Dedicated to My Lovely Family... and To My Supervisor

Declaration by the candidate

The thesis entitled "Valorisation of oilseed meals for development of biopolymeric films and biodegradable plates using natural gums and plant fibres" is being submitted to School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of bonafide research work accomplished by me under the supervision of Prof. Laxmikant Shivnath Badwaik.

All helps from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for the award of any other degree.

Name: Ruchi Rami Place: Tezpur

Ruchi Pari -

(Ruchi Rani) Reg No: TZ203909 of 2022

Tezpur University

Certificate of the Supervisor

This is to certify that the thesis entitled "Valorisation of oilseed meals for development of biopolymeric films and biodegradable plates using natural gums and plant fibres" submitted to School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by Ms. Ruchi Rani (Roll No. FEP18102) under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for award of any other degree.

Date: 12.11.2024 Place: Tezpur

18Badwai

Signature of Supervisor Prof. Laxmikant S. Badwaik Department of Food Engineering and Technology Tezpur University, Napaam-784028, Assam, India

Acknowledgements

I am expressing my sincere thanks to my Supervisor, Dr. Laxmikant S. Badwaik, Professor and Head, Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam for his consistent support, guidance and motivation throughout my Ph.D research work. His patience, motivation, enthusiasm and immense knowledge motivated me continue my research work constantly. He is an ideal supervisor and working with him was a great experience throughout my Ph.D. journey.

I would also like to thank Prof. Shambhu Nath Singh, Vice-Chancellor, Tezpur University, Tezpur, Assam for providing me the facilities to carry out my thesis work. I am highly grateful to my Doctoral Committee members: Prof. Charu Lata Mahanta, Prof. Sankar Chandra Deka, Prof. Manuj Kumar Hazarika, Prof. Brijesh Srivastava, Prof. Nandan Sit, Prof. Poonam Mishra, Dr. Nishant R. Hulle, Dr. Soumya R. Purohit, Dr. Nikhil C. and Dr. Tabli Ghosh of Department of Food Engineering and Technology and the External Research Committee members: Prof. Tarun K. Maji of Department of Chemical Sciences and Prof. Dilip Datta of Department of Mechanical Engineering for their insightful comments, encouragements and their valuable suggestions at various stages of research. I would like to give my heartfelt thanks to all the members of Departmental Research Committee for extending all sorts of help, knowledge and guidance throughout my research work. I also express my gratitude to Prof. Pritam Dev of Department of Physics for allowing me to work in his laboratory and Dr. Tabli Ghosh for her valuable support and guidance in my research work. My sincere thanks to the technical staffs Dr. Dipankar Kalita, Dr. Arup Jyoti Das, Mr. Labadeep Kalita, Mr. Bhaskar Jyoti Kalita, Dr. Ratan Boruah, Mr. Prakash Kurmi and Ms. Swdwmsri Muchahary without whom carrying out of the research work would not have been possible. Acknowledgements goes to the nontechnical staff, Mr. Krishna Borah and Mr. Anjan Keot of the Department for giving me the essential assistance and help during my Ph.D programme. I

would also like to express my thanks to Tezpur University, Napaam, Assam, India for the Research and Innovation Grant 2021 (Ref. No.: DoRD/RIG/10-73/1544-A; Dated 21.12.2020; Sl No. 06) for the financial support received during my Ph.D period. I would also like to give thanks to the Sophisticated Analytical Instrumentation Centre (SAIC), DST-FIST, NEQIP-AICTE and UGC-SAP for providing the technical facilities.

I am also thankful to my Friends: Ms Sonam Kumari, Ms. Monica Yumnam, Ms. Arjuara Begum, Ms. Lourambam Monika Devi, Ms. Tridisha Bordoloi, Ms. Fogila Begum, Ms. Lohita Raulo, Ms. Ribha Arabella, Ms. Shagufta Rizwana, Ms. Somya Singhal, Ms. Parishmita Koch, Mr. Amardeep Kumar and Ms. Parijat Bharali for making my moments we made together to be cherished forever. Special thanks to friend of mine Mr. Sandeep Suman for his constant encouragement and emotional support in my entire Ph.D. journey. Nevertheless, thankyou to my Seniors: Dr. Maanas Sharma, Dr. Arun Kumar, Dr. Avinash Kumar Jha, Dr. Urbashi Neog, Dr. G.V.S. BhagyaRaj, Ms. Nemnunhoi Haokip and Dr. Vegonia Marboh for making my research life less stressful and more joyful. I am always be thankful for enlightening my way to reach my goal.

