
Chapter 6

INFS-MICC: An Incremental

Feature Selection Method

6.1 Introduction

In the �eld of network intrusion detection, feature selection is a crucial step. To

achieve better classi�cation performance, selection of an optimal subset of features

can help signi�cantly. The learning model becomes needlessly complex and chal-

lenging to comprehend when irrelevant and redundant features are used. A subset

of features from an initial collection of features in machine learning are chosen in fea-

ture selection [181]. Both supervised and unsupervised feature selection techniques

have been put forth over the years. By enhancing model performance, enabling

improved data visualization and comprehension, and better use of computational

resources, feature selection strategies improve the learning process [128].

A quality feature selection method selects a subset of relevant features i.e. those

features which distinguishingly characterize the target class. The distinction be-

tween the target classes is made possible by feature relevance, without which the

feature does not contribute to the prediction of the target class for a given test

instance. At the same time, the features should operate independently of one an-

other i.e. redundancy among the features should be less. Duplicate or dependent

features do not provide any new knowledge to the learning process and may reduce

model performance. As a result, the candidate features in a chosen subset should

be independent of one another.
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6.1.1 Incremental Data

With whirlwind developments in information technology all around, there is rapid

increase in data being generated. Generation and collection of data is always an

ongoing process. Data that is relevant today for a system may not be relevant after

a few years. On the other hand, it may so happen that all the data for an already

functioning system may not be available at one go. Such systems are dynamic

systems and such data in the literature are termed as incomplete data [229]. At

di�erent points in time, data for such a system may inhibit dynamic varying charac-

teristics. This means that, for any object the features that characterize the object

may vary dynamically with time. Such added-in data are called the incremental

data.

6.1.2 Necessity of Incremental Feature Selection

In dynamic real world applications, data collection and generation may be an ongo-

ing process. A traditional (non-incremental) feature selection method is typically

computationally expensive for such dynamic data because, whenever new data ar-

rives all the computations are again done from scratch. This issue necessitates the

need of an incremental approach to feature selection so as to speed up the feature

selection process in dynamic data.

6.1.3 Related Work

6.1.3.1 HTTP Flooding Attacks

Tremendous amount of research e�orts have been made to detect HTTP �ooding

attacks at the earliest with minimum false alarms. In the literature, researchers

have categorized defense mechanisms for detecting HTTP �ooding attacks based

on disparate ideas. Zargar et al. [105] categorize the mechanisms based on the

deployment site. Destination based mechanisms deploy their defenses at the victim

end, i.e., at the Web server end, and Hybrid mechanisms are deployed on both the

client and the server. Praseed et al. [106] propose a taxonomy where the detection

mechanisms are classi�ed according to request dynamics (tra�c estimation, request

statistics like entropy based measures), and request semantics (request composition

and request sequence). Singh and De [107] use a multi layer perceptron (MLP) to

detect HTTP �ooding attacks with features such as HTTP requests count, number
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of the IP addresses. For learning and adjusting the weights of the perceptrons

genetic algorithm is used. The main advantage of this method is that it provides a

high detection accuracy and a low false positive rate. Zhao et al. [108] try to dif-

ferentiate between �ash crowd and application layer DDoS attacks. Two measures

based on entropy namely, EUPI (Entropy of URL per IP) and EIPU (Entropy of

IP per URL) are used. The main idea behind using such measures is that nor-

mal requests vary in size, speed and intent and as such have a high entropy value.

