illustrative diagram of organogel formation through emulsion mechanism	19
Figure 1.18	Water contamination caused by release of (a dye molecules from textile industries, (b) oil spillage in river sources	19
Figure 1.19	Applications of organogel in the removal of dyes, before and after adsorption	21
Figure 1.20	Application of solvent absorption by organogels: (i) Structure of the formed polydimethylsiloxane sorbent and their removal of DCM and crude oil, (ii) Structure of the formed PPG-ICS organogel and absorption of MTBE from aqueous solution	23
Figure 1.21	Schematic illustrations of applications related to organogels	24

Chapter 2

Figure 2.1	FT-IR spectra of the (a) prepared organogels PVSA-OG15, PVSA-OG26, PVSA-OG39, PVSA-OG52 (b) spectra analysis of PVSA-OG52	46
Figure 2.2	Scanning Electron Microscope Imaging of the prepared Organogels (a)PVA, (b) PVSA-OG15, (c) PVSA-OG26, (d) PVSA-OG39, (e) PVSA-OG52	47
Figure 2.3	XRD spectra of the prepared organogels (a) PVSA-OG15, (b)PVSA-OG26, (c)PVSA-OG-39, (d)PVSA-OG52 with respect to PVA	48
Figure 2.4	(a)TGA thermogram, (b) DTG curve of prepared organogels	49
Figure 2.5	(a) DSC curves of prepared organogels (b)prepared organogels in comparison to PVA, SA	50
Figure 2.6	Data of storage and loss modulus from frequency sweep of the organogels (a) PVSA-OG52, (b) PVSA-OG39, (c)PVSA-OG26, (d)PVSA-OG15	50
Figure 2.7	Absorption analysis of all the prepared organogels	51

Figure 2.8	Hydrophobicity data obtained from water contact angle analysis for prepared organogels	52
Figure 2.9	Swelling capacity of PVSA-OG52 with maximum absorbency in different organic solvents	52
Figure 2.10	FT-IR spectra of organogel after absorption of organic solvents	53
Figure 2.11	Kinetics plot for (a) first order, (b) second-order kinetics of the absorbed organogels	53
Figure 2.12	(a)Desorption kinetics graph for the prepared organogels (b)Reusability graph of PVSA-OG52 organogel in DCM	54

Chapter 3 (A)

Figure 3.1	Step wise reactions involved during formation of PACSG organogel	64
Figure 3.2	Hydrophobicity data obtained from water contact angle analysis for the prepared organogels	65
Figure 3.3	FT-IR spectra of (a) the prepared PACSGs, (b)PACSG-26, (c) PACSG-39, (d) PACSG-52	66
Figure 3.4	SEM micrographs of (a) PVA, (b) AMPS, (c) PACSG, (d) cross-linked pores of PACSG	67
Figure 3.5	EDX spectra and elemental determination of the organogel PACSG-52	67
Figure 3.6	(a)TGA thermogram, (b) DTG curve, (c) DSC plot of PACSG-52	68
Figure 3.7	(a) XRD spectra of PACSG-52 gel, (b) data of storage and loss modulus from frequency sweep of PACSG-52	69
Figure 3.8	Swelling analysis of the prepared PACSG-26,39,52 gels in different solvents	70
Figure 3.9	Swelling behavior observed by PACSG-52 gel	71
Figure 3.10	Plot for (a)first order, (b)second order kinetics graph of PACSG-52 gel	71
Figure 3.11	Recyclability data: (a) Solvent absorbance percentage with each cycle, (b) Absorption-desorption cycle of the solvent	72