"United will stand and divided we fall" a very popular phrase is applied for lab members. With healthier work environment, it's easier to achieve the goal. This wouldn't happen without my getting sweet and helpful labmates Ms. Indrani Chetia, Mr. Thoithoi Tongbram, Ms. Prostuti Chakravorty and Mr. Akuleti Saikumar, Research Scholars of Packaging Lab and my junior Mr. Prakash Verma, who has supported and entertained me during the entire time of my Ph.D research work. I also would like to thank all my juniors research scholars for their love and being helpful in every possible way. Thank you to research scholars Ms. Monika Sharma and Mr. Mahesh Chandra Dubey from Department of Physics for their laboratory support to perform my experimental analysis. I would also like to express my love and gratitude towards my Papa 'Dr. Bipul Kumar Mandal', Maa 'Mrs. Anshu Rani' and to my sweet younger sister 'Ms. Ritu Rani', to whom thanks would be a little word to express. Finally, above all, I am very much thankful to the "Almighty God Lord Krishna" for showering his the countless blessings upon me and taking me to the right direction till my completion of my Ph.D.

P The standard of the second fill rate dilater.

Х

The star of the start and

Tezpur

Ruchi Rani

12.11: 2024

Title
Oilseed cakes for health-promoting functional properties
Proportion of the components (oilseed meals) for development of
biopolymeric films
Proximate composition of different oilseed cakes
Water and oil absorption capacity, bulk density and foaming
capacity of oilseeds cakes and meals

LIST OF TABLES

Page No.

10

28

34

37

Table

No. 2.1.

3.1.

3.2.

3.3.

5.5.	which and on absorption explority, bank density and roanning	51
	capacity of oilseeds cakes and meals	
3.4.	Emulsion capacity, stability and least gelation concentration of	39
	oilseeds cakes and meals	
3.5.	Colour measurement of oilseeds cakes and meals	39
3.6.	Responses of the dependent and independent variables for the	45
	biopolymeric films prepared with different concentrations of	
	mustard, flaxseed and soybean meal	
3.7.	Regression coefficients of the response variables and analysis of	46
	variance of the cubic models ^a	
3.8.	Color parameters (L*, a*, b*) and colour change of the	47
	biopolymeric films	
3.9.	Thermal properties of the biopolymeric films	54
3.10.	Predicted and experimental solutions for the optimized	56
	biopolymeric film suspension	
4.1.	Concentrations of acacia gum and xanthan gum with oilseed meals	63
	used in the film formulation determined according to full factorial	
	design.	
4.2.	Formulation of oilseed meals-gums crosslinkers based	65
	biopolymeric films	
4.3.	Regression coefficients of the response variables and analysis of	72
	variance of the cubic models ^a of oilseed meals-gums (AG: XG)	
	biopolymeric films	
4.4.	Responses of the dependent and independent variables for the	75
	oilseed meals-gums (AG: XG) biopolymeric films prepared with	
	different concentrations.	

4.5.	Recommended and experimental solutions for the optimized	77
	oilseed meals-gums (AX: XG) biopolymeric film suspension	
4.6.	Comparative responses of the dependent and independent variables	80
	for the oilseed meals-gums, oilseed meals-gums citric acid	
	crosslinked and oilseed meals-gums glutaraldehyde crosslinked	
	biopolymeric films prepared with different concentrations.	
4.7.	Color parameters (L*, a*, b*), whiteness index and thermal	82
	properties of the oilseed meals-gums in comparison to oilseed	
	meals-gums citric acid crosslinked biopolymeric films.	
5.1.	Formulation of biocomposites and biodegradable plates	95
	incorporated with plant fibres	
5.2.	Chemical properties of banana pseudo-stem, coconut coir &	104
	sugarcane bagasse fibres	
5.3.	Physical properties of banana pseudo-stem, coconut coir &	106
	sugarcane bagasse fibres	
5.4.	Pore structure parameters obtained by BET and BJH methods for	110
	banana pseudo-stem, coconut coir & sugarcane bagasse fibres	
5.5.	Color analysis of banana pseudo-stem, coconut coir & sugarcane	111
	bagasse fibres	
5.6.	Physical properties of banana pseudo-stem, coconut coir &	112
	sugarcane bagasse fibres	
5.7.	DSC analysis of banana pseudo-stem, coconut coir & sugarcane	117
	bagasse fibres	
5.8.	Properties of biocomposites incorporated with plant fibres	122
5.9.	Color and whiteness index of biocomposites incorporated with	124
	plant fibres	
5.10.	DSC of biocomposites incorporated with plant fibres	131
5.11.	Physical properties and color analysis of biodegradable plates	134
	incorporated with plant fibres	
5.12.	Compression test (%) of the biodegradable plates	137
5.13.	Absorption capacity of the biodegradable plates with food model	138
	within 15 min	

