
Chapter 3

Datasets Used

3.1 Introduction

The Internet is a powerful platform which interconnects numerous individual net-

works worldwide. It provides public facing as well as internal backbone in various

sectors such as government, private organizations, industry and academia. Since its

inception, the Internet has come a long way and is now regarded as the storehouse

of knowledge in every domain known to humankind. Literally, the Internet allows

us to conceptualize the whole world as a `global village'. Anyone from any part of

the world can connect, communicate and share information with any individual.

The current growth of the Internet is fueled by the explosion of activities at an

unprecedented rate, primarily catalyzed by mobile technology and the social Web.

Today, the wide range of devices connected to the Internet is overwhelming. De-

vices like cell phones, tablets, phablets, laptops, and netbooks serve as vehicles to

surf the Internet and consequently generate huge amounts of Internet tra�c regu-

larly.

Right from its beginning, the Internet has been a communication hub. Lately, there

has been an exponential increase in the number of devices that are connected to

the Internet on a daily basis. This implies an increase in the number of users. In

fact, as of 2022, 66% of the total worldwide population uses the Internet for various

activities. The term Global Internet Usage refers to the worldwide count of Internet

users1. Figure 3.1 gives the number of Internet users globally as of 31st December,

2022 which is a whopping 5.30 billion 2. Figure 3.2 shows the top 10 countries with

1https://en.wikipedia.org/wiki/Global_Internet_usage
2https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/

81

https://en.wikipedia.org/wiki/Global_Internet_usage
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/

the largest Digital Population (in millions) as of January, 2023 3. In a world where

1023
1147

1367
1545

1727
1981

2174
2387

2562
2750

2954
3217

3444

3729

4119

4585

4901

5300

0

1000

2000

3000

4000

5000

6000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

N
U

M
B

ER
 O

F
U

SE
R

S
(I

N
 M

IL
LI

O
N

S)

YEAR

Number of Internet users Worldwide from 2005 to 2022

Figure 3.1: Worldwide Internet Users from 2005 to 2022

35%

23%

11%

7%

6%

4%

4%

4%
3%

3%

Countries with the largest Digital Population (in millions)

China India United States Indonesia Brazil Russia Nigeria Japan Mexico Philippines

Figure 3.2: Top 10 Countries with Largest Digital Population

most communication occurs through digital means, security is one of the most cru-

cial requirements which needs to be provided at every step. As more and more

Web applications are designed and developed to ease our day-to-day activities, the

risk of falling prey to cyber-attacks increases. In the worst case, a victim doesn't

even know that he/she is under an attack. These attacks carried out by notorious

users may focus on stealing sensitive information belonging to the victims, or may

also hijack his or her Web sessions. Using the sensitive information so gathered,

the attackers may easily impersonate the victim to carry out far more dangerous

acts. To defend against such attacks, many Intrusion Detection Systems employ a

3https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries/

82

https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries/

variety of tactics. The developers of the IDSs focus on the detection of on-going

attacks as well as prevent them in the future. To this end, a crucial aspect of how

well an IDS performs is how well these systems have been evaluated using raw or

feature datasets. In other words, training and testing the IDSs with appropriate

datasets help establish its e�ectiveness. However, sometimes such datasets may not

be readily available, in which case testbeds need to be constructed for generating

the data.

3.1.1 Desired Characteristics of a Dataset

Web-based attacks have garnered signi�cant attention from the research commu-

nity, and numerous detection mechanisms have been proposed, each with their own

pros and cons. Primarily, datasets serve as input to these defense mechanisms to

test how e�ective they are. The nature and type of the input dataset may vary from

one defense mechanism to another. The caliber of such an input dataset plays a re-

markable role in evaluating the potency of a defense system. It is also important to

note that, with the continuous increase in attack instances each day, dataset should

be maintained so as to incorporate the most recent attack experience. Below some

signi�cant characteristics that a standard dataset should have are discussed.

1. Labels in the Data: The labels (class information) of the data instances in

the dataset may be any of the prede�ned classes. For example, if it is a

2-class problem, the data instances may belong to either class A or class B,

assuming the two prede�ned classes are A and B. Importantly, obtaining ex-

tensive amount and varieties of data that collectively capture the pro�le of

benign or malicious behavior is hard, in addition to being expensive. Human

experts have to expend substantial e�ort in classifying what data is regarded

as malicious and what is regarded as benign. It is worth noting here that

data instances that are termed malicious are harder to collect than benign

instances, as raw malicious instances are removed quickly for ethical security

reasons. In addition, with new and evolving techniques, malicious instances

(or the activity that leads to malicious instances) may be easily masqueraded

as normal behavior.