Whereas attack packets are more similar to one another and thus have low entropy

value. Wen et al. [111] propose a tra�c estimation based defense mechanism which

focuses on request dynamics. If the request rate is above an expected threshold

at a particular point of time it means something abnormal (either an attack or

�ash crowd) is going on. Kalman �lter is used as a measure for this purpose. Ad-

ditionally, source IP distribution is used to actually identify an attack �ood. In

[230] Yatagai et al. proposes an HTTP-GET �ood attack detection method where

the underlying idea is to analyse the page access behavior based on two detection

methods. First method �nds the sequence in which the pages are browsed by a user

and the second measures the correlation between browsing time of a page and its

information size. The downside to the �rst method is its low detection accuracy,

however it prioritizes acitivities of normal clients, meaning normal clients will not

be wrongly barred from their usual activity. On the other hand, the second method

promises high detection accuracy but may misclassify a normal client. Dhanapal

and Nithyanandam [231] proposes an OpenStack based testbed framework which

detects HTTP-Flooding attacks in the cloud computing platform. According to the

authors detection of such attacks in the cloud is di�cult because of the existence of

numerous potential attack paths. Their method is highly accurate in detecting low-

rate attacks in the early stages. Similar, techniques for protecting cloud computing

platforms are also proposed in [232] and [233]. Mohammadi et al. [234] propose

HTTPScout, a security module which helps detect and mitigate �ooding attacks

using machine learning and Software De�ned Networks (SDN). The proposed mod-

ule continuously observes the incoming HTTP tra�c �ows. If any particular �ow

is sensed to be malicious, its source is blocked at the edge switch. This way the

valuable network resources are safeguarded from the adversaries. A similar detec-

tion method is also proposed in [235], where the authors consider both transport

layer and application layer attacks in a modular SDN-based architecture. For de-

tection both machine learning and deep learning models are employed. On the
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other hand, the Mininet emulator1 and Open Network Operating System2 (ONOS)

SDN controller is also deployed for implementation in a simulated environment. In

the recent years, several such methods to detect application layer DDoS attacks in

Software De�ned Networks (SDN) have gained popularity [236],[237][238].

6.1.3.2 Feature Selection

The most typical presumption according to many is monotonicity, which is of the

notion that adding more features would be bene�cial for a learning system perform

better [239][240]. Researchers in machine learning and knowledge discovery who

are interested in enhancing algorithm performance have over the years given fea-

ture selection a lot of interest. Since many learning algorithms may fail or take an

excessive amount of time to run before data is reduced, feature selection is a very

crucial step in pre-processing when dealing with enormous data. Feature selection

methods in the literature are mainly categorized into: Filter, Wrapper and Embed-

ded methods.

In order to give an ordered list of feature ranks, �lter methods use statistical mea-

sures such as information gain, correlation, and mutual information [127, 187, 188].

These ranking systems aid in highlighting the characteristics that are crucial. Prior

to executing the classi�cation task, irrelevant features are �ltered out and elimi-

nated because their presence does not help improve the performance of a machine

learning algorithm. To maximize the advantages of competitive ranking, numerous

�lter methods have been utilized in conjunction with population-based heuristic

search methodologies [189�192]. Feature-feature and feature-class mutual infor-

mation are used in the widely used MIFS (Mutual Information Feature Selection)

method to choose a feature subset that maximizes classi�cation accuracy [193].

Two categories of wrapper feature subset selection methods that are often used in

the literature are sequential selection algorithms and heuristic search algorithms

[129, 130, 188, 202, 203]. To choose feature subset, Maldonado and Weber [204]

suggest a sequential backward selection wrapper approach utilizing Support Vector

Machines (SVMs). Using cosine similarity and SVMs, Gang and Jin [205] choose

relevant and independent features.

On the other hand, Hsu et al. [206] provide a hybrid feature selection method,

where the �lter methods assist in e�ectively �nding the candidate features and the

1http://mininet.org/
2https://opennetworking.org/onos/
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wrappers are in charge of delivering the subset of features that ensures the best

possible classi�cation accuracy. In order to produce distinct lists of ranked fea-

tures, ensemble feature selection methods like [207] rely on base feature selection

algorithms. The �nal ranked list of features is created by combining these individ-

ually ranked features based on a score. In conjunction with four search algorithms,

including ensemble forward and backward sequential selection, hill-climbing, and

genetic search, Tsymbal et al. [208] examine diversity metrics to assess diversity in

the ensemble feature selection methods.

