
Chapter 7

FSRA: A Feature Selection and

Rank Aggregation Framework for

CPS Attack Classi�cation

7.1 Introduction

Technological developments and innovations in various industries have brought

about revolutionary changes at an unprecedented rate. These changes are sig-

ni�cant to the day-to-day operations of human lives due to parameters such as

convenience and ease of use [243]. Particularly, ease of use has largely impacted

industrial sectors such as transportation, banking, gas and petroleum, health care,

nuclear power plants, smart grids, water treatment and distribution, and electric-

ity facilities [244]. Supervisors, developers, and end users substantially depend on

technology for e�cient governance and interactions to provide and obtain uninter-

rupted services. In today's world, services provided by industrial facilities are mere

a click away.

With the advancements in modern information and control systems, a new genera-

tion of systems have emerged, featuring a combination of independently developed

cyber and physical processes. These systems are called Cyber Physical Systems

(CPS). A CPS is composed of various interacting elements that monitor and con-

trol the physical processes through a communication network. The various elements

include software systems, communication technology, and sensors or actuators that

interact with the real world. These systems have impact on every aspect of our

society. Hence, are regarded as Critical Infrastructure (CI). Security is an issue of
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prime importance for any CI. More so, because of the impact that it can have in

the day to day activities.

Traditionally, these industries were not well protected in terms of security issues be-

cause they did not face as much of a threat as the conventional computing systems,

which served as targets to the perpetrators. However, in recent times, the security

issues and cyber attacks faced by these industries have escalated to a point where

normal lives of human beings are at stake. Ill-motivated attackers jeopardize the

expected functioning of the facilities as a result of which anticipated services either

are halted or disrupted. Attacks on a Iranian nuclear facility1, the Ukranian power

grid2, and the David-Besse Nuclear plant3 are only a few unfortunate instances

which illustrate the gravity of the security issues faced by such facilities. The op-

erations and performance of these industries directly in�uence the smooth running

of basic societal infrastructure. Furthermore, these issues impact upon the well-

being of human lives in that particular geographical region, area, or organization

[245]. Performance related issues, possible security breaches, and discontinuation

of services can drastically hamper the associated habitual lives of human beings in

the region.

During the process of transferring the data from physical world to the cyber world

and again forwarding decisions from the cyber world to the physical world, a ques-

tion that may be asked is where may a security breach occur. One of the many

answers to this question may be in the communication network connecting the

cyber and physical worlds. Attackers may carry out a Man-in-the-Middle attack

(MITM attack) to manipulate the data being transferred. Analyzing the data in a

normal situation and how it di�ers during an attack, can be a signi�cant research

challenge. When an attack takes place, the normal �ow of data is disrupted and

false data may be injected instead, thereby misleading the experts and preventing

them from taking appropriate and timely decisions. Thus, everything boils down

to the data in the critical infrastructure. Data manipulation and integrity attacks

such as code injection attacks and false data injection attacks are common in crit-

ical infrastructure. It is not di�cult to assume that, erroneous data instances are

similar to one another because they are generated by a program and at the same

time they are di�erent from normal data. So, distinguishing the two with the help

1https://www.csoonline.com/article/562691/stuxnet-explained-the-first-known-cyberweapon.

html
2https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
3http://large.stanford.edu/courses/2015/ph241/holloway2
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of statistical or machine learning methods is likely to detect attacks on critical

infrastructure.

In this chapter, a defense framework, CPSAD (CPS Attack Detection Framework)

which can help detect CPS attacks over optimal feature space is presented. A fea-

ture selection method called Feature Selection using Rank Aggregation (FSRA) is

also proposed. FSRA is an ensemble feature selection method built over base fea-

ture selection methods. The proposed ensemble feature selection method ensures

cost-e�ective classi�cation of CPS attacks without compromising the performance.

7.1.1 Related Work

7.1.1.1 Cyber Physical Systems

A CPS intrusion detection system is proposed by Quincozes et al. [246] where the

authors use a greedy metaheuristic approach called Greedy Randomized Adaptive

Search Procedure (GRASP) [247] for selecting discriminating features to detect an

attack in each of the three layers of CPS i.e. in the application layer, transmission

layer as well as the perception layer. The conducted empirical study proves that

such an approach is able to outperform traditional �lter-based feature selection

methods. A similar approach is presented in [248], where F1-score is used as a

criteria along with the GRASP technique to detect binary attack classes as well

multi-class attacks. However, the proposed approach is con�ned to detecting at-

tacks only in the perception layer. On the other hand, in [249] the authors introduce

a security tool which functions as an adaptive neuro-fuzzy inference system. The

heart of the intrusion detection system relies on examining the incoming network

tra�c and selecting relevant attack features based on chi-square test.