Depending on whether a dataset consists of prior labels or not, a defense sys-

tem may use two modes: supervised or unsupervised, to learn characteristics

of the data.

83

Supervised techniques [55] make use of labeled datasets in the training phase.

A dataset comprising of both labeled malicious and benign instances is used

to construct a classi�cation model. In the testing phase, an unknown instance

is classi�ed into either the malicious or benign class.

Unsupervised techniques [58] do not make use of labeled datasets. Such tech-

niques group similar data instances into a cluster. Instances belonging to

the same cluster are more similar to each other than instances in the other

clusters. However, such techniques may fall prey to high false alarm rate.

2. Adequate number of instances : A dataset generally should consist of an ad-

equate number of instances so that the defense mechanism receives proper

and su�cient training. This assists the defense mechanism build an e�ective

model to conclude under what circumstances an unknown instance should be

classi�ed into a particular class.

3. Adequate number of features : Features are the backbone of a standard dataset.

Meaningful and non-redundant features collectively describe the characteris-

tics or pro�le of a particular class. In other words, the features should be

picked in such a way that they su�ciently describe the characteristics of the

problem. The features should have a minimum correlation score among them-

selves (feature-feature correlation) and a maximum correlation score with the

class (feature-class correlation). Too many features to de�ne the pro�le of a

class may lead to over �tting, and too few features may fail to de�ne a class

pro�le properly, hence not su�cient. Thus, there should be an adequate num-

ber of features such that the class pro�le is properly de�ned as well as over

�tting is also avoided.

4. Balance between the classes : Balance between the number of instances in

each class is important for proper and complete training involving each of the

classes. Balance means the occurrence of roughly equal number of samples in

each of the classes. If there is an imbalance in the data between the classes,

a predictive model will tend to learn more about a particular class than the

other. This may result in misclassi�cation of the instances. The problem

of class imbalance can be dealt by sampling techniques like oversampling or

undersampling.

5. Recency : The data constituting the dataset should not be outdated. They

should be from recent times so that they cover the newer, more evolved attack

84

strategies. For instance, if the data is outdated and the defense mechanism is

trained using such data, it will fail to identify newly evolved unknown attack

instances. So, the dataset should be updated from time to time to incorporate

recent relevant data.

6. Lack of inconsistency : Data in a standard dataset should be consistent. De-

fense mechanisms validated using inconsistent data are never reliable and will

result in wrong decision making.

7. Relevance: The features present in the dataset should be relevant to the

problem at hand. Irrelevant features may bring down the performance of the

defense mechanism. The feature-to-class relevance should be high and the

feature-to-feature correlation should be low. Only then good performance

can be expected. This is because, some features may be more important to

identify a particular class whereas some features may be not.

8. Completeness : Incompletely labeled instances for a given class often leads to

failure of most classi�ers due to inadequate training. The performance of a

supervised learning system mostly depends on quality of the training data

instances or samples. So, lack of completeness in a dataset because of the

number of instances for any class is not desirable.

3.2 Benchmark Datasets

A dataset plays a key role in evaluating the potency of a defense system. The

e�ciency of a defense system in terms of accuracy can be evaluated using a relevant

and quality dataset. In other words, to assess a defense system appropriately a

quality dataset is of paramount importance. A discussion on the datasets used for

evaluation of the proposed methods in this thesis are presented below.

3.2.1 Cross-site Scripting Attack Repositories

For Cross-site scripting attacks, there are some well-known repositories such as the

XSSed repository and publicly available raw Web archive �les as mentioned below.

It is convenient if the datasets are divided into two categories: Script-based and

URL-based datasets.

85

1. Script-based datasets: Web crawlers can be used to crawl Web pages for the

collection of raw scripts. From these collected scripts, one can extract fea-

tures with the help of C routines. However, there is no publicly available

script-based XSS feature dataset. It is worth mentioning [132] here, which

is a repository of malicious scripts. The repository consists of various ob-

fuscated and corresponding deobfuscated malicious JavaScripts. Due to the

unavailability of a quality dataset, an urgent need arises for the creation of

such a dataset and making it public.

