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the cell viability by LDH release assay for Triton-X treated cells 

with respect to TNP and HNP treated cells, #p < 0.05. Values are 

mean ± SD of triplicate determinations. 
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ng/mL). (I) Box and whisker plots represent average neurite 

outgrowth per cell (in µm). (J) Bar graph showing the percentage of 
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(A) Effect of small synthetic inhibitors of major signaling pathways 

on neuritogenesis potency of custom peptides (TNP, and HNP, 100 

ng/mL equivalent to 71nM), and NGF (positive control, 100 ng/mL) 

in PC-12 cells. Significance of difference in the percent 
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when no inhibitor was added, #p < 0.05. Significance of difference 
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U0126, and LY294002) and without inhibitors, #p < 0.05 (B) Effect 

of anti-TrkA, TrkB, TrkC antibody (1:1000) on neuritogenesis 

potency of custom peptides (TNP, and HNP, 100 ng/mL equivalent 

to 71nM), and NGF (positive control) in PC-12 cells. Significance 
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SD of triplicate determinations. 
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PT-induced cell death. The viability of PC-12 cells was determined 
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(100 ng/mL, ~71 nM) or vitamin C (10000 ng/mL) for 4 h followed 
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cells; #p < 0.05, a significant difference between PT-treated cells 

with respect to mouse 2.5S-NGF and custom peptide pre-

treated PC-12 cells. ^p < 0.05, a significant difference of mouse 

2.5S-NGF treated cells with respect to the peptide (TNP and HNP) 

treated cells. (B) Treatment of cells with PT for 24 h followed by 

treatment with custom peptide for 4h. There is no significant 

difference in the cell viability in PT-treated cells with respect to 

mouse 2.5S-NGF, Vit C, and peptide post-treatment. (C) The cells 

were simultaneously treated with custom peptides and PT for 24 h 

followed by an assay of cell viability. There is no significant 

difference in the cell viability in PT-treated cells with respect to 

mouse 2.5S-NGF, Vit C, and peptide co-treatment. Values are mean 

± SD of triplicate determinations. 

Determination of the optimum time and doses of peptide for 

neuroprotective activity against PT-induced toxicity. Time and 

dose-dependent neuroprotective activity was determined by MTT 

and LDH assay in PC-12 cells. (A) Pre-treatment of cells with 

custom peptides (100 ng/mL, ~ 71 nM) at a different time interval 

(0.5 h - 6 h) followed by PT treatment for 24 h at 37°C in a CO2 

incubator. *p < 0.05, a significant difference between untreated 

(control) and PT-treated cells; #p < 0.05, a significant difference of 

PT-treated cells with respect to custom peptide (TNP and HNP) pre-

treated PC-12 cells for different time intervals (0.5 - 6 h). 

Significance of difference in the percent cell viability of custom 

peptide pre-treated cells incubated for 1 h with respect to 0.5-6 h, ^p 

< 0.05. (B) Pre-treatment of cells with different concentrations of 

custom peptides (12.5 ng/mL to 500 ng/mL) for 1h (optimum time) 

followed by PT treatment for 24 h at 37°C in a CO2 incubator (C) 

LDH release assay to determine the protective effects of custom 

peptides on the LDH release of PT-induced PC-12 cell cytotoxicity 

when pre-treated with different concentrations of custom peptides 

(25 ng/mL to 500 ng/mL) for 1h followed by PT treatment for 24 h 

at 37°C in a CO2 incubator. *p < 0.05, a significant difference 

between untreated (control) and PT-treated cells; #p < 0.05, a 

significant difference of PT-treated cells with respect to custom 

peptide (TNP and HNP) pre-treated PC-12 cells for different time 

intervals (0.5-6 h). Significance of difference in the percent cell 

viability of custom peptide pre-treated cells at the dose of 100 

ng/mL with respect to 12.5-500 ng/mL, ^p < 0.05. Values are mean 

± SD of triplicate determinations. 