6.1.4 Motivation

In terms of sample sizes and dimensions, the amount of data that is currently

available has signi�cantly increased across all �elds, including network security,

bioinformatics, text classi�cation, and computer vision, to mention a few. Despite

the fact that a lot of data is produced, not all of it is of high quality to be used

in predictive data analysis. At the same time it is important to note that, data

may be continuously arriving at regular intervals. For such cases the learning

models need to be trained from scratch which is again computationally expensive

and ine�cient. To o�er valuable insights to predictive modeling, machine learning

algorithms need relevant, independent, intelligible, meaningful, and recent data. In

light of this, feature selection is essentially an important pre-processing step. It aids

a learning model in simplifying the learning process so that it can acquire essential

and vital knowledge for predicting tasks. Although a good number of feature

selection methods have been introduced, none of these are free from limitations,

particularly in the context of network security which demands for best possible

accuracy at low cost. All the mentioned reasons have collectively motivated for

the development of an incremental feature selection technique which focuses on

selecting relevant and irredundant features to achieve best predictive performance

with minimum false alarms and at the same time to avoid processing the whole

data from scratch when new data instances arrive at regular intervals.

6.1.5 Contribution

The main contribution reported in this chapter is an Incremental Feature Selec-

tion method based on Mutual Information and Correlation (INFS-MICC). It is

incremental in the sense that it can handle growing data incrementally and can
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Table 6.1: Symbol Table for the Proposed Method (INFS-MICC)

Symbol Symbol Meaning Symbol Symbol Meaning

D Dataset F old
2

Contains highly relevant

features from F ′
Dold

s No. of samples in D F new
3

Contains highly relevant

features from F ′
Dnew

d Dimension of the dataset D

Tm Time FD
Combination of

F common
1 , F old

2 and F new
3

Tn Time I Mutual Information

Dold Data arriving at time Tm M Random variable

Dnew Data arriving at time Tn N Random variable

F Original feature set of D m
Marginal probability

distribution of M

F ′
Dold

Feature subset containing

relevant and irredundant

features from Dold

n
Marginal probability

distribution of N

F ′
Dnew

Feature subset containing

relevant and irredundant

features from Dnew

p(m,n)
Joint probability

distribution of M and N

F common
1

Contains common features

from F ′
Dold

and F ′
Dnew

Ck Target class

identify a subset of highly relevant and irredundant feature subset without pro-

cessing the whole data from scratch, thereby saving computational resources. The

proposed method is used to detect HTTP-�ooding attacks with high accuracy at

low cost. Three well-known HTTP-Flooding datasets have been used to establish

the e�ectiveness of INFS-MICC.

Table 6.1 depicts the symbols and notations used to describe the proposed

method.

6.2 Problem De�nition

Let's assume a dataset D containing s samples. D is partitioned into Dold and Dnew.

Dold is the data that has already arrived at time Tm and Dnew is the incremental

batch of data newly arrived at time Tn. Dataset D is characterized by the feature

set F = {f1, f2, f3, ....fd}, where d is the dimension of the dataset. Next task is
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to �nd, F ′
Dold

which is the feature subset containing relevant (high feature-class

mutual information) and irredundant (low feature-feature correlation) features se-

lected fromDold. Now, for the given data incrementDnew, the problem is to identify

the optimal subset of features, F ′ for the whole dataset i.e. Dold∪Dnew i.e D which

ensures the best possible accuracy for D at low cost.

6.3 Background

This section presents the background of our method. It exploits the power of mu-

tual information and correlation measures to design the proposed feature selection

method.

6.3.1 Mutual Information for Feature Selection

Mutual Information is important for feature selection since it helps determine how

pertinently a speci�c feature (or characteristic) is related to the target class. In

other words, it enables the assessment of a feature's predictive value for a given

class. Because it will know more about the target, a feature, such as fi, that has a

higher mutual information score with the target class than another feature, say fj

will be more valuable in predicting the target class.

