
Appendices

A Combining continuous outputs

Instead of deciding the class label as output, some learning models may output

the probability with which an instance belongs to a class. This probability can be

thought of as the degree of support shown by the learning model towards a class.

sc,j(xi) = for the instance xi,

sc,j = support received by the jth class from the cth classi�er

wj = weight of the jth classi�er

C = total number of classi�ers or models

µj(xi) = total support for the jth class for instance xi

Following are commonly used for combining the outputs of base learners.

1. Sum rule: According to this rule, the individual supports from all the learning

models are added to obtain the �nal support for a particular class as shown

in equation 1. The �nal output of the ensemble is the class with the highest

support.

µj(xi) =
C∑
c=1

sc,j(xi) (1)

2. Mean rule: According to this rule, after adding the individual supports from

all the learning models, the total sum is normalized by the total number of

learning models ( 1
C
) as shown in equation 2.

µj(xi) =
1

C

C∑
c=1

sc,j(xi) (2)

3. Weighted sum rule: Each learning model is assigned a weight and the total

support is the total sum of the product of the learning model's weights and
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their supports as shown in equation 3.

µj(xi) =
C∑
c=1

wtsc,j(xi) (3)

4. Product rule: According to this rule, for a particular class the supports pro-

vided by the learning models are multiplied to obtain the �nal output.

µj(xi) =
C∏
c=1

sc,j(xi) (4)

5. Maximum rule: According to this rule, for a particular class, the maximum

support given by the participating learning models is selected as shown in

equation 5.

µj(xi) =
C

max
c=1

sc,j(xi) (5)

6. Minimum rule: As the name suggests, for a particular class this rule selects

the minimum support given by the participating learning models as shown in

equation 6.

µj(xi) =
C

min
c=1

sc,j(xi) (6)

7. Generalized mean rule: The rules discussed above are special versions of the

generalized mean rule given in equation 7.

µj,∞(xi) =

[
1

C

C∑
c=1

sc,j(xi)
∞

] 1
∞

(7)

B Hyper-parameter values

B.1 Bagging

Table 1 and Table 2 give the hyper-parameter values for Bagging ensemble method.

Table 1: Hyper-parameter Values for 2-class Security Datasets (Bagging)

k-Nearest Neighbors Support Vector Machine Decision Trees Logistic Regression

Security Datasets

Android Dataset 1 n_neighbors= 1 C=10, degree=1 criterion='entropy',max_depth=6, min_samples_leaf=2,min_samples_split=2 C=10,penalty="l2"

Android Dataset 2 n_neighbors= 3 C=1, degree=1 criterion='gini',max_depth=3, min_samples_leaf=1,min_samples_split=2 C=1000,penalty="l2"

SWaT n_neighbors= 1 C=10, degree=1 criterion='entropy',max_depth=9, min_samples_leaf=1,min_samples_split=2 C=100,penalty="l2"

Phishing n_neighbors= 1 C=10, degree=1 criterion='entropy',max_depth=9, min_samples_leaf=1,min_samples_split=3 C=0.1,penalty="l2"

Kitsune Network Attack n_neighbors= 4 C=10, degree=1 criterion='gini',max_depth=8, min_samples_leaf=3,min_samples_split=2 C=0.001,penalty="l2"
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Table 2: Hyper-parameter values for ransomware multiclass datasets (Bagging)

Classi�ers

k-Nearest Neighbors
Support Vector

Machine
Decision Trees

Logistic

Regression

Ransomware

Multiclass

Citroni n_neighbors= 1
C=1,

degree=1

criterion='gini', max_depth=3,

min_samples_leaf=1,

min_samples_split=2

C=1.0,

penalty="l2"

CryptLocker n_neighbors= 7 C=10, degree=1

criterion='gini', max_depth=7,

min_samples_leaf=1,

min_samples_split=3

C=10.0,

penalty="l2"

CryptoWall n_neighbors= 3 C=10, degree=1

criterion='entropy', max_depth=6,

min_samples_leaf=1,

min_samples_split=2

C=10.0,

penalty="l2"

Kollah n_neighbors= 2 C=10, degree=1

criterion='gini',max_depth=8,

min_samples_leaf=1,

min_samples_split=2

C=10.0,

penalty="l2"

Kovter n_neighbors= 2 C=10, degree=1

criterion='gini',max_depth=5,

min_samples_leaf=1,

min_samples_split=4

C=1.0,

penalty="l2"

Locker n_neighbors= 2 C=10, degree=1

criterion='gini',max_depth=5,

min_samples_leaf=1,

min_samples_split=4

C=1.0,

penalty="l2"