Determination of PT-induced intracellular ROS generation and its 

reversal by pre-treatment with custom peptide (12.5 ng/mL to 500 

ng/mL) and Vitamin C (positive control, 10000 ng/mL) for 1 h 

 

 

 

 

 

 

 

 

 

 

 

 

 

101-102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103-104 

 

 



xxii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.13 

 

 

 

 

 

 

4.14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

followed by the PT treatment for 24 h at 37°C in a CO2 incubator. 

The ROS generation was determined by using an H2DCFDA 

fluorescence probe and expressed as a fold change value with 

respect to the control (1x PBS). (A) Determination of in vitro 

concentration-dependent (25-250 ng/mL) DPPH radical-scavenging 

activity of custom peptides. *p < 0.05 significant difference between 

different concentrations of custom peptide HNP; #p < 0.05 

significant difference between the different concentrations of vit C. 

(B-D) Flow cytometric determination of intracellular ROS. (E) Bar 

graph representing quantitative analysis of the intracellular ROS 

generation (expressed by fold change value with respect to control) 

determined by flow cytometry analysis. *p < 0.05, a significant 

difference between untreated (control) and PT-treated cells; #p < 

0.05, a significant difference of PT-treated cells with respect to 

custom peptides (TNP and HNP) and vit C pre-treated cells. 

Significance of difference in the fold change value in between TNP 

and HNP at the dose of 12.5 to 100 ng/mL, ^p < 0.05. Values are 

mean ± SD of triplicate determinations. 

Spectrofluorometric determination of intracellular ROS. *p < 0.05, a 

significant difference between untreated (control) and PT-treated 

cells; #p < 0.05, a significant difference of PT-treated cells with 

respect to custom peptides (TNP and HNP) and Vit C pre-treated 

cells. Significance of difference in the fold change value between 

TNP and HNP at the dose of 12.5 to 100 ng/mL, ^p < 0.05. Values 

are mean ± SD of triplicate determinations. 

Reversal of PT-induced disruption of mitochondrial membrane 

potential (MMP) of PC-12 cells pre-treated with custom peptides 

(100 ng/mL, ~71 nM) for 1 h followed by the PT treatment for 24 h 

at 37°C in a CO2 incubator. The PT-treated (10 mM) PC-12 cells 

pre-treated with or without custom peptide (~71 nM) were observed 

for the measurement of the ratio of red/green fluorescence intensity 

by JC-1 staining. (A) Confocal images of PC-12 cells stained with 

JC-1 dye to measure the MMP micrographed at the magnification of 

40X. JC-1 red fluorescence represents normal MMP, whereas JC-1 

green fluorescence indicates damaged MMP. The scale bar indicates 

the length as 20 µm. (B) Bar diagram representing the ratio of 

red/green fluorescence intensity quantified using Image J software. 

(C) The fluorescence signal intensity of JC-1 monomer and JC-1 

aggregates was determined by flow cytometry analysis. Carbonyl 

cyanide m-chlorophenyl hydrazone (CCCP) is a mitochondrial 

uncoupling agent that depolarises the mitochondria taken as a 

positive control. (D) Bar graph representing quantitate analysis of 

the red and green fluorescence intensity detected by the flow 
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cytometry.  *p < 0.05, a significant difference between untreated 

(control) and PT-treated cells; #p < 0.05, a significant difference of 

PT-treated cells with respect to custom peptides (TNP and HNP) 

pre-treated cells. Significance of difference in fluorescence intensity 

between TNP and HNP, ^p < 0.05. Values are mean ± SD of 

triplicate determinations. 

Effects of the custom peptide (100 ng/mL) on inhibition of PT-

induced apoptosis in PC-12 cells pre-treated with custom peptides 

(100 ng/mL, ~71 nM) for 1 h followed by the PT treatment for 24 h 

at 37°C in a CO2 incubator. (A) The fluorescence intensity of 

Annexin V-FITC and Propidium iodide (PI) was determined by flow 

cytometry. (B) The bar graph represents a quantitative analysis of 

the percent cell death determined by flow cytometry analysis. *p < 

0.05, a significant difference between untreated (control) and PT-

treated cells; #p < 0.05, a significant difference of PT-treated cells 

with respect to custom peptides (TNP and HNP) pre-treated cells. 