2. URL-based datasets: A URL-based raw dataset consists of various benign

and malicious URLs that may be collected from numerous sources. A URL

feature dataset consists of URL-based features which helps to distinguish

malicious URLs from benign URLs. A few examples of URL datasets are

discussed below.

(a) URL Reputation Data Set [133]: It is a feature dataset which consists

of 2.4 million instances and 3.2 million odd features. The instances

were collected in real time over a period of 120 days. The anonymized

lexical and host-based features are all of integer and real types. A label

of +1 denotes a malicious instance and a label of -1 denotes a benign

instance. A subset of the original dataset was made publicly available

by the authors in [134]. The dataset has been used in research such as

[135] and [136].

(b) XSSed repository [29]: This repository consists of URLs of domains

which have already fallen prey to XSS attacks. Along with the URLs,

the authors also provide a mirror and additional information if a site

has already been �xed. The pages are ranked in accordance with Alexa

ranking. Security researchers from various parts of the world contribute

to populate the archive. However, the archive has not been maintained

since March 2015. The repository has been used in research e�orts such

as in [60] and many more.

3.2.2 HTTP Flooding Attack Datasets

For HTTP Flooding attacks, there are a few well-known benchmark datasets which

are detailed below. In addition to discussing the datasets, a list of open source tools

for generating normal and attack tra�c is also illustrated in Table 3.1.

86

Table 3.1: HTTP-Flood Tra�c Generator Tools

Tool Name Programming Platform Reference Additional Information

GoldenEye Python3 https://github.com/jseidl/GoldenEye An HTTP DoS test tool

HULK

(HTTP Unbearable

Load King)

Python https://github.com/R3DHULK/HULK

Slowloris rewritten in Python https://github.com/gkbrk/slowloris Periodically sends requests to the server

HOIC

(High Orbit Ion Cannon)
Visual Basic, C# https://sourceforge.net/projects/highorbitioncannon/

Can send both HTTP GET and POST requests.

Can �ood 256 websites simultaneously.

Available attack intensity: Low, Medium and High

LOIC

(Low Orbit Ion Cannon)
C# https://sourceforge.net/projects/loic/

PyLoris Python https://sourceforge.net/projects/pyloris/ Scriptable HTTP Dos tool

Slowhttptest https://github.com/shekyan/slowhttptest Highly con�gurable

TorsHammer Python https://github.com/Karlheinzniebuhr/torshammer Generates slow-rate HTTP-POST tra�c

R.U.D.Y (R-U-Dead-Yet) https://github.com/sahilchaddha/rudyjs

Generates HTTP POST tra�c by

submitting form data in web applications.

Able to generate slow rate HTTP tra�c

DDoSim C++ https://sourceforge.net/projects/ddosim/

1. UNSW-NB15 dataset: The authors in [137] use the IXIA4 tra�c generator

tool to generate both attack and normal tra�c. The collection of tra�c

took place in two simulations (totaling 31 hours), each simulation capturing

50 GB of data. It is important here to note that the collected tra�c mimics

both a real modern normal network activity and a synthesized attack network

activity. From the captured .pcap �les a total of 49 features are extracted

using di�erent tools such as Bro-IDS5 and Argus6. The di�erent categories

of features in the dataset are: �ow features, basic features, content features,

time-based features, and some additionally generated features. Overall the

dataset contains a total of 25,40,044 records of which 22,18,761 are from

normal network activity. For simplicity, in the later chapter (Chapter 6) this

dataset is named as UNSW dataset only. A brief description of the dataset

is given in Table 3.2.

2. CICIDS2017 dataset: This dataset is proposed by the Canadian Institute of

Cyber Security to e�ectively evaluate an IDS [138]. It contains �ve days of

both attack and normal tra�c spanning across the victim and attack network.