Over the years, several researchers have conducted systematic reviews on Cyber

Physical Systems widely focusing on the design mechanisms, security issues and

system �aws, challenges faced in designing detection mechanisms, and various risk

mechanisms involved in securing a CPS. [250][64][251][68]. Yan et al. [252] presents

a detection method which detects attack in the physical layer of a heavy duty gas

turbine facility by monitoring behavioral changes in the physical processes. The

physical processes in a Cyber Physical System provide measurements from which

salient features are extracted with an underlying belief that these features can

discriminate an attack and a normal measurement or instance. On the contrary,

Saghezchi et al. [253] construct data driven models to detect DDoS attacks in
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industrial CPSs. Unlike others, the authors collect data from a real world semicon-

ductor production factory which helps in emphasizing how e�ective the developed

method is. Panigrahi et al. [254] presents a signature-based intrusion detection

technique for CPSs. The approach is based on the combination of both Decision

tree and Naive Bayes and is capable of handling multi-class attacks. Multi-objective

Evolutionary Feature Selection (MOEFS) [255] method is used in the preprocessing

stage for selecting a total of �ve features which aids in detecting the attacks.

7.1.1.2 Feature Selection

Ensemble approaches rely on the assumption that decision given by many experts

is always better than the decision of a single expert. In ensemble feature selection,

base feature selection methods provide subsets of features which are then com-

bined using a consensus function to get the �nal feature subset. The authors in

[256] propose an ensemble feature selection method which considers �lter, wrapper

and embedded methods for combination in medical datasets. Two strategies are

presented for selection of feature subsets. In the �rst strategy, two di�erent types

of feature selection methods are combined (�lter-wrapper, �lter-embedded, and

wrapper-embedded). In the second strategy, all the three feature selection meth-

ods are combined together. For combination of the feature subsets the authors use

both union and intersection. The method is then evaluated with datasets of varying

dimensions containing categorical, numerical and mixed data types. Hashemi et al.

[257] propose Ensemble Feature Selection - Multi Criteria Decision Making (EFS-

MCDM) approach which makes use of di�erent ranker algorithms. Each ranker

algorithm provides a rank based on some score to each feature and a decision ma-

trix is formed. The individual ranks of these algorithms from the decision matrix is

then combined using the VIKOR approach proposed by Opricovic [258][259]. The

�nal output is a ranked list of features.

Basir et al. [260] introduces an ensemble feature selection method based on a bio-

inspired search technique. The method tries to �nd the optimal feature subset

using multi-objective algorithms ENORA [261][262] and NSGA-II [263]. A similar

method is proposed in [264] where the authors try to improve the generalization

capability of the ensemble by trying to minimize the training error and sensitivity

with the NSGA-III algorithm [265]. Sanjalawe and Althobaiti [266] propose an en-

semble feature selection and hybridized detection technique to detect DDoS attacks
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in the cloud. The base feature selection techniques include four algorithms namely

Particle Swarm Intelligence (PSO) [267], Grey Wolf Optimizer (GWO) [268], Krill

Herd (KH) [269], and Whale Optimization Algorithm (WAO) [270]. Each of the

base selectors provide a ranked list which is then aggregated using mutual infor-

mation for optimal feature selection. For detecting the attack tra�c e�ciently,

the authors employ a hybridized approach combining both Convolutional Neural

Network (CNN) and Long Short Term Memory (LSTM). A similar metaheuristic

ensemble approach is presented by Dey et al. [271] to detect attacks in IoT net-

works. For selecting optimized set of features, two base feature selection approaches

are considered namely, Binary Gravitational Search Algorithm (BGSA) and Binary

Grey Wolf Optimization (BGWO). Additionally, a proposed �tness function help

measure the quality of the solution. The selected features are then passed to Ran-

dom Forest and Adaboost ensemble classi�ers.

Authors in [272] introduce an ensemble approach in the classi�cation level. To re-

move unwanted features, an algorithm called Correlation-based Feature Selection

- Bat Algorithm (CFS-BA) is proposed which is responsible for choosing a feature

subset based on feature-feature correlation. In the classi�cation level, using vot-

ing mechanism the decisions of three base classi�ers are combined, namely, C4.5,

Random Forest and Forest by Penalizing Attributes. Interestingly, Kolukisa and

Gungor [273] in addition to proposing an ensemble feature selection method (with

seven base feature selectors) for diagnosing coronary artery disease also perform

Grid Search parameter optimization for �nding the best possible set of hyper-

parameters for the learners. Hoque et al. [17] propose a method named Ensemble

Feature Selection - Mutual Information (EFS-MI) where �ve base �lter feature se-

lectors are combined using a greedy combiner based on mutual information. If a

feature is a top ranked feature and is commonly chosen as top ranked by all the

base selectors then it is directly part of the �nal subset. However, features which

are not commonly ranked, for them the feature-class mutual information is mea-

sured. Feature which has the highest feature-class mutual information is selected

and its feature-feature mutual information is calculated with all other features from

the �nal subset. If the calculated value is less than a given threshold, the feature

becomes a part of the �nal subset.

