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1.1. Neurodegenerative diseases- a concern for millions of people worldwide 

Neurons play a central role in the proper functioning of the human brain [1,2]. Neural 

stem cells generate the majority of neurons in childhood, but with an increase in age, their 

numbers are progressively reduced [3]. Neurons are not immortal, but the progressive 

loss of neuronal structure and function, or sometimes the neuronal failure to transmit the 

signal, is known as neurodegeneration, which is the most common cause in the 

pathophysiology of different brain diseases [4,5]. Therefore, a group of diseases 

characterized by the degeneration of neurons are collectively known as neurodegenerative 

diseases (NDs) [5].  NDs principally affect neurons in the central nervous system (CNS), 

presented by the progressive loss of CNS neurons, resulting in defects in specific brain 

functions such as memory, cognition, and movement [6].  

 Acute neurodegeneration defines a pathological feature in which neurons are 

promptly damaged and generally die in return for a rapid traumatic incident like strokes, 

head injury, cerebral hemorrhage, ischemic brain damage, and traumatic brain injury [7]. 

Chronic neurodegeneration is a condition in which the process of neuron degeneration 

generally initiates slowly but gradually degrades over time resulting in the irreversible 

loss of a particular neuron population [6]. The example of chronic NDs are  Alzheimer’s 

disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), 

Huntington’s disease (HD) [8-10].  

In 2019, approximately 349 million disability-adjusted life years (DALYs) and 10 million 

deaths were reported globally and became the second foremost cause of death after 

cardiovascular disease worldwide due to NDs [11]. From 1990 to 2019, there was a 1.91% 

surge in the global burden of NDs, such as stroke, AD, PD, migraine, motor neuron 

disease, etc [11,12]. As shown in Fig 1.1, significant DALY reductions from 1990 to 2019 

were reported globally in most regions of Asia, South America, the Archipelago, Malaya, 

and Central Africa [11,12]. 

NDs are categorized by their principal clinical parameter, viz. neurotoxic protein 

accumulation in the brain, movement disorders, anatomic vulnerability, and cognitive 

disorders [5,9]. The neuronal dysfunction and death in NDs involve various fundamental 

mechanisms, viz. proteotoxic stress and its associated aberrations in the ubiquitin-

autophagosomal and proteasomal system, neuroinflammation, oxidative stress, and 

programmed cell death (Fig 1.2) [9,10,13]. Decades of research presented evidence for 
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hallmarks of NDs, including aberrant proteostasis, pathological protein aggregation, 

synaptic and neuronal network dysfunction, DNA and RNA defects, altered energy 

inflammation, homeostasis, and neuronal cell death (Fig 1.3) [14]. 

 

 

Fig 1.1 Age-standardized DALY rates of neurological disorders for both sexes and all 

ages among 204 countries and territories. (A) in 2019; (B) in 1990. This figure is adapted 

from [11]. 
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Fig 1.2 Several mechanisms allied with neurodegeneration that is concerned with the 

progression and pathogenesis of neurodegenerative diseases. This figure is adapted from 

[13]. 

 

Fig 1.3 Schematic presentation of the neurodegenerative disorder hallmarks and their 

subcellular location. Created with BioRender.com 
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1.1.1. Types of neurodegenerative diseases and current treatments  

In the subsequent subsection, the basic pathology and available current treatments 

of some of the important chronic NDs have been discussed. The pathophysiology of the 

above-mentioned NDs is summarized in Fig 1.4. 

1.1.1.1. Alzheimer’s disease: AD is described as a loss of synapse and synaptic proteins 

that correlates with the decline in cognitive function and the presence of neuritic plaques 

due to deposition of amyloid-β (Aβ) in the medial temporal lobes and neocortical 

structures [10]. Currently, there are approximately 50 million people suffer from AD 

worldwide, and this number is expected to double every five years to reach 152 million 

by 2050 [15]. The burden of Alzheimer's disease affects individuals, their families, and 

socio-economic conditions and is estimated to cost 1 trillion USD annually worldwide 

for treatment.  