Significance of difference in percent cell death between TNP and 

HNP, ^p < 0.05. Values are mean ± SD of triplicate determinations. 

 

Effects of the custom peptide (100 ng/mL) on inhibition of PT-

induced apoptosis in PC-12 cells pre-treated with custom peptides 

(100 ng/mL, ~71 nM) for 1 h followed by the PT treatment for 24 h 

at 37°C in a CO2 incubator. (A) Confocal microscopic analysis of 

changes in the cellular and nuclear morphology of PC-12 cells by 

DAPI staining at the magnification of 40X. The red arrows indicate 

cells with membrane blebbing and shrunken nuclei, and the white 

(solid) arrows indicate secondary cellular necrosis. The scale bar 

indicates the length of 20 µm. (B) The bar diagram shows the 

percent cell death determined from the changes in the cellular and 

nuclear morphology with respect to the control (1x PBS). The 

intensity of the DAPI staining was determined using Image J 

software. *p < 0.05, a significant difference between untreated 

(control) and PT-treated cells; #p < 0.05, a significant difference of 

PT-treated cells with respect to custom peptides (TNP and HNP) 

pre-treated cells. Significance of difference in percent cell death 

between TNP and HNP, ^p < 0.05. Values are mean ± SD of 

triplicate determinations. 

The qRT-PCR analysis to show the expression of key pro-/anti-

apoptotic genes in PC-12 cells post-treatment with paraquat (10 

mM) for 12 h, and comparison with the custom peptides (100 

ng/mL, ~71 nM) /mouse 2.5S-NGF (positive control, 100 ng/mL) 

pre-treatment for 1 h followed by the PT treatment for 12 h at 37°C 

in a CO2 incubator. The expression of mRNA was normalized using 
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the housekeeping gene GAPDH. *p < 0.05, a significant difference 

between untreated (control) and PT-treated cells; #p < 0.05, a 

significant difference of PT-treated cells with respect to custom 

peptides (TNP and HNP)/mouse 2.5S-NGF pre-treated cells. Values 

are mean ± SD of triplicate determinations.  

(A) Venn diagram showing the common intracellular proteins 

among untreated (control) (CT), PT (PT) treated, and HNP pre-

treated followed by PT-treated (PHNP) groups of PC-12 cells 

determined by LC/MS-MS analysis. (B) Venn diagram showing 

common intracellular proteins among untreated (control) (CT) and 

only HNP-treated PC-12 cells determined by LC/MS-MS analysis. 

Molecular network of HNP-mediated neuroprotection drawn in 

Cytoscape (version 3.9.1). The molecular network shows the 

multiple pathways that are interconnected to each other and 

involved in the HNP-mediated neuroprotection. The proteins 

involved in the pathways were determined by LC/MS-MS analysis. 

The proposed neuroprotection mechanism of custom peptides 

against PT-induced neurotoxicity in PC-12 cells.   
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Custom peptide interaction of TNP (left) and HNP (right) 

complex with (A) CED9, (B) PMK2, (C) CAM1-IG domain, 

and (D) CAM1-FZ domain shown in cartoon representation. 

Root mean square deviation (RMSD) plot of TNP (left) and 

HNP (right) complex with (E) CED9, (F) PMK2, (G) CAM1-IG 

domain, and (H) CAM1-FZ domain. 

Confocal microscopic (40 X) studies of the in vivo binding of 

FITC-custom peptides to C. elegans for 2h. (A) Dose-dependent 

(12.5 µg/mL – 100 µg/mL) binding of custom peptides to the C. 

elegans. The scale bar indicates the length as 100 µm. (B) Bar 

graph representing fluorescence intensity between the treatment 

groups; *p < 0.05, a significant difference between 12.5 µg/mL 

and 25 µg/mL dose of FITC-conjugated peptides to C. elegans, 
#p < 0.05, a substantial difference between 25 µg/mL and 50 

µg/mL dose of FITC-conjugated peptides to C. elegans. (C) 