Let's suppose that there are two random variables named M and N. Mutual Infor-

mation is the amount of information thatM knows about N . This can be expressed

mathematically as in Equation 6.1, where m and n are the marginal probability

distributions for M and N respectively.

I(M ;N) =
∑
m,n

p(m,n) log
p(m,n)

p(m)p(n)
(6.1)

The joint probability distribution function for the random variables M and N is

actually expressed as p(m,n) in Equation 5.1, while p(m) and p(n) denote the

marginal probability distributions for M and N. It is important to note that the

Mutual Information between M and N is said to be zero if they are statistically

independent.
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6.3.2 Correlation for Feature Selection

To determine the relationship between two features, such as fi and fj, in feature

selection, the statistical measure of correlation is utilized. Two attributes can have

a positive, negative, or even a zero correlation value depending on how they are

related to one another. If they are closely linked, including just one of them in the

feature set is su�cient. On the other side, having both features would make the

feature set super�uous.Therefore, the goal is to select a subset of features from the

original feature set with the least amount of overlap between them.

The linear relationship between two entities, let's say M and N, is described by

Pearson's correlation coe�cient as shown in Equation 6.2. The value of the cor-

relation coe�cient ranges from -1 to +1. High negative correlation is represented

by a number of -1, and high positive correlation is represented +1. Additionally, a

value of 0 denotes a lack of association between the two entities. For the proposed

method, the correlation coe�cient's absolute value is taken into account because,

of interested is the relationship's strength not its direction of positive or negative.

Corr − Coeff =

∑
(mi − m̄)(ni − n̄)√∑
(mi − n̄)2

∑
(ni − n̄)2

(6.2)

Since, the aim is to identify an optimal subset of features which are highly relevant

and irredundant. To achieve highly relevant features for a given class, mutual infor-

mation is exploited whereas for irredundant feature selection pearson's correlation

measure is applied.

6.4 INFS-MICC: Proposed Method

In this section, the proposed method named INFS-MICC is elaborated in length.

The goal is to select an optimal subset of ranked list of features to detect HTTP-

Flooding attacks with high accuracy at low cost. To provide a �nal ranked list of

features, our method combines mutual information and correlation measurements.

The main attraction of our method is its ability to handle incremental data while

selecting the subset of features to ensure best possible classi�cation accuracy. It

avoids redoing the entire computation from scratch to gain new knowledge. It

makes use of the previous results obtained from the original data along with new

results from the added-in data. The proposed method is depicted in Figure 6.1.

The feature sets F common
1 , F old

2 , F new
3 , and FD described in Figure 6.1 are explained
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Figure 6.1: Proposed Framework for INFS-MICC

mathematically in Equation 6.3, 6.4, 6.5 and 6.6.

F common
1 = F ′

Dnew
∩ F ′

Dold
(6.3)

F old
2 = {fi ∈ F ′

Dold
|rank(fi) ≥ α} (6.4)

F new
3 = {fj ∈ F ′

Dnew
|rank(fj) ≥ α} (6.5)

FD = F common
1 ∪ F old

2 ∪ F new
3 (6.6)

The preprocessing tasks are carried out after data is added-in or generated. Pri-

marily, three tasks are performed. First, the missing values if any are estimated, by

averaging the column values. Second, features which have zero variance are elim-

inated because they do not contribute in the decision-making during prediction.

Third, to bring the values to a uniform range of 0 to 1, min-max normalization

technique is used.

Next, the proposed feature selection method is applied which is designed to handle

incremental data or added-in data. The feature selection process is mainly based

on computing the relevance of the features in terms of mutual information and

computing the independence among the features in terms of correlation.
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6.4.1 Relevance and Independent Feature Subset Finding

INFS-MICC is an incremental feature selection method which is based on Mutual

information and correlation. It assumes that data arrives in batches. For simplicity,

two batches of data Dold (already arrived) and Dnew (now arrives) are considered.