At present, there is no permanent cure for Alzheimer's disease, but there are treatments 

that only improve symptoms of the disease [15]. Glutamate regulators and cholinesterase 

inhibitors are two major classes of drugs available for the treatment of AD. Memantine 

[N-methyl-D-aspartate (NMDA) receptor antagonist] is the only approved glutamate 

regulator class of medication used to treat AD that is allied to memory and learning. In 

ordinary people, glutamate binds to NMDA receptors and allows excitatory glutamatergic 

neurotransmission, which exhibits neuronal plasticity and survival. But the accelerated 

activity of the NMDA receptor promotes neuronal cell death and contributes to the AD 

pathogenesis [16]. Cholinesterase inhibitors manage AD function by delaying the failure 

of acetylcholine (neurotransmitter); however, their side effects are nausea, loss of 

appetite, increased frequency of bowel movements, and vomiting [17]. Memantine is the 

only effective drug with cholinesterase inhibitors; however, the drug's efficacy is not 

satisfactory and is effective only in 50% of patients for a very short period. Constipation, 

headache, dizziness, and confusion are the side-effects of Memantine, which is a 

significant concern for AD treatment and management.  

1.1.1.2. Parkinson’s disease: PD is the second most common neurodegenerative disorder 

after AD that affects 2-3% of the population  [18,19]. PD is characterized by α-synuclein 

aggregation in the brain and progressive dopaminergic (DAergic) neuronal degeneration 

in the substantia nigra leading to impaired motor control, rigidity, tremors, postural 

instability, and slow movement of the patient [20-22]. Studies have reported that in the 
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nigrostriatal system, axons become damaged before the degeneration of dopaminergic 

neurons, which results in the loss of synaptic communications [23]. The principal 

molecular pathogenesis of PD includes various pathways and mechanisms, viz. 

α‑synuclein proteostasis, oxidative stress, mitochondrial dysfunction, axonal transport, 

and neuroinflammation [24].  

Levodopa, apomorphine, monoamine oxidase type B inhibitors, and amantadine are 

approved by the FDA (USA) for symptomatic therapy of PD. Regrettably, since 1970, no 

further advanced drug has been approved for PD therapy. The primary target of these 

drugs is to increase the dopamine (neurotransmitter) level to improve motor symptoms of 

the disease [25,26]. However, long-term PD medication of these drugs reduces efficacy 

and leads to other adverse effects, such as motor complications [22,26].  

1.1.1.3. Amyotrophic lateral sclerosis: In 1869, Jean-Martin Charcot initially explained 

ALS as a pure motor neuron disease, which is now known as a multisystem 

neurodegenerative disease with heterogeneity [27,28]. The clinical manifestation of ALS 

(weak focal muscle and wasting) spreads with the progression of the disease. The initial 

symptoms of ALS can differ between patients; most commonly, the onset of weakness in 

the limb muscles (also known as spinal onset), whereas there are approximately 20-30% 

of patients have bulbar-onset disease presenting with dysphagia (difficulty in 

swallowing), dysarthria (difficulty in speech), dysphonia (abnormal voice), and rare 

masseter weakness [29].  

The incidence of ALS prevalent in Europe ranges from 2-3 cases per 1000,000 

individuals [28,29]. The mechanism underlying ALS is poorly understood, although 

various factors such as genetic factors, oxidative stress, excitotoxicity, autoimmune 

response, neurofilament aggregation, impaired axonal transport, mitochondrial 

dysfunction, and environmental factors may be involved [13]. ALS is linked with a 

mutation in a gene encoding the zinc/copper dismutase-1 enzyme [13].  

On account of its pathophysiology, other drugs such as ibudalist (cyclic nucleotide 

phosphodiesterase inhibitors), TRIUMEQ (antiretrovirals used as anti-HIV therapy), 

tamoxifen (antiestrogen; NCT00214110 under www.clinicaltrials.gov), retigabine 

(antiepileptic drugs), and mastinib (tyrosine kinase inhibitor; NCT02588677, 

www.clinicaltrials.gov) are currently being explored for ALS treatment. Although only 

two drugs, edaravone (free-radical scavenger; NCT01492686, www.clinicaltrials.gov) 
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and riluzole (antagonist of glutamate receptor), are prescribed to the patients; 

nevertheless, these drugs only slow down the disease progression but cannot cure the 

disease and inept at reverting associated symptoms of ALS [30]. 