Time-dependent (1 h – 4 h) binding of custom peptides (50 

µg/mL) to the C. elegans. (D) Bar graph representing 

fluorescence intensity between the treatment groups (E) 

Microscopic image of the custom peptide binding to C. elegans 

in pre-treatment, post-treatment, and co-treatment conditions 

(with various concentrations of PT). The scale bar indicates the 

length as 100 µm. (F) Bar graph representing fluorescence 

intensity between the treatment groups; Significant difference 

between the pre-treatment, post-treatment, and co-treatment 
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with FITC-custom peptide HNP compared to binding of only 

FITC-conjugated HNP to C. elegans, #p < 0.05. 

(A) Confocal microscopic (40 X) studies of the in vivo binding 

of FITC-custom peptides (50 µg/mL, 2 h) to CAM-1 mutant and 

compared with wild-type N2 strain C. elegans. The scale bar 

indicates the length as 100 µm. (B) Bar graph representing 

fluorescence intensity between the CAM-1 mutant and N2 

strains. *p < 0.05, a significant difference between CAM-1 

mutant and N2 strain of C. elegans. Values are mean ± SD of 

triplicate determinations. 

Determination of the effect of the custom peptide on PT-induced 

death of C. elegans. (A) worms were pre-incubated with mouse 

2.5S-NGF (50 µg/mL)/quercetin (50 µg/mL, positive control) / 

vitamin C (100 µg/mL, positive control) and progressive 

concentration of custom peptides (12 µg/mL - 100 µg/mL) 

followed by the PT (10 mM) treatment. *p < 0.05, a significant 

difference between untreated (control) and PT-treated cells; #p < 

0.05, a significant difference between PT-treated cells and 

quercetin/ mouse 2.5S-NGF/ vitamin C and custom peptide pre-

treated C. elegans. ^p < 0.05 Significance of difference in 

different concentrations for custom peptides. (B) worms were 

pre-incubated with quercetin (50 µg/mL, positive control) and 

custom peptides (50 µg/mL) for 2 h, 12 h, and 24 h followed by 

the PT (10 mM) treatment. *p < 0.05, a significant difference 

between untreated (control) and PT-treated cells; #p < 0.05, a 

significant difference between PT-treated cells and quercetin 

(positive control) and custom peptide pre-treated C. elegans. ^p 

< 0.05, a significant difference between quercetin pre-treated C. 

elegans and the peptide (TNP and HNP) pre-treated C. elegans. 

(C) Worms were incubated with PT (10 mM) for 1 h and treated 

with custom peptides (12 µg/mL to 100 µg/mL). Freshly 

prepared custom peptides were added after 12 h of pre-

incubation for 24 h pre-incubation condition. Worms were 

counted under a stereo zoom microscope for 30 s up to 24 h of 

treatments. Values are mean ± SD of triplicate determinations. 

(D) Determination of the effect of the custom peptides on PT-

induced death of cam-1 mutant compared with wild type N2 

strain of C. elegans. Worms were pre-incubated with custom 

peptides (50 µg/mL) followed by the PT (10 mM) treatment. 

Percent neutralization was calculated against only paraquat-

treated worms. *p < 0.05, a significant difference between wild-

type and cam-1 mutant strain. (E) Restoration of chemosensory 

behavior in C. elegans pre-treated with custom peptides. 
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Synchronized L4 stage C. elegans wide-type strain N2 was 

incubated with or without 50 µg/mL custom peptides. They 

were then subjected to PT-treatment (10 mM) and a 

chemosensory assay. *p < 0.05, a significant difference between 

untreated (control) and PT-treated cells; #p < 0.05, a significant 

difference between PT-treated cells and quercetin (positive 

control) and custom peptide pre-treated C. elegans. ^p < 0.05, a 

significant difference between quercetin pre-treated C. elegans 

and the peptide (TNP and HNP) pre-treated C. elegans. Values 

are means ± SD of triplicate determinations.  