First, it is assumed that for Dold, the feature subset F
′
Dold

is selected using the score

described in Equation 5.4. Over time, as incremental batch of data Dnew becomes

available, the respective feature subset F
′
Dnew

is also identi�ed using the same ap-

proach. It is important here to note that, data batch Dnew may acquire some new

features over time. So, F
′
Dnew

may contain some features which were not previously

present in F
′
Dold

and it may or may not be relevant for Dold. To address this issue,

the feature subset FD is calculated. FD is a combination of three feature subsets

namely F common
1 , F old

2 and F new
2 as shown in Equation 6.6. F common

1 contains the

common features from F
′
Dnew

and F
′
Dold

as shown in Equation 6.3. F old
2 contains

the highly relevant (i.e. features with rank ≥ α, a user de�ned threshold) features

from F
′
Dold

as described in Equation 6.4. Similarly, F new
3 contains the highly rele-

vant features from F
′
Dnew

as shown in Equation 6.5. The feature set FD is now used

to evaluate the new batch data, Dnew. If performance is found to be satisfactory,

then a complete scan and evaluation of Dold can be avoided. Following de�nitions

provide the theoretical basis of the proposed method.

De�nition 6.1. (Feature Relevance) For any feature fi, its relevance is de�ned in

terms of mutual information to the target class Ck. Higher the mutual information

score for fi, higher is its relevance to Ck.

De�nition 6.2. (Highly Relevant) A feature fi is said to be highly relevant i� any

of the following two cases holds.

Case 1 : fi ∈ F
′
Dnew

, and relevance(fi,Ck) > α in Dnew and fi /∈ F
′
Dold

,

where 0 < α < 1, a user de�ned threshold.

Case 2 : fi ∈ F
′
Dold

, and relevance(fi,Ck) > α in Dold and fi /∈ F
′
Dnew

,

where 0 < α < 1, is a user de�ned threshold.

De�nition 6.3. (Independence of a Feature) The independence of a feature fi is

de�ned in terms of average correlation with respect to all other features in feature

set F. Feature fi has high independence if its average correlation score with all

other features is low.
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Proposition 6.1. A feature fi ∈ F ′ is relevant and irredundant if and only if

fi ∈ F ′
Dnew

or fi ∈ F ′
Dold

.

Proof. Suppose fi ∈ F ′, however, fi /∈ F ′
Dnew

or fi /∈ F ′
Dold

. A feature fi is included

in F ′ only when it is highly relevant (De�nition 6.2) and independent of other

features. Now, a feature fi can be highly relevant for D (Dnew ∪Dold) only when -

� fi ∈ F ′
Dnew

and fi ∈ F ′
Dold

, or,

� fi is highly relevant for either Dnew or Dold.

Hence, fi must be relevant and irredundant. ■

Proposition 6.2. The feature subset selected by INFS-MICC is optimal.

Proof. Assume that feature subset FD selected by INFS-MICC is not optimal.

In other words, there is possibility of inclusion or exclusion of feature(s) in FD.

However, a feature fi is included in FD only when any of the following condition

is true:

Condition 1: fi ∈ F ′
Dold

and fi ∈ F ′
DNew

Condition 2: fi is assigned higher rank for either Dnew or Dold.

Further, the feature subset created considering the conditions 1 and 2 undergoes a

recursive feature elimination process to �nd the optimal subset of selected features

so that any exclusion or inclusion of feature(s) leads to deterioration of performance.

Hence, the assumption does not hold and hence the proof. ■

6.5 Experimental Results

This section presents the experimental results. For evaluation purposes, �ve dif-

ferent ensemble learners namely, Adaboost, Gradient Boosting, Extreme Gradient

Boosting, Random Forest and Extra Trees are used. For each of these learners, the

results are evaluated in terms of both Accuracy and F1-score. Along with these two

measures, the number of optimal features are also presented. For this, Recursive

Feature Elimination (RFE) is used in a cross validation setting. In Table 6.2 the

datasets used for evaluating the proposed method is presented.