1.1.1.4. Huntington’s disease: HD is an autosomal dominant and progressive NDS. In 

basal ganglia, it is presented pathologically by diminished gamma-aminobutyric acid 

(GABA) and undue dopaminergic activity. Clinical manifestations of HD include 

movement dysfunction, cognitive impairment, and psychiatric abnormalities [31]. HD 

occurred by repeat expansion of CAG trinucleotide in the huntingtin (htt) gene at the 

chromosome 4 short arm [32]. Currently, there is no treatment for HD; the only possibility 

is to manage the symptoms [33,34]. The often-prescribed medication for HD treatment is 

tetrabenazine (depletes dopamine), aripiprazole, and olanzapine. However, they develop 

the risk of adverse side effects such as depression, akathisia, dizziness, parkinsonism, or 

fatigue [34].  

The pathophysiology of the above-mentioned NDs is summarized in Fig 1.4. 

 

Fig 1.4 The pathophysiology of four major NDs - AD, PD, HD, and ALS. Created with 

BioRender.com 
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1.1.2. Oxidative stress and neurodegenerative disorders 

Oxidative stress contributes a significant role in the aetiology of common NDs 

[35]. The disparity between reactive oxygen species (ROS) production and poor 

antioxidant defence potential results in oxidative stress causing cellular damage, system 

impairment, mitochondrial dysfunction, and DNA repair. These abnormalities encourage 

the neurodegenerative action and advancement of NDs [36]. The cellular damages include 

lipids, proteins, and nucleic acid damage that leads to excessive uptake of calcium (Ca2+) 

through the mitochondrial membrane, which triggers the ROS production, deteriorates 

energy (ATP) production, and releases cytochrome c (cyt c, a proapoptotic factor) into 

the cytoplasm that causes neuronal cell death [37].  

1.1.2.1. Neuroinflammation: Furthermore, neuroinflammation plays an 

important role in the pathophysiology of NDs [38]. Neuroinflammation, known as an 

inflammatory response (innate and adaptive immune system) within CNS and contributes 

to neurodegeneration. Microglia are the most abundant macrophage (innate immune 

effector cells) in the CNS and participate in homeostasis of CNS while neuronal 

development and ageing [39]. The nervous system in response to any pathological 

changes rapidly secrete different inflammatory molecules viz. chemokines, cytokines, 

and toxic components (glutamate, ROS, cyclooxygenase, prostaglandins, etc) [38,39]. 

The release of these inflammatory molecules or mediators is stimulated by astrocytes that 

ultimately trigger secondary inflammatory responses that encourage the survival of 

neurons [38]. 

1.1.2.2.  Mitochondrial dysfunction: Mitochondria signify the energy (ATP) 

powerhouse and protecting guard of the cell. Mitochondria function as the site of 

oxidative phosphorylation, and cellular respiration, and maintain low calcium (Ca2+) 

concentration in cytosol [37]. The consequences of mitochondrial dysfunction are dire, 

so it is considered a critical organelle for determining cell fate (death/survival) by 

controlling autophagy and apoptotic signals [37].  Activation of multiple signals 

(autophagic or apoptotic) stimulates mitochondrial permeability transition (MPT) that 

causes the release of proapoptotic proteins (cyt c) from the intermembrane space, which 

activates caspase for apoptosis or stimulates autophagy [37]. In the cytosol, cyt c activates 

a cascade of caspases (caspase 3, 6, and 7) after binding to apoptotic protease-activating 



To study the snake venom nerve growth factor-derived custom peptides for their application in 

preventing Parkinson’s disease 

Chapter I Page 9 

 

factor-1 (apaf-1) and procaspase-9 and forming apoptosome complex. The caspase 

activation eventually leads to apoptotic neuronal cell death [40]. 

1.1.2.3. Release of Cytochrome c: Rationally, the release of cyt c into the extracellular 

space can occur during the incidence of cell damage, there it acts as a danger-associated 

molecular pattern (DAMP) i.e., translocation of self-molecules in an inappropriate 

compartment [41]. Therefore, the anti-inflammatory/pro-inflammatory activity of cyt c 

depends on their location. In normal cells, cyt c is present inside the mitochondria. 

Emigration of cyt c into the cytosol triggers the apoptotic pathway (non-inflammatory). 

However, translocation of cyt c into the extracellular space induces inflammation and can 

be measured in the serum as a marker of severe mitochondrial damage or cell death (Fig 

1.5) [40,41]. 

1.1.2.4. Apoptosis: Apoptosis of neuronal cells contribute to neurodegeneration, 

which results in NDs. Apoptosis is known as programmed cell death, which is 

characterized by chromatin condensation, shrinkage of the cells, and DNA fragmentation. 