Figure No.	Title	Page No.
1.1.	The outline of the overall research work plan	7
2.1.	Different types of oilseeds	9
2.2.	Oilseed as a functional food ingredient in the varietal food preparation	9
2.3.	Structural diagram of sugarcane plant	13
2.4.	Sugarcane bagasse after extraction of juice	13
2.5.	Structural diagram of banana plant	14
2.6.	Cross-sectional image of banana pseudo-stem	14
2.7.	Different parts that compose the coconut fruit	15
2.8.	Hot compression moulded tray from de-oiled crambe meal (adapted from Newson, 2015)	20
3.1.	Oilseed cakes and defatted meals of mustard, flaxseed and soybean	24
3.2.	Foaming stability of different oilseed cakes and defatted meals (D- defatted, MUS- mustard meal, FLX- flaxseed meal, SOY- soybean meal)	37
3.3.	Contour plot of (a) solubility (b) tensile strength (c) elongation at break and (d) water vapor permeability of biopolymeric films	42
3.4.	Scanning electron micrographs at 100 × magnification of the surface and cross-section of mustard seed meal film (a, b), flaxseed meal film (c, d), soybean seed meal film (e, f) and optimized biopolymeric films (g, h) respectively.	49
3.5.	Differential scanning calorimetry (DSC) curves for optimized, soybean seed meals, flaxseed meals and mustard seed meals based biopolymeric films.	51
3.6.	Differential scanning calorimetry (DSC) curve for mustard seed meals (a), flaxseed meals (b), soybean seed meals (c) and optimized biopolymeric films (d) respectively.	53
3.7.	Fourier-transform infrared spectroscopy graph for different oilseed meals and optimized biopolymeric films	55

LIST OF FIGURES

	3D plot and actual v/s predicted linear plot of (a) soubility		
	(b) tensile Strength (c) elongation and (d) water vapour		
4.1.	permilability of the biopolymeric films developed with	72	
	oilseed meals-gums		
	3D plot and 2D interaction representation of overall		
4.2.	properties of the biopolymeric films developed with oilseed	76	
	meals-gums.		
	Scanning electron micrographs at $100 \times$ magnification of the		
4.2	surface (A & C) and cross-section (B & D) of the	0.2	
4.3.	biopolymeric films developed with oilseed meals-gums as	83	
	well as added with citric acid as crosslinker.		
	Differential scanning calorimetry (DSC) curve of (a) 1st		
	heating phase (20 °C-100 °C) & cooling phase (100 °C to 20		
4.4.	°C) and (b) 2 nd heating phase (20 °C to 300 °C) the	85	
	biopolymeric films developed with oilseed meals-gums as		
	well as added with citric acid as crosslinker.		
	Fourier-transform infrared spectroscopy graph of the		
4.5.	biopolymeric films developed with oilseed meals-gums as	86	
	well as added with citric acid as crosslinker.		
	X-ray diffraction graph of the biopolymeric films developed		
4.6.	with oilseed meals-gums as well as added with citric acid as	87	
	crosslinker.		
5.1.	Extraction of fibres from (a) raw banana pseudo-stem (b)	92	
5.1.	raw coconut coir (c) raw sugarcane bagasse	92	
5.2.	Compression moulding machine	94	
5.3.	Intensity distribution of the (a) banana pseudo-stem (b)	107	
5.5.	coconut coir (c) sugarcane bagasse plant fibres fibers	107	
5.4.	BET N_2 adsorption-desorption isotherms of (a) banana	109	
5.1.	pseudo-stem (b) coconut coir (c) sugarcane bagasse fibres	109	
5.5.	SEM micrographs of (a) banana pseudo-stem (b) coconut	113	
5.5.	coir (c) sugarcane bagasse plant fibres	115	
5.6.	TEM analysis of (a) banana pseudo-stem (b) coconut coir (c)	114	
	sugarcane bagasse plant fibres under 0.2 μ m		