3https://www.kaggle.com/datasets/jacobvs/ddos-attack-network-logs?resource=download
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Table 6.2: Datasets Used

Dataset name No. of instances No. of features No. of classes

HTTP Flood 3 21,60,668 28 2

UNSW[137] 25,40,044 49 2

CICIDS[241] 28,30,540 80 2

In case of the CICIDS dataset, the highest accuracy of 99.8% is obtained by

Extreme Gradient Boosting classi�er with 3 features as shown in Figure 6.2. All the

other classi�ers i.e AdaBoost, Gradient Boosting, Random Forest and Extra Trees

show similar performance in terms of accuracy as shown in Figures 6.3, 6.4, 6.5

and 6.6 respectively. However, to achieve that performance the classi�ers require

4 (for Adaboost), 4 (for Gradient Boosting) and 10 (for both Random forest and

Extra Trees) which is higher than the number of features required by Extreme

Gradient Boosting classi�er. Hence, in this case, it is concluded that the optimal

performance is given by Extreme Gradient Boosting classi�er with 3 features. For

the same dataset, F1-scores are illustrated in Figure 6.7 for Gradient Boosting,

Figure 6.8 for Adaboost, Figure 6.9 for XGBoost, Figure 6.10 for Random Forest,

and Figure 6.11 for Extra Trees classi�er.

Highest accuracy: 99.8%
No. of selected features: 3

Figure 6.2: RFE with XGBoost Classi�er for CICIDS Dataset (Accuracy)

In case of the UNSW dataset, the highest accuracy of 99.7% is obtained by

Gradient Boosting classi�er with 5 features as shown in Figure 6.12. All the other

classi�ers i.e AdaBoost, Extreme Gradient Boosting, Random Forest and Extra
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Highest accuracy: 99.8%
No. of selected features: 4

Figure 6.3: RFE with Adaboost Classi�er for CI-

CIDS Dataset (Accuracy)

Highest accuracy: 99.8%
No. of selected features: 4

Figure 6.4: RFE with Gradient Boosting Classi�er

for CICIDS Dataset (Accuracy)

Highest accuracy: 99.9%
No. of selected features: 10

Figure 6.5: RFE with Random Forest Classi�er for

CICIDS Dataset (Accuracy)

Highest accuracy: 99.9%
No. of selected features: 10

Figure 6.6: RFE with Extra Trees Classi�er for CI-

CIDS Dataset (Accuracy)

Trees show similar performance in terms of accuracy as shown in Figures 6.13,

6.14, 6.15 and 6.16 respectively. However, to achieve that performance the classi-

�ers require 7 (for Adaboost), 13 (for both Extreme Gradient Boosting and Random

forest) and 8 (for Extra Trees) which is higher than the number of features required

by Gradient Boosting. Hence, in this case, it is concluded that the optimal per-

formance is given by Gradient Boosting classi�er with 5 features. For the same

dataset, F1-scores are illustrated in Figure 6.17 for Gradient Boosting, Figure 6.18

for Adaboost, Figure 6.19 for XGBoost, Figure 6.20 for Random Forest, and Figure

6.21 for Extra Trees classi�er.

On the other hand, for the HTTP Flood dataset, Extreme Gradient Boosting
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Highest f1-score: 99.8%
No. of selected features: 4

Figure 6.7: RFE with Gradient Boosting Classi�er for CICIDS Dataset (F1-score)

Highest f1-score: 99.7%
No. of selected features: 4

Figure 6.8: RFE with Adaboost Classi�er for CI-

CIDS Dataset (F1-score)