This process is an energy-dependent mechanism that requires ATP for translation (protein 

synthesis) and signal activation [13]. Apoptosis can occur via two pathways, i.e., intrinsic 

and extrinsic pathways. In the extrinsic pathway, death ligands bind and activate death 

receptors, which induce death signals via a cascade of protein and protein interactions. 

Whereas the intrinsic pathway is triggered by the release of proapoptotic (cyt c) mediators 

from the intermembrane space of mitochondria through MPT and induces a caspase-

dependent/caspase-independent pathway [42,43]. Targeting the aforementioned 

mechanism of action may hold good promise for the treatment and prevention of NDs. 

To deal with NDs, various probable therapeutic targets can be explored.  
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Fig 1.5 The potential cytochrome c (a marker of apoptosis) as a danger-associated 

molecular pattern (DAMP). This figure is adapted from Eleftheriadis et al. (2016) [40]. 

1.1.3. Challenges associated with current therapy 

Management of NDs is disease-specific. Currently accepted strategies for the 

management either aim at the pathogenesis of the disease or challenge the recovery of the 

symptoms experienced [8].  Present therapy can potentially control the disease 

progression rather than eliminate the root causes of NDs.  The blood-brain barrier (BBB) 

is one of the major concerns for successfully treating neurodegenerative diseases, where 

most of the drugs under clinical trials fail. The BBB is known as a diffusion barrier that 

thwarts the transport of ingredients into the brain, aided in maintaining the homeostasis 

and normal functioning of the brain. The effective intervention of NDs is restricted due 

to the unsuccessful delivery of adequate formulations to the brain. The poor permeability 

of most drugs and the advanced properties of BBB account for the lack of appropriate 

treatment opportunities for NDs [8].  

 The pharmacokinetic characteristics of systematically conducted drugs determine 

their efficacy [44]. In most cases, the therapeutic molecules are unfavorable for delivering 

to the target site. The plasma proteins in the human circulation system are the initial point 

of attention. Some medicinal drugs have a high affinity towards these proteins, thus 

restricting the extent of the drug in circulation and eventually reducing the availability of 
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the unbound pharmaceutical and their transportation to the brain [8,45]. Furthermore, the 

elimination rate of some drugs by the liver and kidney (clearance organ) is limited and 

releases few into the blood. 

Moreover, the drug-target cell interaction confines the amount of drug absorption. 

Unambiguously, drug molecules can block the channels (alter the membrane potential), 

which affects the cell conformation. The administration and absorption of drug molecules 

are limited by this transient effect [46]. Small lipophilic therapeutic drug molecules with 

limited interactions with plasma proteins aid brain delivery [8].  

The multifactorial nature of NDs promotes the search for multi-target drugs 

(hybrids and co-drugs), which target more than one pathophysiological symptom. This 

approach is promising for treating NDs [47].  

1.2. Neurotrophins: Role in neurological disorders and prospects 

1.2.1. Neurotrophins and their receptors 

Neurotrophins are a group of endogenous soluble proteins with similar structures and 

functions, which profoundly affect neuronal development in vertebrates. The first 

neurotrophin, viz. nerve growth factor (NGF), was identified in 1951 by Levi-Montalcini 

and their colleagues [48]. The neurotrophins family consists of NGF [48], brain-derived 

neurotrophic factor (BDNF) [49], neurotrophin- 4/5 (NT-4/5) [50] and neurotrophin-3 

(NT-3) [51]. Other than these neurotrophins, two neurotrophins named neurotrophin-6 

(NT-6) and neurotrophin-7 (NT-7) have been discovered in teleost fish [52]. These 

neurotrophins are grouped based on structural similarity to the NGF, which is involved 

in neuronal growth, development, and maintenance [53,54].  