Figure 3.12	UV-Vis spectra of the adsorbent with time along with digital images of dyes before and after removal by the adsorbent for (a) CV dye, (b) EV dye, and (c) MV dye	74
Figure 3.13	SEM images of the adsorbent after removal of (a)CV, (c)EV, (e) MV dye, FT-IR spectra of the adsorbent after dye removal for (b)CV, (d) EV, and (f) MV dye	75
Figure 3.14	UV-Vis spectrum and optical images of the mixed dyes (a) Ethyl Violet-Congo Red, (b) Ethyl Violet-Eriochrome Black T, (c) Ethyl Violet-Methyl Orange before and after adsorption	77
Figure 3.15	First-order kinetics graph (a,c,e) and second-order kinetics graph (b.d.f) for CV, EV, and MV dyes	78
Figure 3.16	The plot of C_e/q_e vs C_e (Langmuir) for CV, EV, and MV dyes (a,d,g), the plot of ln q_e vs ln C_e (Freundlich) for CV, EV, and MV dyes (b,e,h), the plot of q_e vs ln C_e (Temkin) for CV, EV, and MV dyes (c,f, i)	80
Figure 3.17	The plot of q_t vs $t^{1/2}$ for intra-particle diffusion of (a)CV, (b)EV, and (c)MV dyes	82
Figure 3.18	Schematic representation for the mechanism of adsorption of dyes CV, EV, MV by the organogel	84
Figure 3.19	(a) UV-Vis spectra and (b) bar plot for the recyclability study of the Ethyl Violet dye	85
	Chapter 3 (B)	
Figure 3.20	Morphological images of the bare organogel surface (a-b), surface after adsorption by metal ions Arsenic(c), Lead(d), Cadmium (e) and Chromium (f) from aqueous surfaces	97
Figure 3.21	SEM-EDX analysis of the adsorbed metal ions onto the organogel	98
Figure 3.22	FT-IR spectra after adsorption of metal ions (a)Arsenic, (b)Lead, (c)Cadmium, and (d)Chromium from aqueous surface	98
Figure 3.23	AAS obtained from the adsorption of (a)Arsenic, (b)Lead,	100

- (c)Cadmium, and (d)Chromium ions with usage of organogel
- Figure 3.24Removal percentage (Re) of the metal ions by the sorbent101

Figure 3.25	(a)XPS spectra of the metal adsorbed organogel, Curve fitting of (b)C1s, (c)O1s, (d)S2p, (e)N1s, (f)As3d spectra	102
Figure 3.26	(a) Effect of pH on removal of metal ions, (b) Recyclability study of the As(III) metal by the sorbent	103
Figure 3.27	The plot of $ln(q_e-q_t)$ vs time for (a,c,e,g) and plot of t/qt vs time (b,d,f,h) graph for adsorbed metal Arsenic, Lead, Cadmium, Chromium	104
Figure 3.28	Adsorption isotherm of plot C_e/q_e vs C_e (a,d,g,j), lnq _e vs lnC _e (b,e,h,k), q _e vs ln C _e (c,f, i,l) for adsorbed metal ions Arsenic (III), Lead (II), Cadmium (II), Chromium (III)	106
Figure 3.29	Intra-particle diffusion plot of q_t vs $t^{1/2}$ after metal adsorption	108
Figure 3.30	Mechanistic representation of the bridging linkage to capture metal ions	110
Figure 3.31	Morphological images and SEM-EDX analysis of metal ions after adsorption (a)Nickel, (b)Cobalt, (c)Copper from surface water	110
	Chapter 4	
Figure 4.1	HR-XRD data of (a) prepared MCP compositions (b) Clay	124

Figure 4.2FT-IR spectra of (a) Clay, PAni, composite (b) prepared125MCP composites

and modified composite using Ni filter

- Figure 4.3SEM micrographs of (a) Al-MMT clay (b) MCP composite126
- Figure 4.4Nitrogen adsorption-desorption isotherms of (e) raw clay
(f) prepared MCP composite (inset is the pore distribution
graph)126
- Figure 4.5TGA curves of (a) clay, PAni, composite (b) MCP127composites up to 600 °C
- Figure 4.6Graph of (a) Storage-Loss modulus from frequency sweep128(b) Stress-strain curve of the PMCP gel with varying
amountamount
- Figure 4.7The PMCP gel exhibiting excellent foldable properties and
reverts back to its original shape129