Unlike others, authors in [274] consider three �lter-based and two embedded

feature selection methods as base selectors. To establish the degree of divergence

among the base selectors, a correlation study is carried out using Spearman's cor-
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relation among the obtained feature ranks from the selectors. The ranked lists

of features are combined using a bunch of aggregators like SVM-Rank aggregator

[275], geoMean, Stuart to name a few. At the classi�cation level, each combined

feature list provided by each aggregator is compared against each other for identify-

ing the best feature subset. Hashemi et al. [276] introduce a Pareto-based ranking

ensemble feature selection method, which considers both feature-class relevance

and feature-feature redundancy as the two objectives. To achieve this objective,

three base feature selection methods are used and the �nal list of features is ob-

tained by using the crowding distance of features. On the other hand, in [277],

the authors build an ensemble of bayesian classi�ers in random feature subspaces.

To achieve better performance, Hill Climbing search algorithm is used for re�ning

the results iteratively. From the experiments, it is concluded that in addition to

producing better results than the individual learners, the ensemble also yields low

generalization error.

7.1.2 Motivation

Critical Infrastructures play an immense role in making several critical aspects of

our day to day operations or activities easy and convenient for us. These infras-

tructures provide useful services to people of a geographical area with the help

of an integrated system consisting of a number of cyber and physical elements.

These elements and their integrated functioning are potential vulnerable points

and hence, pose serious risk in terms of security. If security is breached, not only

does the associated components fall under the in�uence of the attacker but also the

end-users are at the mercy of the attacker. Malicious users may either exploit the

existing vulnerabilities or launch a fresh attack to disrupt the ongoing functions. In

such a scenario, identifying the a�ected element at the earliest is prime and single

point of focus. Devastating and recurring attacks on critical infrastructures over

the years has motivated to catalog solutions based on appropriate use of statistical

and machine learning techniques. Therefore, the aim is to develop a solution which

could identify the infected element in a critical facility in near real time.

7.1.3 Contributions

Following are the two major contributions reported in this chapter:

1. A framework called CPSAD for cost-e�ective CPS attack classi�cation over
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optimal feature space with high accuracy and minimum false alarm.

2. A method called FSRA to identify an optimal subset of relevant features to

help detect CPS attacks at minimum cost without compromising the perfor-

mance.

Table 7.1 depicts the symbols and notations used to describe the proposed method.

Table 7.1: Symbol Table for the Proposed Method

Symbol Symbol Meaning Symbol Symbol Meaning

D Dataset RFlist

Ranked list of feature as given

by a base feature selection method

s no. of samples in D n
no. of base feature

selection methods

d no. of features in D ranki
rank of a feature as given by ith

base feature selection method

F Original feature set of D RFagglist

Aggregated ranked

list of features

fi a feature in D Fcommlist Common feature subset

BFS Base feature selection method Foptimal Optimal feature subset

7.2 Problem Formulation

For a given dataset D with s samples and d features, the problem is to �nd the

optimal subset of features, Foptimal from the original set of features F. Features in

Foptimal should help discriminate an attack instance from the normal instances in

the domain of CPSs. The subset of features should be selected in such a way that

any increase in the number of features does not improve performance of the learning

model and any decrease in the number of features deteriorates the performance.

7.3 CPSAD: Proposed Attack Detection Framework

CPSAD is a framework to detect CPS attacks with high accuracy. It has four

modules, namely detection module, alarm generation module, feedback analyzer
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module, and reference or rule generation module. Each module has its own func-

tionality and may or may not depend on other module for input. The framework

is illustrated in the Figure 7.1 and the modules are described in length below.
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Figure 7.1: CPSAD: An attack detection framework

7.3.1 Detection Module

The aim of this module is to discriminate attack instances from normal instances.

It is the heart of the proposed framework which operates in two modes, online

and o�ine. While online mode is used to detect known attacks, o�ine mode

detects unknown varieties (doubtful tra�c, can be a novel attack or new normal).

For online mode of operation, the module employs an ensemble feature selection

method to choose an optimal subset of features. This feature subset is used by

the learners whose results may then be used by a combination learner to produce

an anomaly score. For unknown or suspicious instances, the framework operates

in the o�ine mode, where after obtaining the optimal subset of features clustering

approaches may be performed and a consensus may be built to carry on the task

of detection. There can be a number of sub-modules for this module as described

below.

1. Preprocessing sub-module: It carries out the basic tasks of preprocessing such

as missing value estimation, removal of duplicates, removal of zero variance

attributes, and normalization.
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2. Feature selection sub-module: It helps to choose an optimal subset of features

which helps discriminate between normal and attack instances. The proposed

ensemble feature selection method is described in Section 7.3.2.