 The mechanism of neuritogenesis involves the binding of neurotrophins to 

transmembrane receptors belonging to the tyrosine kinase receptors family, for example, 

tropomyosin-related kinase A (Trk A), tropomyosin-related kinase B (Trk B), and 

tropomyosin-related kinase C (Trk C) [55,56]. Neurotrophins also bind to the receptor of 

the Tumor Necrosis Factor (TNF) superfamily, the p75NTR neurotrophin receptor [55,56], 

and mediates pro-neurotrophin signalling (converting precursors to mature 

neurotrophins) [57]. NGF and NT-3 show high-affinity binding (Kd value ̴ 10-11 M) [58-

61] with Trk A and Trk C receptors; respectively, although, brain-derived neurotrophic 

factor (BDNF) and neurotrophin-4/5 (NT-4/5) exclusively bind with high-affinity (Kd 



To study the snake venom nerve growth factor-derived custom peptides for their application in 

preventing Parkinson’s disease 

Chapter I Page 12 

 

value ̴ 10-11 M) to the Trk B receptor [58,61]. However, all the neurotrophins show low-

affinity binding (Kd value ̴ 10-9 M) with p75NTR [58,59]. Moreover, p75NTR can also regulate 

the selective and specific binding of neurotrophins (NT) to the correct tropomyosin-

related kinase (Trk) receptors [62]. 

1.2.2.  Snake venom neurotrophins 

Venoms are exciting sources of special molecules that are being enhanced in 

evolution and also have unique characteristics such as low molecular mass, 

pharmacological activity, stability, and high potency, along with selectivity and affinity 

in mammalian systems for many targets. Animal venoms, therefore, have a great potential 

to generate therapeutic agents, and many venom toxins have been applied clinically and 

used as templates for drug design [63].  

Nerve growth factor (NGF), a prominent member of the neurotrophin family, is 

one of the intriguing non-enzymatic proteins found in snake venoms. The proteomic 

analysis has shown that venoms of all the ‘Big Four’ venomous snakes of India contain 

several isoforms of NGF; however, in a small proportion (Fig 1.6) [64-67], although its 

role and significance in snake venoms remain unclear [68].  

 

 

Fig 1.6 Protein family composition of western India (WI) Russell’s viper venom (RVV). 

Nerve growth factor (NGF) constituting 4.8% of WI RVV proteome identified by tandem 

mass spectrometry analysis. This figure is adapted from  [67].  
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1.2.3. Neurotrophins signalling pathways 

 After binding to the respective Trk receptors, neurotrophins promote their 

dimerization, followed by autophosphorylation of intracellular tyrosine residues of the 

receptor, which activates a cascade of events through two adapter proteins—Src and Shc. 

The Trk receptor-induced cascade of signalling pathways includes the Ras-induced 

Mitogen-Activated Protein Kinase (MAPK) pathway [54,69], MAPK-extracellular 

signal-regulated kinase (ERK) pathway [70], phosphatidyl inositol 3-kinase (PI3K) 

stimulation of protein kinase B (Akt) and phospholipase Cγ (PLCγ)-dependent secretion 

of diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3)-mediated pathway (Fig 

1.7)[54,69]. Neurotrophin and Trk interaction-induced signalling pathways resulted in 

neuronal proliferation, survival, and differentiation [70,71].  

Notably, the p75NTR can function antagonistically to the Trk receptor [57]. For 

example, the interaction between neurotrophin and Trk results in cell survival, whereas 

the binding of p75NTR with neurotrophins precursor leads to neuronal cell death by 

apoptosis [62]. The mechanism of such cell death involves that p75NTR receptor activation 

stimulates the c-Jun N-terminal kinase (JNK) signalling pathway, which activates the 

tumour suppressor (p53) protein that causes apoptosis [72,73]. The binding of the p75NTR 

receptor by NGF or neurotrophins also stimulates the expression of the Fas ligand 

responsible for activating the Fas receptor resulting in apoptosis [72,73]. When the Trk 

A receptor is absent, the pro-apoptotic function is reported in cells where the p75NTR 

receptor is expressed [74]. The TrkA receptor performs all the neuritogenesis functions 

of NGF independent of the appearance of the p75NTR receptor [75,76]. p75NTR receptor 

induces both negative and positive signals, which play a significant role in neural 

development and other higher-order functions viz. learning and memory (Fig 1.7). 
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Fig 1.7 Kegg pathway. Human neurotrophin signalling pathways. 