5.7.	TGA of (a) banana pseudo-stem (b) coconut coir (c)	115	
5.7.	sugarcane bagasse fibres	115	
5.8.	DSC of (a) banana pseudo-stem (b) coconut coir (c)	116	
5.0.	sugarcane bagasse fibres		
5.9.	XRD of (a) banana pseudo-stem (b) coconut coir (c)	118	
5.7.	sugarcane bagasse fibres		
5.10.	FTIR of (a) banana pseudo-stem (b) coconut coir (c)	119	
5.10.	sugarcane bagasse fibres	117	
5.11.	SEM of biocomposites reinforced with plant fibres	126	
5.12.	XRD of biocomposites reinforced with plant fibres 127		
5.13.	TGA of biocomposites reinforced with plant fibres 129		
5.14.	DSC of biocomposites reinforced with plant fibres 130		
5.15.	FTIR of biocomposite reinforced with plant fibres 132		
5.16.	Contact angle of biocomposites reinforced with plant fibres	135	
5.17.	Contact angle of biodegradable plates incorporated with		
5.17.	plant fibres	136	
5.18.	Spreadability test of the biodegradable plates with different	138	
3.18.	food models within 15 min	150	
5.19.	Biodegradability test of biodegradable plates reinforced with	139	
5.17.	plant fibres	137	

List of Abbreviations

SEM	Scanning electron microscopy
TIR	Fourier Transform Infrared Spectroscopy
KRD	X-Ray diffraction analysis
AOAC	Association of Official Agricultural Chemists
ANOVA	Analysis of Variance
WAC	Water absorption capacity
DAC	Oil absorption capacity
FC	Foam capacity
FS	Foam stability
EC	Emulsion capacity
ES	Emulsion stability
DSC	Differential Scanning Calorimetry
ſGA	Thermogravimetric Analysis
AG	Acacia gum
KG	Xanthan gum
GL	Glycerol
FFD	Full factorial design
CAF	Citric acid incorporated biopolymeric film
GLF	Glutaraldehyde incorporated biopolymeric film
ſSM	Total soluble matter
WVTR	Water vapour transmission rate
WVP	Water vapour permeability
SPSS	Statistical Package for the Social Sciences
BM	International Business Machines
мРа	Mega Pascal
Ĵ	Gram
5	Second
Ν	Metre
PRESS	Sum of square
χ^2	Coefficient of variance
D _a	Pascal
DG	Oilseed meal-gums biopolymeric film

СА	Citric acid
mm	Millimetre
cm	Centimetre
CMC	Carboxymethyl cellulose
J/g	Joule per gram
° C	Degree celsius
%	Percentage
T _g	Glass transition temperature
То	Onset temperature
Te	End temperature
T _m	Melting temperature
ΔΗ	Enthalpy
rpm	Revolutions per minute
min	Minute
w/w	Weight by weight
h	Hour
LDPE	Low density polyethylene
OGCF	Oilseed meals- gum crosslinked biopolymeric film
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
BSF	Banana pseudostem
CC	Coconut coir
SBF	Sugarcane bagasse fibre
DLS	Dynamic light scattering
a*	Redness
b*	Blueness
L*	Lightness
Ps _x	Pseudo-component of each component
C _x	Real concentration
a _y	Lower limit of real component
Σa_y	Sum of lower limit of components
Y	Responses of the method
βs	Parameters of linear product of model

_

γ_s	Parameters of crosslinked product of model
DTG	Derivative thermogravimetry
Κ	Kelvin
ADF	Acid detergent fibre
NDF	Neutral detergent fibre
nm	Nanometre
WI	Whiteness index
BPBS	Biodegradable plates added with banana pseudo-stem fibres
BPCS	Biodegradable plates added with coconut coir fibres
BPSB	Biodegradable plates added with sugarcane bagasse fibres
Ν	Newton