Figure 4.8	Swelling properties observed in PVA-clay, PMCP, PVA- PAni gels	129
Figure 4.9	Swelling behavior of Chlorophenol in PMCP gels	131
Figure 4.10	(a) The plot of $ln(q_e-q_t)$ vs time for first order kinetics and (b) plot of t/q_t vs time graph for second order kinetics involved in solvent absorption	132
Figure 4.11	UV-Visible spectrum depicting the effect of adsorbent dosage at 30 $^{\rm o}{\rm C}$	133
Figure 4.12	UV-Visible spectrum depicting the effect of dye concentrations at 30 $^{\circ}$ C	134
Figure 4.13	UV-Visible spectrum depicting the effect of pH at 30 °C	134
Figure 4.14	UV-Visible spectrum depicting the effect of contact time at $30 \ ^{\circ}\text{C}$	135
Figure 4.15	UV-Visible spectral evolution of dye mixture (a) CR-CV (b) CR-AO (c) CR-MG and their removal at 30 °C for 300min	136
Figure 4.16	(a) UV-Visible spectral evolution of recyclability study of CR dye, (b) Reusability bar graph of CR dye	137
Figure 4.17	(a) The plot of $ln(qe-qt)$ vs time for first order kinetics and (b) plot of t/q_t vs time graph for second order kinetics involved in dye adsorption	137
Figure 4.18	Adsorption isotherm of (a) plot C_e/q_e vs C_e (Langmuir), (b) plot of log q_e vs log C_e (Freundlich) for adsorbed dye	138
Figure 4.19	Intra-particle diffusion plot of q_t vs $t^{1/2}$ for CR dye	139
Figure 4.20	SEM micrographs of PMCP gel (a) before dye adsorption (b) after dye adsorption	141

LIST OF SCHEMES

Scheme No.	Scheme Caption	Page No.
	Chapter 2	
Scheme 2.1	Representation of the interaction between PVA and Stearic acid	42
Scheme 2.2	Reaction steps involved in the formation of the organogel	42
Scheme 3.1	Chapter 3 Schematic illustration of the network of cross-linked organogel PACSG formed	63
	Chapter 4	
Scheme 4.1	Schematic illustration of the formation of MMT-PAni composite	122
Scheme 4.2	Mechanism route to formation of MCP composite and PMCP organogel	123
Scheme 4.3	Mechanistic pathway of the interaction between PMCP organogel and congo red dye	140

LIST OF TABLES

Table No.Table TitlePage No.Chapter 2

Table 2.1	Composition of Polyvinyl Alcohol-based Organogel	43
Table 2.2	Thermal decomposition & weight loss characteristics of the prepared organogels	49
Table 2.3	Thermal decomposition characteristics of the organogels	50
Table 2.4	Kinetic parameters for second-order kinetic graph of absorbed organogels	54

Chapter 3(A)

Table 3.1	Composition chart of the prepared PACSG gels	64
Table 3.2	Parameters for first and second-order kinetic models	72
Table 3.3	Removal efficiency of dyes with concentration before and after removal	74
Table 3.4	Kinetic parameters for first and second-order kinetics plot for adsorbed dye	79
Table 3.5	Parameters for adsorption isotherms of the respective dyes	81
Table 3.6	Parameters for diffusion model of the dyes	83
Table 3.7	A comparative study of the dyes using different gel-based adsorbents	85

Chapter 3(B)

Table 3.8	Metal adsorption percentage with values of initial and final concentration	100
Table 3.9	Isothermic parameters for metal removal obtained from plotted curves	107
Table 3.10	Kinetics parameters for removal of metal ions	109

Table 3.11	List of different adsorbents with adsorption capacity for the	111
	removal of Arsenic	

Chapter 4

Table 4.1	Composition chart of prepared clay-PAni composites with peak position and d-spacing	123
Table 4.2	Surface area, pore volume and pore size of clay and composite	127
Table 4.3	Solvent absorption capacity by the prepared gels	130
Table 4.4	Absorption of phenols by PMCP gels	131
Table 4.5	Parameters for kinetic models of solvent absorption	132
Table 4.6	Kinetic model parameters from dye adsorption	138
Table 4.7	Parameters for adsorption isotherm from CR dye adsorption	139
Table 4.8	Parameters for Weber-Morris model of dye adsorption	139
Table 4.9	Adsorptive study on Congo Red removal by different adsorbents	141