Determination of PT-induced intracellular ROS generation and 

its reversal by pre-treatment with custom peptide in wild type 

N2 strains of C. elegans. The ROS generation was determined 

by using an H2DCFDA fluorescence probe. (A) 

spectrofluorometric determination of intracellular ROS. *p < 

0.05, the significant difference between untreated (control) and 

PT-treated worms; #p < 0.05, the significant difference between 

PT-treated and custom peptide-treated worms. (B) confocal 

microscope images of nematodes expressing ROS. The scale bar 

indicates the length as 100 µm. (C) Bar graph representing 

dosimetry analysis of confocal images to quantitate the 

intracellular ROS generation. Error bars indicating SD (n=3). *p 

< 0.05, the significant difference between untreated (control) 

and PT-treated worms; #p < 0.05, the significant difference 

between PT-treated and custom peptide-treated worms. ^p < 

0.05, a significant difference between Vit C/ mouse 2.5 S-NGF 

pre-treated C. elegans and the peptides (TNP and HNP) pre-

treated C. elegans. Values are means ± SD of triplicate 

determinations. (D) confocal microscope images of nematodes 

expressing ROS. The scale bar indicates the length as 100 µm. 

(E) Bar graph representing dosimetry analysis of confocal 

images to quantify intracellular ROS generation. (F) Confocal 

images of C. elegans showing reversal of PT-induced disruption 

of mitochondrial membrane potential (MMP) of C. elegans pre-

treated with custom peptides. The scale bar indicates the length 

as 100 µm. The scale bar indicates the size as 100 µm. The PT-

treated (10 mM) N2 wild-type strain of nematodes pre-treated 

with or without custom peptide (50 µg/mL) was observed to 

measure the red/green fluorescence intensity ratio by JC-1 

staining. (G) Bar diagram representing the red/green 

fluorescence intensity ratio quantified using Image J software. 
*p < 0.05, a significant difference between untreated (control) 

and PT-treated worms; #p < 0.05, a significant difference 
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between PT-treated and custom peptide pre-treated worms. ^p < 

0.05, a significant difference between the two peptides (TNP 

and HNP) pre-treated C. elegans. Values are means ± SD of 

triplicate determinations. (H) Confocal images of CAM-1 

mutant strain of C. elegans showing reversal of PT-induced 

disruption of mitochondrial membrane potential (MMP) of C. 

elegans pre-treated with custom peptides. The scale bar 

indicates the length as 100 µm. The scale bar indicates the size 

as 100 µm. The PT-treated (10 mM) N2 wild-type strain of 

nematodes pre-treated with or without custom peptide (50 

µg/mL) was observed to measure the red/green fluorescence 

intensity ratio by JC-1 staining. (I) Bar diagram representing the 

red/green fluorescence intensity ratio quantified using Image J 

software. *p < 0.05, a significant difference between untreated 

(control)/only custom peptide treated group and PT/custom 

peptide and PT-treated group of cam-1 mutant worms 

Determination of dopaminergic neurodegeneration induced by 

PT in BZ555 C. elegans. (A) Confocal microscopic images (40 

X) of DA neurons emerging GFP fluorescence signals in PT-

treated BZ555 worms with or without pre-treated with custom 

peptides (50 µg/mL). The scale bar indicates the length as 100 

µm. (B) The bar diagram shows the GFP fluorescence intensity 

indicating the content of DA neurons in BZ555 worms, 

quantified using the Image J software. *p < 0.05, a significant 

difference between untreated (control) and PT-treated worms; #p 

< 0.05, a significant difference between PT-treated and custom 

peptide-treated worms. Custom peptides inhibit the aggregation 

of α-synuclein in transgenic NL5901 strains of C. elegans. (C) 

Confocal images of custom peptides (50 μg/mL)-treated 

NL5901 worms after 12 h of incubation. The scale bar indicates 

the length as 100 µm. (D) The bar chart shows the fluorescence 

intensity representing the α-synuclein protein accumulation in 

custom peptide-treated NL5901 worms for 12 h. * (p < 0.05) a 

significant difference between control (CT) and custom 

peptides-treated C. elegans, # (p < 0.05) a significant difference 

between TNP and HNP treated C. elegans. Values are 

means ± SD of triplicate determinations. 