3. Learner/cluster sub-module: Builds supervised as well as unsupervised pre-

diction models based on the selected subset of features to identify known and

unknown attacks.

4. Combination learner/consensus combination: Combines the results of the

learners or individual clusters to generate an unbiased �nal decision. The

�nal output may be a score or a �ag specifying the instance as normal or

attack.

CPSAD functions in both online and o�ine mode. In online mode, it is important

to note that if a particular detection site gives a su�ciently high anomaly score

compared to a threshold then it is declared to be an attack at that site itself. In

such a case, the defense system does not wait for the results from other detection

sites. Once an attack is detected, an automated alarm is sent to the system ad-

ministrator along with associated essential information (if any). However, for low

or moderate anomaly scores the attack sensing detection sites deployed at multiple

points co-ordinates among each other and �nally a decision is taken to �ag the

instance as either normal or suspicious. To de�ne the point of attack, the following

cases are considered.

1. A coordinated attack detection is carried out at all the sites. In this case, the

deployed detection modules along with all their anomaly scores raise alarms

to the system administrator, who in turn takes the necessary steps to tackle

the attack.

2. An attack takes place at only one site, in such a case the system administrator

after receiving the alarm carefully disconnects the locally attacked network

from the rest of the network in order to stop the propagation of the attack.

7.3.2 FSRA: Proposed Ensemble Feature Selection Method

Feature Selection Using Rank Aggregation (FSRA) focuses on unbiased combina-

tion of the decisions given by the feature ranker algorithms to obtain an optimal
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subset of features which help discriminate between normal and attack instances.

The framework is illustrated in the Figure 7.2. Following de�nitions are useful to
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Figure 7.2: FSRA: Feature Selection using Rank Aggregation

describe the proposed method.

De�nition 7.1 (Feature of a CPS dataset). A feature fi represents the character-

istics of a CPS dataset, D given by the sensors or actuators.

De�nition 7.2 (Ranked feature list). It is an organized list of features based on

the ranks given by each feature selection algorithm.

De�nition 7.3 (Rank aggregated feature list). It is the subset of features obtained

after aggregating the base ranked feature lists given by each ranker algorithm.

De�nition 7.4 (Optimal feature subset). It is the subset of features, Foptimal ob-

tained after recursive elimination of less signi�cant features from the aggregated

ranked feature list.

De�nition 7.5 (Known attack). An attack instance is considered to be known if

it has already been encountered and its reference is available for use.

De�nition 7.6 (Suspicious instance). An instance is considered to be suspicious if

it has not been encountered yet and reference is not available for use. It can either

be a new attack or even a new normal instance.
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7.3.2.1 FSRA framework

The FSRA framework includes a sequence of steps as presented below.

1. After the CPS data is collected, it undergoes preprocessing using several

techniques. Missing values if any are estimated, zero variance features (if any)

are removed and feature values are normalized using min-max normalization

(all values between 0 to 1).

2. The preprocessed dataset is then used as input to n base feature selection

methods to obtain highly informative features. Each base feature selection

method, BFS gives a ranked list of features, RFlist containing features from

most important to least important.

3. The ranked lists of features are then given as input to the proposed rank

aggregation module to obtain an aggregated ranked list of features, RFagglist.

The rank aggregation module functions as follows.

(a) From the obtained n ranked lists from the feature selection algorithms,

�rst, the common features are considered to obtain a common feature

subset, Fcommlist.

(b) The other signi�cant features are identi�ed using the equation 7.1:∑n
i=1

1
ranki+1

n
(7.1)

Here, n signi�es the number of base feature selection methods, and ranki

denotes the rank of a feature given by the ith base feature selection

method. This ensures that if a particular feature is given su�ciently high

rank by a method but is not common to all, that feature is preserved

in the aggregation process. The output of this step is a merged list of

features, RFagglist.

4. The merged list of features are given to the learners to obtain an optimal

�nal subset of features, Foptimal using Recursive Feature Elimination (RFE).

Proposition 7.1. The subset of features Foptimal given by FSRA for a given dataset

is relevant and optimal.

Proof. Let fiϵFoptimal is a feature, selected by FSRA which is not relevant and

redundant. However, a feature is selected by FSRA only when-
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(a) fi is commonly declared by all the base ranker algorithms as relevant, or

(b) fi is speci�ed by any (or some) ranker algorithms as highly relevant (due to

assignment of high rank).

So, fi selected by FSRA is relevant.

Similarly, the subset Foptimal is optimal because

(a) Any increase in the number of features does not improve the classi�er perfor-

mance. This can be seen in the results of SWaT dataset (Figures: 7.3, 7.4,

7.5, 7.6 and 7.7)

(b) Any decrease (elimination) in the number of features deteriorate the perfor-

mance. This can be seen in the results of Gas Pipeline dataset (Figures: 7.13,

7.14, 7.15 and 7.16, 7.17).