Highest f1-score: 99.8%
No. of selected features: 3

Figure 6.9: RFE with XGBoost Classi�er for CI-

CIDS Dataset (F1-score)

achieves the highest accuracy with 99.9% with 2 features only as shown in Figure

6.22. All other learners give similar performance with highest accuracy 99.9%

as shown in Figures 6.23 (for Adaboost), 6.24 (for Gradient Boosting), 6.25 (for

Random Forest), 6.26 (for Extra Trees). However, to achieve that performance

the learners i.e. Adaboost, Gradient Boosting, Random Forest and Extra Trees

require 3, 4, 3 and 4 features respectively which is higher than the number of

features required by Extreme Gradient Boosting classi�er. Hence, in this case, it

is concluded that the optimal performance is given by Extreme Gradient Boosting
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Highest accuracy: 99.9%
No. of selected features: 10

Figure 6.10: RFE with Random Forest Classi�er for

CICIDS Dataset (F1-score)

Highest f1-score: 99.9%
No. of selected features: 10

Figure 6.11: RFE with Extra Trees Classi�er for

CICIDS Dataset (F1-score)

Highest accuracy: 99.7%
No. of selected features: 5

Figure 6.12: RFE with Gradient Boosting Classi�er for UNSW Dataset (Accuracy)

classi�er with 2 features. For the same dataset, F1-scores are illustrated in Figure

6.27 for Gradient Boosting, Figure 6.28 for Adaboost, Figure 6.29 for XGBoost,

Figure 6.30 for Random Forest, and Figure 6.31 for Extra Trees classi�er.

Table 6.3 shows the top 10 ranked features for each of the HTTP Flooding

dataset considered as given by the proposed incremental feature selection method.

The columns feature name and index number gives the name of the feature and

the index number in the dataset.
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Highest accuracy: 99.7%
No. of selected features: 7

Figure 6.13: RFE with Adaboost Classi�er for

UNSW Dataset (Accuracy)

Highest accuracy: 99.6%
No. of selected features: 13

Figure 6.14: RFE with XGBoost Classi�er for

UNSW Dataset (Accuracy)

Highest accuracy: 99.7%
No. of selected features: 13

Figure 6.15: RFE with Random Forest Classi�er for

UNSW Dataset (Accuracy)

Highest accuracy: 99.7%
No. of selected features: 8

Figure 6.16: RFE with Extra Trees Classi�er for

UNSW Dataset (Accuracy)

6.5.1 Comparison with other Feature Selection Methods

The proposed incremental feature selection method which is designed to detect

HTTP Flood attacks in the application layer is compared against seven state-of-the-

art feature selection methods such as MIFS [193], CMIM [200], and mRMR [228],

DISR [242], JMI, Gini index and ANOVA feature selection. Figure 6.32, 6.33 and

6.34 illustrates the comparative analysis of INFS-MICC against its counter parts.

For comparative analysis, F1-score is used as an evaluation metric as it is a better

measure than accuracy in case of unbalanced datasets. For the CICIDS dataset,
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Highest f1-score: 99.8%
No. of selected features: 5

Figure 6.17: RFE with Gradient Boosting Classi�er for UNSW Dataset (F1-score)

Highest f1-score: 99.8%
No. of selected features: 7

Figure 6.18: RFE with Adaboost Classi�er for

UNSW Dataset (F1-score)

Highest f1-score: 99.7%
No. of selected features: 13

Figure 6.19: RFE with XGBoost Classi�er for

UNSW Dataset (F1-score)

since the proposed method obtained highest accuracy with 3 features, the F1-

score comparison is also done considering 3 features only for each feature selection

method. Similarly, for UNSW and HTTP-Flood dataset highest accuracies are

obtained with 5 and 2 features respectively. Hence, comparison for these two

datasets are done considering the said number of features for each feature selection

method. From the comparative analysis, it is seen that the proposed method gives

on par or better performance compared to the other feature selection methods.
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Highest f1-score: 99.8%
No. of selected features: 13

Figure 6.20: RFE with Random Forest Classi�er for

UNSW Dataset (F1-score)

Highest f1-score: 99.8%
No. of selected features: 8

Figure 6.21: RFE with Extra Trees Classi�er for

UNSW Dataset (F1-score)

Highest accuracy: 99.9%
No. of selected features: 2

Figure 6.22: RFE with XGBoost Classi�er for HTTP Flood Dataset (Accuracy)