1.2.4. Neurotrophins as therapeutics in NDs 

Since the discovery of NGF, the crucial role of neurotrophins to regulate 

numerous essential neuronal functions, such as promoting neurite regeneration, avoiding 

degeneration, and increasing synaptic plasticity has been elucidated by in vitro laboratory 

studies and in in vivo experimental models [77]. Because of their prominent effects on 

neuronal development by systemic administration of exogenous neurotrophin molecule 

proteins, NGF molecules can be used as drug prototypes to treat various NDs. Over the 

years, the neuroprotective effect of neurotrophic factors has been well documented, 

leading to the hypothesis of their therapeutic application [77-79].  
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1.2.5. Limitations of neurotrophins as a therapeutic in neurological diseases 

Despite the high pharmacotherapeutic potential of neurotrophins, their poor 

pharmacological properties, marginal permeability of the blood-brain barrier, short half-

life, activation of multiple receptors, and pleiotropic effects have limited their therapeutic 

applications [54,80]. Therefore, there is an urgent requirement to resolve these 

impediments for the successful therapeutic application of neurotrophins. Several 

strategies focusing on the better pharmacokinetics of native neurotrophins, such as - (a) 

systemic or intraventricular administration of neurotrophins, (b) transplantation of cells 

producing neurotrophins, (c) neurotrophin expression via viral vectors and cell-based 

delivery systems, (d) combinatorial strategy using combination of neurotrophins 

enhanced neuroprotection, and (e) small molecule or synthetic peptide development that 

binds to specific receptors or neurotrophins mimetics have been suggested [81,82]. 

1.3 Peptidomimetics and small molecules therapeutics 

A peptidomimetic is a compound with pharmacophore similarity that mimics natural 

protein-fragment, peptide, or whole protein and which also possesses the ability to 

interact with the specific target and generate similar biological effects [83]. Peptide 

mimetics provide an obvious way to tackle the disadvantages of natural peptides. The 

molecule which mimics the biological activity of a natural peptide and has a molecular 

weight of less than 700 Da is referred to as peptide mimetics. Peptide mimetics also have 

significantly improved patient compliance and cost savings. 

Moreover, peptide mimetics are less expensive to produce than natural peptides. 

Also, natural peptides not encountered with peptide mimetics have issues with peptide 

storage, stability, and immunoreactivity [84]. In recent years, peptide mimetics have 

emerged as a new generation of promising drugs due to the rapid screening of small 

molecule libraries and rational design approaches [84,85]. 

1.3.1 Neurotrophin's mimetics role in neurological diseases 

The word ‘mimetic’ in neurotrophin mimetic is broadly used to illustrate a modulator 

with similar structural features of neurotrophic factor and stimulating the property of 

neurotrophin molecules. Mimetic group of members might act as receptor agonists [86-

88] or antagonists [86,89-91]. However, some group of mimetics binds in a non-

competitive manner at neurotrophin receptor to upregulate or downregulate the activity 
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of receptor to change the expression of different cellular proteins to induce neuritogenesis 

[92,93]. 

In recent years attention has been paid to the characterization of novel 

neurotrophin peptidomimetics in clinical trials of different neurological diseases due to 

their therapeutic approach to neuroprotective effect, synaptic and neuronal plasticity, 

neurogenesis, better pharmacokinetics than the parent neurotrophin [86,94,95]. 

Neurotrophin mimetics may trigger the change in different prospects of signalling 

pathways in a manner that is unique from the native neurotrophin-triggered pathways 

[82].  

1.4. Model organism for neurobiological studies 

1.4.1. Rat pheochromocytoma (PC-12) cell as an in vitro model 

The rat pheochromocytoma cell line (PC-12 cells) is considered to be an 

appropriate in vitro model for neuronal differentiation, development, and neurological 

diseases [96-100]. PC-12 cell lines have advantages in being derived from neural crest 

cells that have similar structures and functions, and they are easy to grow and maintain 

[99]. 

1.4.2. Caenorhabditis elegans (C. elegans) as in vivo model 

Caenorhabditis elegans,  a tiny microscopic nematode, is a good choice of in vivo 

model for its wide acceptability in neuronal research to understand the development of 

neural lineages and neuronal differentiation. The advantages of using C. elegans as a 

model organism are its transparent body, small size, short life cycle, and prominent and 

well-developed nervous system; consequently, they serve as a widely-used model 

organism for neuronal research [101-104]. Unlike experimental rodents, they do not 

require any room for growth, their maintenance is easy and cost-effective, and they can 

save the life and high expenses of using laboratory experimental animals. A transgene 

strain (BZ555; Pdat-1::gfp) has dopaminergic (DAergic) neurons expressing green 

fluorescence protein (GFP), and has been used to study neurodegeneration.  