Matsnu n_neighbors= 4 C=1, degree=1

criterion='entropy',max_depth=7,

min_samples_leaf=1,

min_samples_split=6

C=1.0,

penalty="l2"

Pgpcoder n_neighbors= 1 C=0.1, degree=1

criterion='gini',max_depth=3,

min_samples_leaf=1,

min_samples_split=2

C=0.1,

penalty="l2"

Reveton n_neighbors= 1 C=10, degree=1

criterion='gini',max_depth=8,

min_samples_leaf=1,

min_samples_split=7

C=1000.0,

penalty="l2"

TeslaCrypt n_neighbors= 3 C=1, degree=1

criterion='gini',max_depth=7,

min_samples_leaf=3,

min_samples_split=2

C=1.0,

penalty="l2"

Trojan-Ransom n_neighbors= 3 C=10, degree=1

criterion='entropy',max_depth=7,

min_samples_leaf=3,

min_samples_split=9

C=10.0,

penalty="l2"

B.2 Boosting

Table 3, 4, 5, and 6 give the hyper-parameter values for the Boosting ensemble

method.
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Table 3: Hyper-parameter values for 2-class security datasets (Adaboost, GB and XGB)

Classi�ers

Dataset name AdaBoost Gradient Boosting Extreme Gradient Boosting

Security

Datasets

Android Dataset 1

learning_rate=0.1,

n_estimators=500,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=0.1,

n_estimators=500,max_features='log2',

max_depth=5 ,criterion='mse'

colsample_bytree= 0.5, learning_rate=0.01,

max_depth= 10,

min_child_weight= 1, n_estimators= 500,

subsample= 0.75

Android Dataset 2

learning_rate=0.1,

n_estimators=350,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=0.1,

n_estimators=300,max_features='log2',

max_depth=5 ,criterion='mse'

colsample_bytree= 1, learning_rate=0.1,

max_depth= 10,

min_child_weight= 1, n_estimators= 100,

subsample= 0.5

SWaT

learning_rate=1.0,

n_estimators=500,

algorithm='SAMME.R'

criterion='friedman_mse',

learning_rate= 1.0,

loss='exponential',max_depth= 8,

max_features= log2,

n_estimators= 500

colsample_bytree= 1, learning_rate=0.01,

max_depth= 6,

min_child_weight= 1, n_estimators= 300,

subsample= 0.5

Phishing

learning_rate=1.0,

n_estimators=200,

algorithm='SAMME'

loss= 'exponential', learning_rate=0.1,

n_estimators=500,

max_features='log2',

max_depth=5 ,criterion='friedman_mse'

colsample_bytree= 0.5, learning_rate=0.1,

max_depth= 10,

min_child_weight= 1, n_estimators= 200,

subsample= 1

Kitsune Network Attack

learning_rate=1,

n_estimators=500,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=0.1,

n_estimators=500,max_features='log2',

max_depth=8,criterion='mse'

colsample_bytree= 0.75, learning_rate=0.1,

max_depth= 10,

min_child_weight= 1, n_estimators= 500,

subsample= 1

Table 4: Hyper-parameter values for 2-class security datasets (LGB and HGB)

Classi�ers

Dataset name Light Gradient Boosting Hist Gradient Boosting

Security

Datasets

Android Dataset 1

boosting_type= 'dart', num_leaves= 10, learning_rate= 0.5,

min_child_weight= 1, min_child_samples=100,

colsample_bytree= 0.66,reg_alpha= 0.5,

reg_lambda= 1, subsample= 0.5

learning_rate=0.1, max_iter=150,

max_leaf_nodes=30, min_samples_leaf=20

Android Dataset 2

boosting_type= 'gbdt',colsample_bytree= 1,learning_rate= 0.5,

min_child_samples= 50,min_child_weight=1,num_leaves=10,

reg_alpha=0.5,reg_lambda= 1.4,subsample= 0.5

learning_rate=0.1, max_iter=100,

max_leaf_nodes=40, min_samples_leaf=5

SWaT

boosting_type= 'dart', colsample_bytree= 0.66, learning_rate=1,

min_child_samples= 50, min_child_weight=1, num_leaves=20,

reg_alpha=0.5, reg_lambda= 1.2, subsample= 0.5

learning_rate=0.01, max_iter=100,

max_leaf_nodes=30, min_samples_leaf=3

Phishing

boosting_type= 'dart', num_leaves= 20, learning_rate= 1,

min_child_weight= 1, min_child_samples=20, colsample_bytree= 1,

reg_alpha= 0.5, reg_lambda= 1.2, subsample= 0.5

learning_rate=0.1, max_iter=200,

max_leaf_nodes=40, min_samples_leaf=10

Kitsune Network Attack

boosting_type= 'dart', num_leaves= 20, learning_rate= 0.5,

min_child_weight= 1e-05, min_child_samples=20, colsample_bytree= 1,

reg_alpha= 0.5, reg_lambda= 1.2, subsample= 0.5

learning_rate=0.1, max_iter=200,

max_leaf_nodes=40, min_samples_leaf=10
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Table 5: Hyper-parameter values for Ransomware multiclass dataset (Adaboost, GB and XGB)