Hence, the assumption is false and hence the proof.

■

7.3.2.2 Complexity Analysis

The overall complexity of the proposed method depends on the individual learning

algorithms and the rank aggregation process. So, the complexity of FSRA will

be the dominating complexity of the two. The rank aggregation process which is

calculated by Equation 7.1 will have a linear complexity. The training complexity

of the learning algorithms on the other hand, will largely depend on the number

of training samples (say n) and the number of features (say d) considered. Hence,

the complexity of FSRA can be concluded as O(n2d).

7.3.3 Alarm Generation Module

This module receives input from individual detection sites and output is a possible

alert to the system administrator in case of a potential attack. When the anomaly

scores are received from di�erent sites, they are combined to form a de�nite decision.

The system administrator is alerted by this module in case of an attack.
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7.3.4 Feedback Analyzer Module

The framework promises to minimize the false alarms through the use of feedback

analyzer module. Input is provided as feedback from the detection module and

output is in the form of updates to the detection module or its sub-modules. It takes

the feedback (if any) from the detection modules at multiple points and updates

the training database. Subsequently, the feature subsets may be updated. Such a

module is needed to e�ectively and continuously improve the learning process and

to reduce false alarms.

7.3.5 Reference or Rule generation Module

The reference or rule generation module consists of the references of known attacks

and is used by the system administrator. Accordingly, the output of the reference or

rule generation module is used by the learners in the detection module. Unknown

instances are recognized by the system administrator (or domain expert) either as

new normal or new attack. Conclusively, the primary goal is to detect and discrim-

inate anomalous instances from normal instances as correctly as possible over an

optimal subset of features. This module works o�ine under the supervision of the

system administrator.

7.4 Experimental Results

Three feature selection methods namely, Conditional Mutual Information Maxi-

mization (CMIM) [200], Minimum Redundancy and Maximum Relevance (mRMR)

[228] and Mutual Information based Feature Selection (MIFS) [193] are selected as

the base feature selection methods after an exhaustive empirical study. The pre-

processed datasets are fed as input to these methods and each then provides a

ranked list of features. The ranked list of features (ranked index of a feature) for

the datasets are shown in Table 7.2.

After obtaining the ranked list of features, the next task is to �nd the aggregated

feature list (as mentioned in step 3) as shown in Table 7.3 and 7.4. The column in-

dex_of_feature signi�es the index number of the feature in the particular dataset,

score indicates the score obtained by the feature using Equation 7.1, and the com-

mon column denotes if the feature is common to all the feature selection methods.
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Table 7.2: Ranked List of Features for the Datasets

Dataset
Base Feature

Selection Method
Ranked features

SWaT

Dataset

CMIM 22, 16, 12, 20, 9, 23, 14, 21, 10, 11, 1, 18, 7, 8, 24, 19, 3, 6, 17, 13, 5, 2, 4, 0, 15

MIFS 45, 8, 37, 39, 27, 21, 18, 7, 2, 0, 35, 19, 46, 1, 31, 20, 29, 40, 48, 26, 28, 25, 47, 17,3

mRMR 45, 39 , 8, 20 ,46, 17, 28 ,37, 35, 26, 27, 9, 21, 18, 11, 7, 38, 2, 48, 5, 0, 19, 1, 10, 30

Gas

Pipeline

CMIM 25, 24, 8, 18, 19, 1, 21, 0, 6, 10, 22, 2, 4, 3, 5, 9, 12, 20, 7, 11

MIFS 25, 1, 18, 20, 10, 3, 7, 11, 13, 14, 15, 16, 17, 23, 4, 6, 0, 2, 8, 22

mRMR 25, 1, 18, 8, 3, 5, 19, 9, 12, 24, 20, 0, 10, 6, 4, 2, 7, 11, 13, 14

Water

Storage

CMIM 21, 22, 1, 14, 17, 0, 10, 4, 7, 19, 16, 15, 13, 3, 5, 9, 12,20

MIFS 21, 1, 14, 3, 13, 10, 0, 2, 6, 8, 11, 18, 19, 15, 7, 16, 5, 9

mRMR 21, 1, 14, 3, 5, 9, 12, 13, 16, 4, 22, 17, 15, 20, 10, 0, 7, 2

If the feature is common to all, it is marked as `Yes' and otherwise `No'.

Table 7.3: SWaT Dataset Aggregated List of Features

SWaT Aggregated List of Features

Sl No.
Index of

feature
Score Common ? Sl No.

Index of

feature
Score Common ?