To generate the attack tra�c di�erent attack generation tools are used such as

Hulk, GoldenEye, and Slowloris to name a few. For feature extraction (from

captured .pcap �les) the authors used CICFlowMeter7for extracting a total of

80 tra�c features. Overall the dataset contains 28,30,540 of which 23,59,087

4http://www.ixiacom.com/products/perfectstorm
5https://www.bro.org/index.html
6http://qosient.com/argus/index.shtml
7https://www.unb.ca/cic/research/applications.html

87

https://github.com/jseidl/GoldenEye
https://github.com/R3DHULK/HULK
https://github.com/gkbrk/slowloris
https://sourceforge.net/projects/highorbitioncannon/
https://sourceforge.net/projects/loic/
https://sourceforge.net/projects/pyloris/
https://github.com/shekyan/slowhttptest
https://github.com/Karlheinzniebuhr/torshammer
https://github.com/sahilchaddha/rudyjs
https://sourceforge.net/projects/ddosim/
http://www.ixiacom.com/products/perfectstorm
 https://www.bro.org/index.html
http://qosient.com/argus/index.shtml
https://www.unb.ca/cic/research/applications.html

Table 3.2: Brief Description of UNSW-NB15 Dataset

Parameter name Value

No. of networks 3

Simulation Yes

Simulation tool IXIA tool

No. of distinct IP adresses 45

Format of the collected data pcap �les

Duration of data collection 31

Feature extraction tools Argus, Bro-IDS

No. of extracted features 49

Feature categories

Flow-based

Basic

Content-based

Time-based

Additional

No. of records 25,40,044

Attack families 9

are normal samples and rest 4,71,453 are attack samples. It is to be noted

that the dataset contains missing values. More precisely, for 2,88,602 samples

the class label information is absent and additional 203 instances contained

missing information. For simplicity, such instances are dropped. For easy

understanding, in the later chapter (Chapter 6) this dataset is named as

CICIDS dataset only.

3. HTTP Flood dataset: This dataset8 contains 21,60,668 labeled network in-

stances and four attack families and one normal family. Normal instances in

the dataset amount to a total of 19,35,959. There are a total of 28 features

in the dataset.

3.2.3 Cyber Physical Systems Datasets

For Cyber Physical Systems, three benchmark datasets are considered, each corre-

sponding to a di�erent critical infrastructure facility.

1. SWaT dataset [139]: This dataset belongs to a Secure Water Treatment facil-

ity. The values in this dataset are nothing but sensor readings obtained from

the real life sized testbed installed at iTrust Center for Research in Cyber Se-

8https://www.kaggle.com/datasets/jacobvs/ddos-attack-network-logs?resource=

download

88

https://www.kaggle.com/datasets/jacobvs/ddos-attack-network-logs?resource=download
https://www.kaggle.com/datasets/jacobvs/ddos-attack-network-logs?resource=download

curity, Singapore 9. SWaT consists of six stages incorporating both physical

and control components for treating water via ultra�ltration, de-chlorination

and reverse osmosis processes. The facility ran for 11 days straight with 7 days

normal operation, and attack scenarios were introduced in the next 4 days.

It is a labeled dataset with a total of 4,44,496 instances and 51 features. The

sensors and actuators on each of the six stages are targeted for conducting an

attack based on which the attacks are categorized into four types: i) Single

Stage Single Point (SSSP) attack, ii) Single Stage Multi Point (SSMP) attack,

iii) Multi Stage Single Point (MSSP) attack, and iv) Multi Stage Multi Point

(MSMP) attack. Although a total of 36 attacks (SSSP-36, SSMP-4, MSSP-2,

and MSMP-4) are launched, the dataset contains collectively only two labels:

Attack and Normal. Table 3.3 gives a brief overview of the dataset.

Table 3.3: A Brief Overview of SWaT Dataset

Symbol in

dataset
Sensor/Actuator Description

Example in

dataset
Functions in

LIT Sensor Level Indication Transmitter LIT-101 Stage 1

FIT Sensor Flow Indication Transmitter FIT-301 Stage 3

AIT Sensor Analyzer Indication Transmitter AIT-201 Stage 2

PIT Sensor Pressure Indication Transmitter PIT-501 Stage 5

DPIT Sensor
Di�erential Pressure Indication

Transmitter
DPIT-301 Stage 3

MV Actuator Motorised Valve MV-101 Stage 1

P Actuator Pump P-101 Stage 1

2. Gas Pipeline and Water Storage dataset [140] [141]: These datasets were

captured in a in-house SCADA laboratory facility at Mississippi State Uni-

versity. The three components in the testbeds are sensors and actuators,

communication network and supervisory control. An instance in the datasets

incorporates both network tra�c information along with payload content in-

formation. The gas pipeline dataset contains a total of 2,74,627 instances

with 20 features comprising both normal and attack operations. On the

other hand, water storage dataset consists of 2,36,179 instances and 24 fea-

tures. Both these datasets have a common set of features in addition to

unique features of their own. The common set of payload features are shown

in Table 3.4.