Class Adaboost Gradient Boosting Extreme Gradient Boosting

Ransomware

Multiclass

Citroni

learning_rate=1.0,

n_estimators=100,

algorithm='SAMME'

loss= 'exponential', learning_rate=1.0,

n_estimators=100, max_depth=8,

criterion='friedman_mse'

colsample_bytree= 1,

learning_rate=0.1, max_depth= 2,

min_child_weight= 1, n_estimators= 100,

subsample= 1

CryptLocker

learning_rate=1.0,

n_estimators=200,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=1.0,

n_estimators=500, max_depth=5 ,

criterion='friedman_mse'

colsample_bytree= 0.5,

learning_rate=0.01, max_depth= 2,

min_child_weight= 1, n_estimators= 100,

subsample= 0.5

CryptoWall

learning_rate=0.1,

n_estimators=200,

algorithm='SAMME.R'

loss= 'deviance', learning_rate=0.1,

n_estimators=100, max_depth=3,

criterion='friedman_mse'

colsample_bytree= 0.5,

learning_rate=0.01, max_depth= 2,

min_child_weight= 1, n_estimators= 100,

subsample= 0.5

Kollah

learning_rate=0.1,

n_estimators=50,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=0.1,

n_estimators=200, max_depth=3,

criterion='friedman_mse'

colsample_bytree= 0.5,

learning_rate=0.3, max_depth= 6,

min_child_weight= 1, n_estimators= 100,

subsample= 1

Kovter

learning_rate=1.0,

n_estimators=500,

algorithm='SAMME'

loss= 'exponential', learning_rate=0.01,

n_estimators=500,max_depth=3,

criterion='friedman_mse'

colsample_bytree= 0.75,

learning_rate=0.1, max_depth= 2,

min_child_weight= 1, n_estimators= 100,

subsample= 1

Locker

learning_rate=1.0,

n_estimators=500,

algorithm='SAMME'

loss= 'exponential', learning_rate=0.01,

n_estimators=500, max_depth=3,

criterion='friedman_mse'

colsample_bytree= 0.75,

learning_rate=0.1, max_depth= 2,

min_child_weight= 1, n_estimators= 100,

subsample= 1

Matsnu

learning_rate=1.0,

n_estimators=200,

algorithm='SAMME'

loss= 'exponential', learning_rate=1.0,

n_estimators=100, max_depth=8,

criterion='friedman_mse'

colsample_bytree= 0.75,

learning_rate=0.1, max_depth= 10,

min_child_weight= 1, n_estimators= 300,

subsample= 1

Pgpcoder

learning_rate=1.0,

n_estimators=50,

algorithm='SAMME'

loss= 'deviance', learning_rate=0.01,

n_estimators=200, max_depth=3,

criterion='friedman_mse'

colsample_bytree= 0.5,

learning_rate=0.01, max_depth= 2,

min_child_weight= 1, n_estimators= 300,

subsample= 0.5

Reveton

learning_rate=0.1,

n_estimators=500,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=0.1,

n_estimators=500, max_depth=8,

criterion='friedman_mse'

colsample_bytree= 1,

learning_rate=0.3, max_depth= 6,

min_child_weight= 1, n_estimators= 100,

subsample= 1

TeslaCrypt

learning_rate=0.1,

n_estimators=100,

algorithm='SAMME.R'

loss= 'deviance', learning_rate=0.1,

n_estimators=200, max_depth=8,

criterion='friedman_mse'

colsample_bytree= 0.5,

learning_rate=0.01, max_depth= 10,

min_child_weight= 1, n_estimators= 200,

subsample= 1

Trojan-Ransom

learning_rate=0.1,

n_estimators=350,

algorithm='SAMME.R'

loss= 'exponential', learning_rate=1.0,

n_estimators=300, max_depth=3,

criterion='mse'

colsample_bytree= 1,

learning_rate=0.01, max_depth= 10,

min_child_weight= 1, n_estimators= 500,

subsample= 0.75
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Table 6: Hyper-parameter values for Ransomware multiclass dataset (LGB and HGB)