1 45 0.666667 NO 14 7 0.088141 YES

2 22 0.333333 NO 15 17 0.086988 YES

3 8 0.301587 YES 16 2 0.070707 YES

4 39 0.25 NO 17 1 0.068605 YES

5 20 0.1875 YES 18 35 0.06734 NO

6 16 0.166667 NO 19 19 0.063763 YES

7 37 0.152778 NO 20 28 0.063492 NO

8 21 0.122863 YES 21 0 0.063095 YES

9 12 0.111111 NO 22 11 0.055556 NO

10 18 0.099206 YES 23 23 0.055556 NO

11 27 0.09697 NO 24 10 0.050926 NO

12 9 0.094444 NO 25 26 0.05 NO

13 46 0.092308 NO

The aggregated list of features are given as input to the �ve popular classi�ers

namely Adaboost [175], Random Forest [226], XGboost [278], Extra Trees [227]

and Gradient Boosting [224] and Recursive Feature Elimination (RFE) is applied

to this process. This process is done so as to know which classi�er gives better

performance in terms of accuracy and F1-score for optimal number of features.

For example in the SWaT dataset, the highest accuracy of 99.9% is obtained in case

of XGBoost classi�er with 8 features as shown in Figure 7.3. Random Forest and

Extra Trees classi�er show similar performance as shown in Figure 7.4 and 7.5 with
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Table 7.4: Aggregated Ranked List of Features for Gas Pipeline and Water Storage Dataset

Gas Pipeline

Aggregated List of Features

Water Storage

Aggregated List of features

Index of

feature
Score Common?

Index of

feature
Score Common?

25 1 Yes 21 1 Yes

1 0.388889 Yes 1 0.444444 Yes

18 0.305556 Yes 14 0.305556 Yes

8 0.211988 Yes 22 0.19697 No

24 0.2 NO 3 0.190476 Yes

3 0.146032 Yes 13 0.133974 Yes

20 0.132155 YES 10 0.125397 Yes

10 0.125641 YES 0 0.124008 Yes

19 0.114286 No 5 0.108497 Yes

0 0.089052 Yes 9 0.094907 Yes

7 0.084771 Yes 17 0.094444 No

6 0.08168 Yes 16 0.088173 Yes

5 0.077778 No 7 0.078867 Yes

11 0.076852 Yes 15 0.077228 Yes

4 0.070085 Yes 4 0.075 No

2 0.06713 Yes 12 0.067227 No

9 0.0625 No 2 0.060185 No

12 0.056645 No 19 0.058974 No

13 0.054581 No

14 0.05 No

8 features. However, Adaboost and Gradient Boosting classi�ers show accuracy <

99% and with 14 features as shown in Figure 7.6 and 7.7. Therefore, in case of

SWaT dataset it can be concluded that XGBoost gives better performance than

rest of the classi�ers. For the same dataset, F1-scores are illustrated in Figure 7.8

for XGBoost, Figure 7.9 for Adaboost, Figure 7.10 for Extra Trees, Figure 7.11 for

Gradient Boosting, and Figure 7.12 for Random Forest classi�er.

On the other hand, for the Gas pipeline dataset, Gradient Boosting achieves

highest accuracy of 94.9% with 6 features as shown in Figure 7.13. It is impor-

tant to note that, Adaboost achieves an almost similar accuracy of 94.3% with 4

features as can be seen in Figure 7.14. So, there is a trade o� between accuracy

achieved and the number of optimal features. Also, both Extra Trees and XGBoost

classi�ers achieve accuracy of 92.6% and 91.5% respectively with 4 features each

as shown in Figures 7.15 and 7.16. Random Forest classi�er obtains the lowest

accuracy of 84.5% with 7 features as shown in Figure 7.17. Thus, with respect
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Optimal number of features selected: 8

Highest accuracy achieved: 99.9% 

Figure 7.3: RFE with XGBoost classi�er for SWaT dataset (Accuracy)

Optimal number of features selected: 8
Highest accuracy achieved: 99.87% 

Figure 7.4: RFE with Random Forest classi�er for

SWaT dataset (Accuracy)

Optimal number of features selected: 8
Highest accuracy achieved: 99.6%  

Figure 7.5: RFE with Extra trees classi�er for

SWaT dataset (Accuracy)

to highest accuracy achieved, it is concluded that Gradient Boosting gives better

performance in case of Gas Pipeline dataset. For the same dataset, F1-score results

are illustrated in Figure 7.18 for XGBoost, Figure 7.19 for Extra Trees, Figure 7.20

for Random Forest, Figure 7.21 for Gradient Boosting, Figure 7.22 for Adaboost.

