
Chapter 3

A minimal inverse seesaw model

with S4 flavour symmetry

We present a minimal inverse seesaw model with S4 flavour symmetry. The model

extends the standard model by including two right-handed and two standard model

gauge singlet neutrinos to explain the small masses of neutrinos. The model

accurately describes lepton mass spectra and flavour mixing for normal hierarchy

of neutrino masses. The prediction of the model on the Dirac CP-violating phase

is centered around 370.087◦. Furthermore, we calculated the effective Majorana

neutrino mass, |⟨mee⟩|, which is associated with neutrinoless double beta decay

within the allowed region of the model parameters.

3.1 Introduction

It has been established through various experiments [1–4] that neutrinos have

mass and their flavors are mixed. However, according to the Standard Model

(SM), neutrinos are considered to be massless. This suggests that there is physics

beyond the SM. There are various theories that can explain the origin of tiny

neutrino masses. The seesaw mechanism [5–9], radiative seesaw mechanism [10],

and models based on extra dimensions [11, 12] are some of them. One such

framework is the inverse seesaw (ISS) mechanism. In this mechanism, the SM is
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extended by introducing SM gauge singlets and right-handed (RH) neutrinos [13,

14]. In contrast to the canonical seesaw mechanism, the ISS mechanism involves

the heaviness of right-handed neutrinos as well as a small lepton-number violating

mass parameter, here denoted by µ. These parameter causes the suppression of the

neutrino mass, which in turn allows for lighter right-handed neutrinos (TeV-scale)

and O(1) Yukawa coupling. The gauge-invariant Lagrangian of the extension of

the SM can be written as

−Lν = Yν l̄LH̃NR +MR

(
N̄R

)c
(SL)

c +
1

2
µS̄L (SL)

c + h.c., (3.1)

where lL is the left-handed doublet, H is the Higgs doublet,H̃ = iσ2H
∗ with σ2

being the 2nd Pauli matrix, NR are the right-handed neutrino singlets and SL are

the SM gauge singlets. After the Higgs doublet, H acquires vacuum expectation

value (vev), i.e., ⟨H⟩ = v = 174 GeV and breaks the gauge symmetry, the neutrino

mass matrix may be written as

Mν =


0 mD 0

mT
D 0 MR

0 MT
R µ

 , (3.2)

where mD = Yνv is the Dirac mass matrix, MR is a complex matrix and µ is a

complex, symmetric matrix. With µ << mD << MR, diagonalisation of equation

(3.1) lead to

mν = mD

(
MT

R

)−1
µ (MR)

−1mT
D. (3.3)

In the ISS model, with the O(mD) ∼ 102 GeV, the mass of light neutrinos

O(mν) ∼ 0.1 eV may be suppressed by the smallness of µ with O(µ) ∼ 103

eV as well as the heaviness of right-handed neutrino masses O(MR) ∼ 104 GeV.

The heavy neutrinos have a slightly lower mass scale than the canonical seesaw

model. This makes them potentially testable at future colliders. Another aspect

of the flavour structure of the SM is the observed fermion mixing. For the lepton

sector, experimental evidence shows two large and a small mixing angles, how-

ever, the origin of such mixing patterns is still unanswered. The answer to such



57 Chapter 3

a problem can be given by introducing non-Abelian discrete flavour symmetries

into the Lagrangian of the model [15–17]. Various models based on A4 [18–25], S4

[26–39], A5 [40, 41], etc. have been proposed over the years to explain the observed

lepton flavour mixing pattern. In models based on non-Abelian discrete symme-

tries, the discrete symmetry which is exact at a high-energy scale breaks down

distinctly leaving residual symmetry in the charged-lepton and neutrino sectors at

low-energy scales. This breaking pattern is governed by the vev of the scalar field

known as flavons (singlets under SM gauge symmetry) and eventually determines

the lepton flavour mixing pattern.

In the work presented in this chapter we investigate the ISS model with S4

flavour symmetry and analyze its ability to account for neutrino masses, mixing,

and CP violation. We work in the framework with minimal ISS(2, 2) which is the

minimal possible form of ISS mechanism that can account for the neutrino mass

spectra [42]. The resulting neutrino mass matrix is tested against the neutrino

experimental data using chi-squared analysis. We further explore the implications

of the model for neutrinoless double beta decay.

The rest of the chapter is structured as follows. In section 3.2, we construct

the S4 flavour symmetric inverse seesaw model with two right-handed and two

SM gauge singlet neutrinos. Section 3.3 includes the numerical analysis and the

results of the model presented in section 3.2. We investigate the viability of the

model to explain the latest data from neutrino oscillation experiments using chi-

squared analysis. Further, we define the allowed region of the parameters of the

model corresponding to χ2 ≤ 30 values. This section also includes the results on

neutrinoless double beta decay predicted by the model and we finally summarise

our conclusions in section 3.4. In Appendix B we give a brief description of the

S4 group. The scalar sector and details of the vacuum alignments are included in

Appendix B.
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3.2 The Model

We consider the extension of the SM by including additional S4 flavour symmetry.