Classi�ers

Class Light Gradient Boosting HistGradient Boosting

Ransomware

Multiclass

Citroni

boosting_type= 'gbdt', colsample_bytree= 1,

learning_rate= 0.1, min_child_samples= 20,

min_child_weight=1e-05, num_leaves=5,

reg_alpha=0.5, reg_lambda= 1.4, subsample= 0.5

learning_rate=0.1, max_iter=150,

max_leaf_nodes=10, min_samples_leaf=10

CryptLocker

boosting_type= 'dart',colsample_bytree= 0.5,

learning_rate= 1, min_child_samples= 20,

min_child_weight=1, num_leaves=10,

reg_alpha=1.2, reg_lambda= 1.4

learning_rate=1,max_iter=100,

max_leaf_nodes=10,min_samples_leaf=3

CryptoWall

boosting_type= 'gbdt', colsample_bytree= 1,

learning_rate= 1.0, min_child_samples= 20,

min_child_weight=1e-05, num_leaves=5,

reg_alpha=0.5 , reg_lambda= 1.2, subsample= 0.5

learning_rate=1, max_iter=100,

max_leaf_nodes=30, min_samples_leaf=5

Kollah

boosting_type= 'dart', colsample_bytree= 0.5,

learning_rate= 1, min_child_samples= 20,

min_child_weight=1e-05, num_leaves=10,

reg_alpha=0.5, reg_lambda= 1, subsample= 0.5

learning_rate=1, max_iter=100,

max_leaf_nodes=10, min_samples_leaf=3

Kovter

boosting_type= 'dart',colsample_bytree= 0.5,

learning_rate= 0.1,min_child_samples= 20,

min_child_weight=1e-05,num_leaves=5,

reg_alpha=0.5,reg_lambda= 1,subsample= 0.5

learning_rate=0.01, max_iter=200,

max_leaf_nodes=10, min_samples_leaf=3,

Locker

boosting_type= 'dart',colsample_bytree= 0.5,

learning_rate= 0.1,min_child_samples= 20,

min_child_weight=1e-05,num_leaves=5,

reg_alpha=0.5,reg_lambda= 1,subsample= 0.5

learning_rate=0.01, max_iter=200,

max_leaf_nodes=10, min_samples_leaf=3

Matsnu

boosting_type= 'gbdt',colsample_bytree= 1,

learning_rate= 1.0,min_child_samples= 50,

min_child_weight=1,num_leaves=5,

reg_alpha=0.5,reg_lambda= 1.2,subsample= 0.5

learning_rate=0.1, max_iter=100,

max_leaf_nodes=10, min_samples_leaf=3

Pgpcoder

boosting_type= 'gbdt', colsample_bytree= 0.5,

learning_rate= 1.0,min_child_samples= 20,

min_child_weight=1e-05,num_leaves=5,

reg_alpha=0.5,reg_lambda= 1.2,subsample= 0.5

learning_rate=0.01, max_iter=100,

max_leaf_nodes=10, min_samples_leaf=3

Reveton

boosting_type= 'gbdt',colsample_bytree= 0.5,

learning_rate= 0.1,min_child_samples= 20,

min_child_weight=1e-05,num_leaves=10,

reg_alpha=0.5,reg_lambda= 1,subsample= 0.5

learning_rate=0.1, max_iter=100,

max_leaf_nodes=30, min_samples_leaf=10

TeslaCrypt

boosting_type= 'gbdt',colsample_bytree= 0.66,

learning_rate= 1.0,min_child_samples= 20,

min_child_weight=1e-05,num_leaves=10,

reg_alpha=1,reg_lambda=1.4,subsample= 0.5

learning_rate=0.1, max_iter=100,

max_leaf_nodes=10, min_samples_leaf=5

Trojan-Ransom

boosting_type= 'gbdt',colsample_bytree= 0.5,

learning_rate= 0.5,min_child_samples= 50,

min_child_weight=1e-05,num_leaves=5,

reg_alpha=1.2,reg_lambda= 1,subsample= 0.5

learning_rate=0.1, max_iter=100,

max_leaf_nodes=30, min_samples_leaf=20
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Glossary

Crawl The act of searching and indexing of Web content by a software program..

4

DDoS A form of an attack where an army of bots simultaneously send HTTP

tra�c to an application to disrupt its services. 7

Dynamic Analysis Analysis done by executing the software.. 5

IP Address A unique address with which every device connected to the Internet

is identi�ed.. 4

Static Analysis Analysis done by examining the source code and not by way of

execution.. 4

Vulnerabilities Weaknesses or �aws existing in the system.. 2

Web Application Software which runs on an application server and are accessed

with the help of browsers,. 1

Worms Malicious software which tries to self-replicate and spread to other devices.

. 7
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