For the water pipeline dataset, XGBoost classi�er provides best performance

with 89.2% and 4 optimal features as shown in Figure 7.23. Random Forest and

Extra Trees achieve 88.1% and 87.9% with 8 features as presented in Figure 7.24

and 7.25 respectively. Adaboost on the other hand, achieves 71% accuracy with
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Optimal number of features selected: 14

Highest accuracy achieved: 97.4% 

Figure 7.6: RFE with Adaboost classi�er for SWaT

dataset (Accuracy)

Optimal number of features selected: 14

Highest accuracy achieved: 98.2% 

Figure 7.7: RFE with Gradient Boosting classi�er

for SWaT dataset (Accuracy)

Optimal number of features selected: 8

Highest F1-score achieved: 99.4% 

Figure 7.8: RFE with XGBoost classi�er for SWaT dataset (F1-score)

11 features as seen in Figure 7.26. Of special mention is the Gradient Boosting

classi�er which achieves 72% accuracy with 1 feature only as depicted in Figure

7.27. However, it cannot be said that it gives optimal performance because XG-

Boost obtains higher accuracy than Extra Trees with 4 features. All the other

classi�ers (except Gradient Boosting) require more than 4 features to achieve the

given performance. Hence, XGBoost is chosen to be the best classi�er with optimal

performance in case of water pipeline dataset. For the same dataset, F1-scores are

illustrated in Figure 7.28 for XGBoost, Figure 7.29 for Adaboost, Figure 7.30 for
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Optimal number of features selected: 14

Highest F1-score achieved: 88.3% 

Figure 7.9: RFE with Adaboost classi�er for SWaT

dataset (F1-score)

Optimal number of features selected: 8
Highest F1-score achieved: 99.8%  

Figure 7.10: RFE with Extra trees classi�er for

SWaT dataset (F1-score)

Optimal number of features selected: 14

Highest F1-score achieved: 91.3% 

Figure 7.11: RFE with Gradient Boosting classi�er

for SWaT dataset (F1-score)

Optimal number of features selected: 8
Highest F1-score achieved: 99.7% 

Figure 7.12: RFE with Random Forest classi�er for

SWaT dataset (F1-score)

Extra Trees, Figure 7.31 for Gradient Boosting, and Figure 7.32 for Random Forest

classi�er.

From the illustrated results, it can be seen that Extreme Gradient Boosting (XG-

Boost) classi�er shows a consistent performance in two out of the three datasets

used. The reason for the same may be that it can successfully boost up weak learn-

ers to gradually improve the performance in comparison to its counterparts.

Furthermore, Table 7.5 shows the top 10 ranked features for each of the CPS

dataset considered as given by the proposed ensemble feature selection method.
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Optimal number of features selected: 6

Highest accuracy achieved: 94.9% 

Figure 7.13: RFE with Gradient Boosting classi�er for GAS pipeline dataset (Accuracy)

Optimal number of features selected: 4

Highest accuracy achieved:  94.3 %

Figure 7.14: RFE with Adaboost classi�er for GAS

pipeline dataset (Accuracy)

Optimal number of features selected: 4

Highest accuracy achieved: 92.6 %

Figure 7.15: RFE with Extra trees classi�er for

GAS pipeline dataset (Accuracy)

The columns feature name and index number gives the name of the feature and

the index number in the corresponding dataset. This table signi�es which features

are more informative in identifying an attack. In other words, FSRA is successful

in identifying the point of attack in a CPS facility and the corresponding a�ected

element. For example, for the SWaT dataset, FSRA identi�es FIT201, LIT301,

P203 and MV304 as informative features. FIT201 and LIT301 are indeed two

point of attacks in the SWaT facility as described by Adepu and Mathur [279] and

P203 and MV304 are the actuators a�ected because of it.
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Optimal number of features selected: 4

Highest accuracy achieved: 91.5%

Figure 7.16: RFE with XGBoost classi�er for GAS

pipeline dataset (Accuracy)

Optimal number of features selected: 7
Highest accuracy achieved: 84.5%

Figure 7.17: RFE with Random Forest classi�er for

GAS pipeline dataset (Accuracy)

Optimal number of features selected: 4

Highest f1-score achieved: 83% 

Figure 7.18: RFE with XGBoost classi�er for GAS pipeline dataset (F1-score)

7.4.1 Comparison with Existing Methods

The proposed detection method which relies on identifying the informative features

in a CPS facility is compared against some existing methods in Table 7.6.

1. Unlike [272], where the authors use ensemble learning (voting mechanism) at

the classi�cation level, the proposed method uses ensemble learning at the

feature selection level.
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Optimal number of features selected: 4

Highest f1-score achieved: 86%

Figure 7.19: RFE with Extra trees classi�er for

GAS pipeline dataset (F1-score)

Optimal number of features selected: 12
Highest f1-score achieved: 70.5%

Figure 7.20: RFE with Random Forest classi�er for

GAS pipeline dataset (F1-score)

Optimal number of features selected: 6

Highest f1-score achieved: 89.3 %

Figure 7.21: RFE with Gradient Boosting classi�er

for GAS pipeline dataset (F1-score)

Optimal number of features selected: 4

Highest f1-score achieved:  88.3 %

Figure 7.22: RFE with Adaboost classi�er for GAS

pipeline dataset (F1-score)

2. Like [274], the proposed method is a heterogeneous feature selection method

which tries to combine di�erent feature rankers to obtain a �nal list of ordered

features.