9https://itrust.sutd.edu.sg/

89

https://itrust.sutd.edu.sg/

Table 3.4: Common Payload Features for Gas Pipeline and Water Storage Dataset

Feature Name Description

measurement
pressure in the pipeline or

water level

control_mode Manual, automatic or shutdown

comm_fun Value of command function code

reponse_fun Value of response function code

pump_state Compressor state or pump state

manual_pump_setting
manual mode compressor/pump

setting

3.2.4 Other Security Datasets

In addition to the datasets discussed above in sections 3.2.1, 3.2.2 and 3.2.3, a

few other security datasets are also used in this work to evaluate the proposed

methods. These datasets correspond to Malware attacks, Phishing attacks and the

Mirai Botnet.

3.2.4.1 Malware Datasets

Malware attacks throughout the world has seen tremendous increase in the recent

years. Using di�erent means Malicious software can be delivered to the innocent

victims. Figure 3.3 gives the statistics of malware attacks over the years. As

these attacks are on the rise, there is more and more need of defending against

such attacks accurately and in near real time. Below are some of the benchmark

malware datasets used for evaluation of the proposed defense methods.

1. TUANDROMD: It is a malware dataset proposed by Borah et al. [142] for

the Android platform. TUANDROMD is a collective name for two datasets

namely Android Dataset 1 and Android Dataset 2. It consists of a total of

3,250 instances (2140 instances in Android Dataset 1 and 1110 instances in

Android Dataset 2) and 590 features (242 features in Android Dataset 1 and

348 features in Android Dataset 2). TUANDROMD comprises of Permission-

based and API-based features. The permission-based features are the ones

which require a user's con�rmation to carry on with a task and can sub-

sequently be exploited by an attacker. API-based features are the features

which keeps track of each API call made by an application. For simplicity,

in the later chapter (chapter 5) TUANDROMD is referred to separately by

90

8.2
7.9

8.6

10.5
9.9

5.6 5.4 5.5

2015 2016 2017 2018 2019 2020 2021 2022

N
u

m
b

e
r

o
f

at
ta

ck
s

(i
n

 b
ill

io
n

s)

Year

No. of Malware Attacks (in billions)

Figure 3.3: Statistics of Malware Attacks from 2015 to 2022

the names Android Dataset 1 and Android Dataset 2. Table 3.5 shows some

examples of permission-based features present in the dataset.

Table 3.5: Some Examples of Permission-based Features in TUANDROMD

Feature names

SEND_SMS

RECEIVE_BOOT_COMPLETED

VIBRATE

GET_TASKS

WAKE_LOCK

KILL_BACKGROUND_PROCESSES

SYSTEM_ALERT_WINDOW

ACCESS_WIFI_STATE

DISABLE_KEY GUARD

RECEIVE_SMS

CHANGE_WIFI_STATE

WRITE_EXTERNAL_STORAGE

2. Ransomware Dataset: Sgandurra et al. [143] proposed a multiclass ran-

somware dataset comprising a total of 1524 samples (582 ransomware samples

and 942 benign samples) from 12 classes (11 ransomware families and 1 nor-

mal). Each instance in the dataset contains 30,967 features and the categories

of feature sets considered are: Registry keys operations, API stats, Strings,

File extensions, Files operations, Directory operations and Dropped �le ex-

tensions. According to the authors, several of these features from di�erent

feature categories collectively represent ransomware behavior. For example,

to maintain their presence across system reboots ransomware often makes use

of registry keys. Table 3.6 gives an overview of the 11 ransomware families

91

in the dataset.

Table 3.6: Di�erent Ransomware Families

Ransomware Family No. of Instances

Citroni 50

CryptLocker 107

CryptoWall 46

Kollah 25

Kovter 64

Locker 97

Matsnu 59

Pgpcoder 4

Reveton 90

TeslaCrypt 6

Trojan-Ransom 34

3.2.4.2 Phishing Dataset

The authors in [144] prepared a dataset which try to characterize if a particular

website is genuine or if it is phishing website. In the literature, it is found that there

no de�nitive features to clearly identify and detect a phishing attack. However, the

authors in their proposed dataset have categorized the features into i) Address bar-

based, ii) Abnormal-based, iii) HTML and JavaScript-based, and iv) Domain-based

features, for e�ective predictions. The dataset comprises of 11,055 instances and

31 features, and a class label of either Attack or Normal for each instance.