The qRT-PCR analysis shows the genes' expression in stress 

resistance, innate immunity, and apoptotic pathways in the PT-

treated C. elegans, compared with the vitamin C (positive 

control)/custom peptide pre-treated C. elegans. The expression 

of mRNA was normalized using the housekeeping gene act-1. * 

(p < 0.05) a significant difference between control (CT) and PT-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

151-152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

154 

 

 

 

 

 



xxviii 
 

 

 

 

 

5.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

treated C. elegans, # (p < 0.05) a significant difference between 

PT-treated and vitamin C/ custom peptide pre-treated worms. 

Values are means ± SD of triplicate determinations. 

Differential expression of genes between different treated 

groups of C. elegans. (A) PCA score plot showing the gene 

expression variability between the groups of C. elegans and 

within the biological replicates. (B) Correlation plot showing a 

correlation between treated groups of C. elegans. CT: untreated 

worms, PT: PT treated worms, PHNP: custom peptide HNP pre-

treatment followed by PT treatment, HNP: custom peptide HNP 

treated worms. Plots showing differential expression of genes in 

PT-treated C. elegans and their restoration with peptide (HNP) 

pre-treatment. (C) Volcano plot (p-value v/s log Fc) for PT 

group versus CT group. (D) scatter plot displaying the 

statistically significant differentially altered genes between PT 

treatment and control group (PT vs. CT). (E) Volcano plot (p-

value v/s log Fc) for PHNP group versus PT group (F) scatter 

plot displaying the statistically significant differentially altered 

genes between peptide HNP pre-treated C. elegans followed by 

PT treatment and PT-treated C. elegans. CT: untreated worms, 

PT: PT treated worms, PHNP: custom peptide HNP pre-

treatment followed by PT treatment, HNP: custom peptide HNP 

treated worms. (G) Heat map showing the differential 

expression of the upregulated and downregulated genes among 

different groups of C. elegans. PT: PT treated, PHNP: peptide 

HNP pre-treatment followed by PT treatment, CT:  untreated 

(control) worms. 

Proteomics analysis to show the expression of common and 

intracellular proteins among the treated groups of C. elegans. 

(A) Venn diagram showing common intracellular proteins 

among untreated (control) (CT), PT (PT) treated, and HNP pre-

treated followed by PT-treated (PHNP) groups of C. elegans 
determined by LC/MS-MS analysis. (B) Scatter plot showing 

significantly upregulated (fold change>1.25) and downregulated 

(fold change <0.80) proteins in PT-treated C. elegans. FC: fold-

change in expression determined by LC/MS-MS analysis. (C) 

Venn diagram showing common intracellular proteins among 

untreated (control) (CT) and only HNP-treated C. elegans 
determined by LC/MS-MS analysis. (D) Molecular network of 

custom peptide HNP-mediated neuroprotection. The interaction 

network of peptide HNP-regulated genes/proteins and 

interlinking pathways as determined by both transcriptomic and 

proteomic analyses. 
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The proposed neuroprotection mechanism pathways of custom 

peptide mediated protection against PT-induced neurotoxicity in 

C. elegans (N2 strain). 

The effect of the custom peptides (TNP: HNP:: 1:1) treatment 

on histological changes in the tissues of Swiss albino mice. The 

H and E staining was employed to observe any morphological 

changes in the tissues compared to those of the control 

(untreated). Light microscopic observation of (A) Brain, (B) 

Heart, (C) Kidney, (D) Liver, (E) Lung, (F) Ovary, and (G) 

Testis for control and treated groups. Bar-100µM. 

Determination of the concentration of pro-inflammatory 

cytokines in control (1X PBS treated)/ custom peptides-treated 

(10 mg/kg) group of mice plasma by Quantikine HS ELISA Kit. 
* A significant difference between control (1X PBS-treated) and 

custom peptide (TNP:HNP)-treated C. elegans (p < 0.05). 