3. Unlike [277], where the authors consider only Bayesian learners for evaluation

of the �nal feature subset, the subset generated by FSRA is evaluated with

ensemble learners (tree-based ensembles and boosting ensembles).

4. Like [17], FSRA is also an ensemble feature selection method. However, for

combining the base ranked lists the authors use feature-feature and feature-
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Optimal number of features selected: 4
Highest accuracy achieved: 96.2%

Figure 7.23: RFE with XGBoost classi�er for Water pipeline dataset (Accuracy)

Optimal number of features selected: 8
Highest accuracy achieved: 95.6% 

Figure 7.24: RFE with Random Forest classi�ers

for Water pipeline dataset (Accuracy)

Optimal number of features selected: 8

Highest accuracy achieved: 95.5%

Figure 7.25: RFE with Extra trees classi�er for Wa-

ter pipeline dataset (Accuracy)

class mutual information.

5. Unlike [274], during the aggregation process the proposed method ensures

that a su�ciently high ranked feature is preserved even though it is not

common to all the base feature ranked lists.

6. Unlike [246], where the authors propose a meta-heuristic greedy feature selec-

tion method for CPS attack detection, the proposed method is an ensemble

feature selection method which mainly focuses on identifying di�erent point
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Optimal number of features selected: 11

Highest accuracy achieved:  89.4%

Figure 7.26: RFE with Adaboost classi�er for Water

pipeline dataset (Accuracy)

Optimal number of features selected: 1

Highest accuracy achieved: 89.7%

Figure 7.27: RFE with Gradient Boosting classi�er

for Water pipeline dataset (Accuracy)

Optimal number of features selected: 4
Highest F1-score achieved: 89.2% 

Figure 7.28: RFE with XGBoost classi�er for Water pipeline dataset (F1-score)

of attacks and the a�ected elements in a CPS facility.

7.5 Discussion

In this chapter, two frameworks namely CPSAD and FSRA are presented. CPSAD

is a cost-e�ective and attack detection defense architecture which functions to de-

tect known variety of attacks with high accuracy and minimum false alarm. On
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Optimal number of features selected: 11

Highest F1-score achieved:  71%

Figure 7.29: RFE with Adaboost classi�er for Water

pipeline dataset (F1-score)

Optimal number of features selected: 8

Highest F1-score achieved: 87.9%

Figure 7.30: RFE with Extra trees classi�er for Wa-

ter pipeline dataset (F1-score)

Optimal number of features selected: 1

Highest F1-score achieved: 72.7%

Figure 7.31: RFE with Gradient Boosting classi�er

for Water pipeline dataset (F1-score)

Optimal number of features selected: 8
Highest F1-score achieved: 88.1%

Figure 7.32: RFE with Random Forest classi�ers

for Water pipeline dataset (F1-score)

the other hand, FSRA is an ensemble feature selection method which helps identify

the signi�cant set of features to detect point of attacks and a�ected elements in

a CPS facility. Three CPS datasets are considered and FSRA tries to �nd the

optimal number of features required to detect an attack. Among all the classi�ers

considered, XGBoost stands out with its good performance in terms of accuracy

and F1-score.

The next chapter presents the concluding remarks and the future work.
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Table 7.5: Top 10 ranked features as given by the proposed method

Top 10 ranked features as given by the proposed method

Gas Pipeline Water Storage SWaT

Feature Name
Index

Number
Feature Name

Index

Number
Feature Name

Index

Number

1 time 25 measurement 21 PIT502 45

2 response_address 1 response_address 1 MV304 22

3 setpoint 18 H 14 FIT201 8

4 resp_read_fun 8 time 22 FIT502 39

5 measurement 24 response_memory 3 MV302 20

6 response_memory 3 HH 13 DPIT301 16

7 control_scheme 20 sub_function 10 AIT504 37

8 sub_function 10 command_address 0 MV303 21

9 control_mode 19 response_memory_count 5 P203 12

10 command_address 0 resp_write_fun 9 LIT301 18

Table 7.6: Comparison with Existing Methods

Comparison

with other methods on SWaT dataset

Comparison with other

methods on Gas Pipeline dataset

Comparison with other

methods on Water Storage dataset

Method /

Proposed by
F1-score

Method /

Proposed by
F1-score

Method /

Proposed by
F1-score

DNN-based

Method [280]
80.28% CPS-GUARD [281] 93.70%

Morris and

Gao[140]
98.10%

SVM-based

Method [280]
79.62% Morris et al. [141] 98.80% GRYPHON [282] 98%

NN-one

class method

[283]

87.00% Beaver et al. [284] 75% SOCCADF [285] 98.10%

DIF [286] 88.20% Proposed Method 89.3% Proposed Method 89.2%

AE [287] 52%

FB [287] 36%

Proposed

Method
99.4%
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