6.5.2 Discussion

In this chapter, an incremental feature selection method called INFS-MICC is pro-

posed to detect HTTP-Flooding attacks. The proposed method aids to identify a

�nal ranked list of feature subset which consists of highly relevant and independent

features. For computing the relevance, feature-class mutual information is consid-

ered and for the independence among features, the feature-feature correlation is

computed. The main highlight of our method is that it is incremental in nature,
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Highest accuracy: 99.9%
No. of selected features: 3

Figure 6.23: RFE with Adaboost Classi�er for

HTTP Flood Dataset (Accuracy)

Highest accuracy: 99.9%
No. of selected features: 4

Figure 6.24: RFE with Gradient Boosting Classi�er

for HTTP Flood Dataset (Accuracy)

Highest accuracy: 99.9%
No. of selected features: 3

Figure 6.25: RFE with Random Forest Classi�er for

HTTP Flood Dataset (Accuracy)

Highest accuracy: 99.9%
No. of selected features: 4

Figure 6.26: RFE with Extra Trees Classi�er for

HTTP Flood Dataset (Accuracy)

as it can handle added-in data which avoids re-computation of the whole dataset.

The proposed method is evaluated with three HTTP-Flooding datasets and �ve

ensemble predictors using two evaluation metrics namely Accuracy and F1-score.

For two out of the three datasets Extreme Gradient Boosting gives optimal per-

formance whereas for one of the dataset Gradient Boosting classi�er performs the

best.

The next chapter introduces an ensemble feature selection method named

FSRA for the detection of attacks in Critical Infrastructure. It uses three base

feature selectors and aggregates their individual ranks using a proposed score.
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Highest f1-score: 99.9%
No. of selected features: 4

Figure 6.27: RFE with Gradient Boosting Classi�er for HTTP Flood Dataset (F1-score)

Highest f1-score: 99.9%
No. of selected features: 3

Figure 6.28: RFE with Adaboost Classi�er for

HTTP Flood Dataset (F1-score)

Highest f1-score: 99.9%
No. of selected features: 2

Figure 6.29: RFE with XGBoost Classi�er for

HTTP Flood Dataset (F1-score)
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Highest f1-score: 99.9%
No. of selected features: 3

Figure 6.30: RFE with Random Forest Classi�er for

HTTP Flood Dataset (F1-score)

Highest f1-score: 99.9%
No. of selected features: 4

Figure 6.31: RFE with Extra Trees Classi�er for

HTTP Flood Dataset (F1-score)

Table 6.3: Top 10 Ranked Features of the HTTP Flooding Datasets

Top 10 features (ranked) of HTTP Flooding Datasets

UNSW CICIDS HTTP-FLOOD

Feature Name
Index

Number
Feature Name

Index

Number
Feature Name

Index

Number

1 dport 3 Flow Bytes/s 14 SEQ_NUMBER 8

2 daddr 2 Bwd Packets/s 37 NODE_NAME_FROM 11

3 drate 15 Init_Win_bytes_backward 67 FIRST_PKT_SENT 24

4 AR_P_Proto_P_SrcIP 22 Destination Port 0 BYTE_RATE 18

5 N_IN_Conn_P_SrcIP 25 Init_Win_bytes_forward 66 LAST_PKT_RESEVED 25

6 srate 14 Packet Length Mean 40 PKT_DELAY 21

7 dur 8 Average Packet Size 52 FID 7

8 TnP_Per_Dport 21 Max Packet Length 39 NODE_NAME_TO 12

9 bytes 5 Avg Bwd Segment Size 54 NUMBER_OF_BYTE 10

10 TnBPSrcIP 16 Bwd Packet Length Mean 12 UTILIZATION 20
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Figure 6.32: F1-score Comparison for CICIDS Dataset
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Figure 6.33: F1-score Comparison for HTTP-Flood Dataset
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Figure 6.34: F1-score Comparison for UNSW Dataset
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