Values are means ± SD of triplicate determinations. 
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Differential expression of miRNAs between mouse 2.5S-

NGF/peptide HNP-treated group of C. elegans and 1X 

PBS-treated (control) group of C. elegans. (A) Volcano 

plot (p-value v/s log Fc) for mouse 2.5S-NGF-treated 

(NGF group) versus 1X PBS-treated (CT group) C. 

elegans. (B) Volcano plot (p-value v/s log Fc) for custom 

peptide HNP-treated (HNP group) versus 1X PBS-treated 

(CT) C. elegans. Heat map showing the differential 

expression of the upregulated and downregulated genes 

among (C) mouse 2.5S-NGF-treated (NGF group) versus 

1X PBS-treated (CT group) C. elegans and (D) custom 

peptide HNP-treated (HNP group) versus 1X PBS-treated 

(CT) C. elegans.  

Roles of mouse 2.5S-NGF and HNP-induced miRNAs 

involved in different stages of neuronal development in C. 

elegans. 

Differential expression of miRNAs between different 

treated groups of C. elegans. (A-C) PCA score plot 

showing the gene expression variability between the groups 

of C. elegans and within the biological replicates. (D-F) 

Correlation plot showing a correlation between treated 

groups of C. elegans. (G) Volcano plot (p-value v/s log Fc) 

for PNGF group versus PT group and (H) Volcano plot (p-

value v/s log Fc) for PHNP group versus PT group of C. 

elegans. CT: untreated worms, PT: PT treated worms, 

PHNP: custom peptide HNP pre-treatment followed by PT 
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treatment, PNGF: mouse 2.5S-NGF pre-treatment followed 

by PT treatment HNP: custom peptide HNP treated worms, 

NGF: mouse 2.5S-NGF treated worms. 

Heat map showing the differential expression of the 

upregulated and downregulated miRNAs among different 

groups of C. elegans. (A) PNGF group versus PT group 

(B) PHNP group versus PT group of C. elegans. CT: 

untreated worms, PT: PT treated worms, PHNP: custom 

peptide HNP pre-treatment followed by PT treatment, 

PNGF: mouse 2.5S-NGF pre-treatment followed by PT 

treatment HNP: custom peptide HNP treated worms, NGF: 

mouse 2.5S-NGF treated worms. 

Network of miRNA and their target genes for (A) PNGF 

and (B) PHNP group of C. elegans. The interaction 

network miRNA and their target genes were drawn by 

using Cytoscape 3.9.1. 
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ABBREVIATIONS 

Abbreviation Full form 

AD 

ANOVA 

ATCC 

ATP 

BBB 

BDNF 

CD 

CID 

DAPI 

DMEM 

DMSO 

FBS 

FITC 

HD 

HNP 

L6 

LDH 

MAPK 

MDA-MB-231 

MCF-7 

EMEM 

ADP 

AMP 

ATP 

CCCP 

CGC 

CTAB 

DBP 

DCF 

DTT 

DPPH 

Alzheimer’s Disease 

One-Way Analysis of Variance 

American Type Culture Collection 

Adenosine Triphosphate 

Blood-Brain Barrier 

Brain-Derived Neurotrophic Factor 

Circular Dichroism 

Collision-Induced Dissociation 

4′,6-Diamidino-2-Phenylindole 

Dulbecco's Modified Eagle Medium 

Dimethyl Sulfoxide 

Fetal Bovine Serum 

Fluorescein Isothiocyanate 

Huntington’s Disease 

Heptadeca-Neuropeptide 

Rat Myoblast or Myogenic Cells 

Lactate Dehydrogenase 

Mitogen-Activated Protein Kinase 

Human Breast Adenocarcinoma Cells 

Michigan Cancer Foundation-7 

Eagle's Minimum Essential Medium 

Adenosine Diphosphate 

Adenosine Monophosphate 

Adenosine Triphosphate 

Carbonyl Cyanide M-Chlorophenylhydrazone 

Caenorhabditis Genetics Center 

Cetyltrimethylammonium Bromide 

Disulfide Bridge Peptide 

2',7’-Dichlorodihydrofluorescein 

Dithiothreitol 

2,2-Diphenyl-1-Picrylhydrazyl 
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Abbreviation 