Another C. elegans strain (NL5901; Punc-54:: α-synuclein:: YFP+unc-119) 

expressing the human α-synuclein protein tagged with yellow fluorescence protein (YFP) 

in the muscles (one of the critical proteins involved in PD), can easily live imaged by a 

confocal microscope. Therefore, neuronal damage caused by toxic substances and their 
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regeneration by a therapeutic molecule can be assessed speedily in C. elegans model 

[105-108]. Further, the genome of this worm is wholly sequenced and shows 60-80% 

similarity with human genes, which is an added advantage of using them as in vivo model 

organisms [109-111].  

In 1993, Lee et al. reported the first miRNA, lin-4, discovered in C. elegans, which 

targets lin-14 and regulates the aging process in C. elegans [112]. Since then, C. elegans 

has been used as a model system for researching miRNAs related to neuronal 

development and their target genes [113-115]. C. elegans as a model system has proven 

several advantages, including highly conserved miRNAs during its evolution, well-

known neural networks, and neuroanatomy [116]. Moreover, it is in high demand to 

understand the role of miRNAs in neurobiology and their dysfunction related to medical 

implications. 

1.4.3. Micro-RNAs 

MicroRNAs (miRNAs) are small non-coding RNAs with an approximate length 

of 22–24 nucleotides that act as transcriptional repressors primarily by binding to the 3′-

untranslated region (3′-UTR) of target mRNAs [116]. Micro-RNAs regulate a range of 

biological functions, such as ageing, proliferation, development, differentiation, 

apoptosis, inflammation, immune response, and neurodegeneration [117,118] by 

targeting the genes involved in these processes [119]. Altered expression of miRNAs ends 

up in various diseases, including NDs [116-118]. Although some miRNAs, for example, 

miR-64, miR-81 [120], and miR-128 [121], etc., have been reported to be involved in 

regulating specific biological processes; however, the function of a large number of 

miRNAs has yet to be revealed [116].  

In the field of neuroscience, accumulated evidence progressively revealed the 

potential of miRNA in regulating neurodevelopment, neurite outgrowth synaptic 

plasticity, memory process, neurodegeneration, and nervous system morphogenesis 

[122,123]. Numerous miRNAs are reported as biomarkers in the pathogenesis of NDs, 

which imparts targets for ingenious therapies [124-127]. An individual miRNA can affect 

multiple target genes; therefore, the entire phenotype of the disease can be improved by 

modifying a single miRNA. This property makes RNA molecules very captivating from 

therapeutic prospectives. Moreover, the identification of dysregulated miRNAs in ND or 
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other disease cases may help in early diagnosis or monitoring of the disease progression 

[127].   

1.5. Gap in the study 

Despite the success of mammalian NGFs in diseased animal models for treating 

neurogenerative disorders, their clinical trials need to look more promising as drug 

prototypes. The failure of applying large neurotrophin polypeptides as drugs (poor 

pharmacological agents) can be attributed to various reasons, such as undesired 

pleiotropic effect, short half-life, proteolytic degradation, and poor pharmacokinetics. To 

overcome the impediments associated with the isolation, purification, and therapeutic 

application of high molecular weight neurotrophins, research on developing low‐

molecular‐weight mimetics of the neurotrophins possessing innate neurotrophic activity 

and improved pharmacokinetic role to replace the traditional neurotrophins for treating 

the neurodegenerative disorders has gained tremendous momentum in recent years. There 

is a dearth of knowledge on snake venom neurotrophins and their low‐molecular‐weight 

mimetics in treating neurological disorders. 

1.6. Objectives of this study 

By in silico analysis, our laboratory has synthesized four custom peptides from the TrkA 

receptor binding region of Indian Russell’s viper (Daboia russelii) and Indian cobra (Naja 

naja) venom NGF molecules. These peptides were characterized further to develop as 

potential drug prototypes to treat neurodegenerative disorders. The specific objectives of 

the present research work are mentioned below. 

1. To study the interaction of synthetic custom peptides  with mammalian TrkA receptor 

and TrkA homolog in C. elegans by computational (in silico) analysis.   

2. To study the in vitro mechanism of neuritogenesis and neuroprotective role, of custom 

peptides in pheochromocytoma of the rat adrenal medulla (PC-12) cells. 

3. To study the in vivo neuroprotective mechanism of custom peptides in C. elegans. 

4. To study the microRNA expression profile in custom peptides-treated cultured C. 

elegans. 
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