It is further augmented with Z3 × Z4 group to achieve the desired structures for

the mass matrices. The fermion sector of the model includes the addition of

two right-handed neutrinos and two SM gauge singlet fermions to the SM fermion

content, resulting in ISS(2, 2) framework. In the scalar sector, we have one SU(2)L

Higgs doublet H, and SU(2)L singlet flavons ϕc, φc, ϕν , χ, ψ. Table 3.1 presents

the transformation properties of the various fields of the model under different

symmetry. The Yukawa Lagrangian which is invariant under the flavour symmetry,

is of the form

−L ⊃α1

Λ
l̄LHφceR +

α2

Λ
l̄LHφc(µR, τR) +

α3

Λ
l̄LHϕc(µR, τR) (3.4)

+
β1
Λ
l̄LH̃φνNR + γ1N̄RξS1 + γ2N̄RξS2 + λ1S1S1ψ + λ2S2S2ψ + h.c.,

where α1, α2, α3, β1, γ1, γ2, λ1, and λ2 are the Yukawa coupling constant.

The vev of the flavons in the charged-lepton sector are ⟨φc⟩ = (vφc , 0, 0),

⟨ϕc⟩ = (vϕc , 0, 0) [43]. The charged-lepton mass matrix obtained after flavour

and electroweak symmetry breaking is of the form,

ml =
v

Λ


α1vφl 0 0

0 α2vφl + α3vϕl 0

0 0 α2vφl − α3vϕl

 . (3.5)

The hierarchy of charged leptons can be explained using the Froggatt-Nielsen

mechanism, following the approach presented in [43]. For the neutrino sector, we

assume that the flavons develop vev in a region of the scalar potential’s parameter

space where1

⟨φν⟩ = (vφν1 , vφν2 , vφν3 ), ⟨ξ⟩ = (vξ, vξ), ⟨ψ⟩ = vψ. (3.6)

After electroweak gauge and flavour symmetry breaking, we get the following

1The details of the scalar sector and vacuum alignments are shown in appendix Appendix.
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Field lL eR (µR, τR) H NR S1 S2 φc ϕc φν ξ ψ

S4 31 11 2 11 2 11 12 31 32 31 2 11

Z3 1 ω2 ω2 ω 1 1 1 1 1 ω 1 1

Z4 i 1 1 1 i i i i i 1 1 -1

Table 3.1: Field content of the model and their charge assignment under S4×

Z3×Z4.

matrices for the mass term and couplings

mD =


b c

a b

c a

 , MR =

d d

d −d

 , µ =

e 0

0 e

 , (3.7)

where a = β1
Λ
vvφν1 , b =

β1
Λ
vvφν2 , c =

β1
Λ
vvφν3 , d = γ1vξ ≃ γ2vξ, and e = λ1vψ ≃

λ2vψ.

Using the matrices of equation (3.7) in the inverse seesaw formula (equation

(3.3)), the light neutrino mass matrix becomes

mν = m0


1 + β2 α + β β(1 + α)

α + β 1 + α2 α(1 + β)

β(1 + α) α(1 + β) α2 + β2

 , (3.8)

where we have defined two complex dimensionless parameters α = a/b, β = c/b

and the factor m0 denotes the mass scale. The light neutrino mass matrix of

equation (3.8) is diagonalized by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

mixing matrix, UPMNS

U †
PMNSmνU

∗
PMNS = diag(m1,m2,m3), (3.9)

with m1, m2, and m3 being the mass eigenvalues. In standard PDG parametriza-
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tion, the PMNS mixing matrix is given by

UPMNS =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12c23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

PM ,

(3.10)

where,

PM =


eiρ 0 0

0 eiσ 0

0 0 1

 . (3.11)

In the model under study, the lightest neutrino mass m1(m3) is zero in the

case of the Normal Hierarchy (Inverted Hierarchy) of neutrino masses. It is worth

noting that for m1 = 0 (NH), the Majorana CP phase ρ is zero and in the case

of IH with m3 = 0 the phases can be redefined as (σ − ρ) → σ. Thus, the

model has a single Majorana CP phase and the phase matrix effectively becomes

PM = diag(1, eiσ, 1).