FPLC 

HCL 

H2DCFDA 

HEPES 

LC50 

LC/ES-MS 

LC-MS/MS 

LPP 

LD50 

MALDI-TOF- 

 

NCBI 

NGM 

MMGBSA 

MMP 

MTT 

NCBS 

NDs 

NGF 

P75NTR 

PC-12 

PD 

PDB 

PI 

PI3K 

 

PPI 

PPP 

PRP 

PT 

qRT-PCR 

 

Full Form 

Fast Protein Liquid Chromatography 

Hydrochloride 

2',7’-Dichlorofluorescein-Diacetate 

4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid 

Median Lethal Concentration 

Liquid Chromatography-Electronspray Tandem Mass 

Spectrometry 

Liquid Chromatography-Tandem Mass Spectrometry 

Median Lethal Dose 

Matrix-Assisted Laser Desorption/Ionization -Time Of Flight - 

Mass Spectrometry 

National Center For Biotechnology Information 

Nematode Growth Media 

Molecular Mechanics/Generalized Born Surface Area 

Mitochondrial Membrane Potential 

3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide 

National Centre For Cell Science 

Neurodegenerative Disorders 

Nerve Growth Factor 

P75 Neurotrophin Receptor 

Adrenal Pheochromocytoma Cell Line 

Parkinson’s Disease 

Protein Data Bank 

Propidium Iodide 

Phosphatidylinositol 3-Kinase Stimulation Of Protein Kinase B 

Signaling Pathways 

Protein-Protein Interaction 

Platelet-Poor Plasma 

Platelet-Rich Plasma 

Paraquat 

Quantitative Reverse Transcription-Polymerase Chain Reaction 
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Abbreviation 

RESPA 

RMSD 

ROS 

RT 

SD 

SV-NGF 

TIP3P 

TNP 

TrkA  

UHPLC-MS/MS 

 

PBS 

PPP 

PRP 

Q-RT PCR 

Q-TOF 

RCSB 

RNA 

ROS 

RP-HPLC 

RP-UHPLC 

SGOT 

SGPT 

TBS 

TCA 

TEMED 

TFA 

WHO 

CNS 

ALS 

DALYs 

Aβ 

Full Form 

Reversible Reference System Propagator Algorithms 

Root Mean Square Deviation 

Reactive Oxygen Species 

Rotenone 

Standard Deviation 

Snake Venom Nerve Growth Factor 

Three-Points Water Model 

Trideca-Neuropeptide 

Tropomyosin Receptor Kinase A Receptor 

Ultra-Performance Liquid Chromatography-Tandem Mass 

Spectrometer 

Phosphate buffered saline 

Platelet poor plasma 

Platelet rich plasma 

Quantitative reverse transcription polymerase chain reaction 

Quadrapole time of flight 

Research collaborator for structural bioinformatics 

Ribonuclic acid 

Reactive oxygen species 

Reversed-phase high-performance liquid chromatography 

Reversed-phase ultra-high-performance liquid chromatography 

Serum glutamic oxaloacetic transaminase 

Serum glutamic pyruvic transaminase 

Tris-buffered saline 

Trichloroacetic acid 

Tetramethylethylenediamine 

Trifluoroacetic acid  

World health organization 

Central Nervous System 

Amyotrophic Lateral Sclerosis 

Disability-Adjusted Life Years 

Amyloid-Β 
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Abbreviation 

DAMP 

IP3 

PLCγ 

JNK 

YFP 

miRNA 

NTFs 

6-OHDA 

MPP+ 

Full Form 

Danger-Associated Molecular Pattern 

Inositol 1,4,5-Triphosphate 

Phospholipase Cγ 

C-Jun N-Terminal Kinase 

Yellow Fluorescence Protein 

MicroRNAs 

Neurotrophic Factors 

6-Hydroxydopamine 

1-Methyl-4-Phenylpyridinium Iodide 
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