3.3 Numerical Analysis and Results

As discussed in the previous section, we have considered the extension of SM by

including two RH neutrinos and two SM gauge singlets resulting in a framework

known as the ISS(2,2) model. We have shown how S4 flavour symmetry can

be implemented in such a framework and we have obtained the light neutrino

mass matrix as shown in equation (3.8). The neutrino mass matrix of equation

(3.8) contains four real parameters (Re(α), Im(α), Re(β), Im(β)) that effect the

neutrino mixing matrix elements. In this section, we will perform a numerical

analysis to test the model against the experimental data. We proceed by writing

the neutrino oscillation parameters (θ12, θ23, θ13, ∆m
2
21, ∆m

2
31(32), δCP ) in terms

of the model parameters and scrutinize the ability of the model to explain the

neutrino experimental data [44].
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Using the light neutrino mass matrix we can define the hermitian matrix,

hν = mνm
†
ν such that

hν = m2
0


A B C

B∗ D E

C∗ E∗ F

 , (3.12)

with,

A =|1 + β2|2 + |α + β|2 + |β(1 + α)|2

B =(1 + β2)(α + β)∗ + (α + β)(1 + α2)∗ + (β + αβ)(α + αβ)∗

C =(1 + β2)(β + αβ)∗ + (α + β)(α + αβ)∗ + (β + αβ)(α2 + β2)∗

D =|(α + β)|2 + |(1 + α2)|2 + |(α + αβ)|2

E =(α + β)(β + αβ)∗ + (1 + α2)(α + αβ)∗ + (α + αβ)(α2 + β2)∗

F =|β(1 + α)|2 + |(α + αβ)|2 + |(α2 + β2)|2.

The analytical relations between the elements of the hermitian matrix hν and the

three mixing angles as well as the Dirac CP-violating phase can be written as [45]

tan θ23 =
Im(B)

Im(C)

tan 2θ12 =
2N12

N22 −N11

tan θ13 = |Im(E)| ·

√
{[Im(B)]2 + [Im(C)]2}2 +G2√
{[Im(B)]2 + [Im(C)]2}J2

tan δCP = − [Im(B)]2 + [Im(C)]2

G
, (3.13)

where the quantities N11, N12, and N22 is expressed as

N11 = A− J

Im(E)

N12 =

[
J2

[Im(B)]2 + [Im(C)]2
+

[
G2

{[Im(B)]2 + [Im(C)]2}2
+ 1

]
[Im(E)]2

] 1
2

N22 =
[Im(C)]2D + [Im(B)]2 F − 2Im(B)Im(C)Re(E)

[Im(B)]2 + [Im(C)]2
(3.14)
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Parameter Best-fit ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269 - 0.343

sin2 θ23 (NH) 0.573+0.018
−0.023 0.405 - 0.620

sin2 θ23 (IH) 0.578+0.017
−0.021 0.410 - 0.623

sin2 θ13 (NH) 0.02220+0.00068
−0.00062 0.02034 - 0.02340

sin2 θ13 (IH) 0.02238+0.00064
−0.00062 0.02053 - 0.02434

∆m2
21

10−5eV2 7.42+0.21
−0.20 6.82 - 8.04

|∆m2
3l|

10−3eV2 (NH) 2.515+0.028
−0.028 2.431 - 2.599

|∆m2
3l|

10−3eV2 (IH) 2.498+0.028
−0.029 2.584 - 2.413

Table 3.2: Latest experimental data on neutrino oscillation considered in our

analysis [44].

and,

G = Re(B)Im(B) +Re(C)Im(C)

J = Re(B)Im(C)− Im(B)Re(C)

It is clear that for a specific point in the four-dimensional parameter space

of the model, there is a certain value of the experimental observables given by

equation (3.2). Consequently, any variation in the model parameters changes the

value of the neutrino oscillation parameters resulting from the model. In order to

test the model against the latest experiment data on neutrino mixing parameters,

we define a χ2-function and perform a numerical simulation using a sampling

package MultiNest [46]. The χ2-function used in our analysis has the following

form

χ2 =
∑
i

(
Pi(p)− P 0

i

σi

)2

, (3.15)

where Pi(p) is the value of the observables predicted by the model at a point p in

the four-dimensional parameter space of the model, P 0
i and σi denotes the central

value, and the corresponding 1σ error of the ith experimental observable. The ex-
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Figure 3.1: Allowed region for the model parameters Re(α), Im(α), Re(β), and

Im(β).

perimental values of the neutrino observables used in our analysis are summarised

in Table 3.2. In equation (3.15), we do not consider the Dirac CP-violating phase

δCP as an input. The reason is the weak statistically preferred value of maximally

violating CP phase from global experimental data. To carry out the test we treat

the parameters of the model to be free and allow them to randomly vary in the

following range

Re(α), Im(α), Re(β), Im(β) ∈ [−10, 10]. (3.16)

The values for the three mixing angles and the Dirac CP violating phase can

be obtained using equation (3.13). The best-fit values of the model parameter

correspond to the minimum value of χ2. We found that the model provides a good

description of the experimental data for NH of neutrino masses with a minimum

chi-squared value of approximately 0.24. However, it fails to describe the data

for IH where the minimum chi-squared value is greater than 100. The figure 3.1

displays the allowed region of the model’s parameter space. The colors represent

the range of values for χ2. Here, we have shown the values of the parameters of

the model corresponding to χ2 ≤ 30. The best-fit values of the model parameters
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Figure 3.2: Correlation between the neutrino oscillation parameters with the color

indicating the ranges of χ2 values.

sin2 θ12 sin2 θ23 sin2 θ13 δCP/
◦ ∆m2

21 (eV 2) ∆m2
31 (eV 2)

0.303 0.575 0.0225 370.087 7.42× 10−5 2.510× 10−3

Table 3.3: The best-fit values for the neutrino oscillation parameters from χ2

analysis.

obtained by minimizing the χ2-function are Re(α) = 0.314, Im(α) = −0.255,

Re(β) = 1.293, and Im(β) = 0.032 in NH 2. Figure 3.2 shows how well the

model describes the neutrino oscillation experimental data for the case of NH

of neutrino masses. The color bar represents the value of χ2 ranging from 1 to

30. The best-fit values of the neutrino oscillation parameters obtained from the

model are summarized in Table 3.3. The parameters sin2 θ12, sin2 θ23, sin2 θ13

and the two mass-squared differences have best-fit values which fall within the

2In our analysis we have accepted only the points that satisfy χ2 ≤ 30, hence, no further

analysis is done for the case of IH.
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Figure 3.3: Range of values for the mass scale, m0 and the sum of light neutrino

masses,
∑

imi.

1σ range of experimental values shown in Table 3.2. The value of the Dirac

CP-violating phase δCP corresponding to the χ2
min value is 370.078◦, which is

within the 3σ range of neutrino oscillation data. The model presented in the

previous section offers a reasonable explanation of the most recent experimental

data. Its prediction regarding δCP can be put to the test in forthcoming precision

experiments. In Figure 3.3 we present the sum of neutrino masses as a function of

the mass scale,m0 which effectively influences the absolute neutrino masses. There

is a cosmological upper bound on the sum of the light neutrino masses,
∑

imi <

0.12 eV [47–50] and our model shows a consistent value ranging from 56.67 to

61.12 meV. The effective Majorana neutrino mass |⟨mee⟩| that characterizes the

process of neutrino-less double beta decay (0νββ) is given by

|⟨mee⟩| = |
∑
i

miU
2
ei| = |c212c213m1e

iαM + s212c
2
13m2e

iβM + s213e
−2iδCP | = |(mν)11|

(3.17)

From equation (3.17) we can see that the effective Majorana neutrino mass de-
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Figure 3.4: The effective Majorana electron neutrino mass, |⟨mee⟩| as a function

of the sum of light neutrino masses,
∑

imi.

pends on the Majorana phases as well as the Dirac CP phase and can be given

as the (1, 1) element of the neutrino mass matrix of equation (3.8). We used the

parameter space illustrated in Figure 3.1 to assess the magnitude of |⟨mee⟩|. Our

findings are presented in Figure 3.4, where it can be seen that the predicted values

of |⟨mee⟩| fall within the range of 6.25-8 meV. This value is significantly lower than

the sensitivity limit of 0νββ experiments.

3.4 Conclusion

In this chapter we examined the minimal form of the inverse seesaw model ISS(2, 2)

with S4 flavour symmetry. The S4 flavour symmetry helps determine the structure

of the mass matrices and the mixing pattern in the leptonic sector. We performed

a test and studied how well the model describes the experimental data using χ2

analysis. We found that the model describes the experimental neutrino data for
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NH of neutrino masses with the best-fit value at χ2
min ≈ 0.24. The model, however,

rules out the case of IH of neutrino masses, with χ2
min > 100. The prediction of

the Dirac CP phase at the best-fit point is δCP ≈ 370.087◦ which can be tested

in future precision experiments. Prediction of the model on effective Majorana

neutrino mass is also made. The points in the parameter space that satisfy χ2 ≤

30 have been considered the allowed region for the model parameters. Using

this allowed region of the model parameters we evaluate the effective Majorana

neutrino mass and found that the obtained values are very small to be tested in

future experiments. Experiments such as T2K and NOνA can resolve the octant of

the mixing angle θ23 and give a precision measurement on Dirac CP-violating phase

δCP , which will help us validate our model. Further, the constrained parameter

space obtained from our model may be used to study low-scale leptogenesis and

is left for future work.
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