3.2.4.3 Kitsune Network Attack Dataset

The authors in [145], present a dataset consisting of several attack types including

Man in the Middle attacks, Denial of Service attacks and Reconnaissance attacks.

However, of prime interest is the botnet attack carried out by the Mirai malware.

For capturing the tra�c an IP-based commerical surveillance system is used. The

captured tra�c consists of millions of network packets (raw dataset in .pcap for-

mat), and from each packet the features are extracted using AfterImage feature

extractor10. The preprocessed dataset comprises of a total of 764,137 instances

10https://github.com/ymirsky/Kitsune-py/tree/master/KitNET

92

https://github.com/ymirsky/Kitsune-py/tree/master/KitNET

with 116 features. All the features collectively describe a snapshot of the network

hosts and their behavior in the case of a network packet.

3.3 Generated Datasets

For e�ective evaluation of Cross-site scripting attacks, an XSS attack dataset gen-

eration framework is proposed below as discussed.

3.3.1 XSS Attack Dataset

A kind of Web application script injection attack called the Cross-site Scripting

attack has been garnering attention from the early 2000s. In the very beginning,

these attacks were used to steal user credentials from vulnerable Web applications.

But by degrees, in conjunction with social engineering techniques, the complexity

of XSS attacks has evolved tremendously. Now, such attacks can be used not only

for credential theft, but also to launch more deleterious attacks like Distributed

Denial of Service (DDoS), spreading of malware, defamation attacks, and session

hijacking, to name a few. A detailed account of the evolution of XSS attacks over

the years is discussed in [146].

3.3.1.1 Motivation

An XSS attack detection system's e�ectiveness and e�ciency can be evaluated

with the help of an unbiased XSS dataset. Unfortunately, a standard XSS feature

dataset is not publicly available on the Internet. Hence, the creation of one such

dataset is important and necessary for the timely, e�cient and accurate detection

of XSS attacks. Such a dataset will prove its e�ectiveness only when it is accurate,

consistent, relevant and adequate in terms of its characteristics. The unavailability

of such a signi�cant dataset, even after XSS being one of the top vulnerabilities

in Web applications, motivated us to design and develop an XSS attack dataset.

Thus, the primary objective is to cover the gap pertaining to the unavailability of

an XSS feature dataset.

93

3.3.2 Proposed Dataset Generation Framework

The dataset generation framework describes the process used to collect the proposed

dataset called XSSD. The framework is divided into three di�erent stages and

each stage has di�erent modules which perform a de�nite task. The overall steps

followed in the dataset generation framework for XSSD are shown in Figure 3.4.

It is deployed on a testbed setup developed under a restricted environment in the

laboratory.

Crawler

Gather Web pages

Extractor

Script Extraction

Feature Extraction
Script based

Feature Extraction

URL based

Feature Extraction

XSSD Generation

Normalize Label

XSSD
Stage 3

Stage 2Stage 1

Input list

of URLs

Extracted features

Extracted scripts

Figure 3.4: Dataset Generation Framework

3.3.3 Stages and Modules

The dataset generation framework has three stages incorporating four modules.The

script extractor module and the feature extraction module are purely programming

based. The functionality, type of input and other details related to each of the

modules are described below. The naming of each module clearly describes its

function followed by an "_m", m meaning module.

1. Web_c_m: Operating in Stage 1, the input to the Web crawler module is a

seeds.txt �le containing a list of URLs to gather Web pages. It is powered by

the open source Web crawler, Heritrix [147], which is con�gured to crawl Web

pages according to the URL links received as input. On visiting a Website,

the crawler indexes the words and content of the Web page. Then it tries to

identify any outgoing links from the site. These links are next used for the

crawling process. In subsequent iterations, if any new links are added to the

seeds.txt �le, only those newly added links are crawled. After the crawling

session is complete, the output obtained is a .warc (Web ARChive) �le con-

taining the raw crawled data. The content of these �les can be stored in text

�les for further processing. The .warc �les, containing raw crawled material

94

store three important pieces of information, the metadata of the crawling

process (WARC-Type: metadata), how the information was requested from

the website (WARC-Type: request) and the HTTP response from the con-

tacted Website (WARC-Type: response) [148]. Figure 3.5 is an example of

the WARC content obtained during the crawling session. As seen, the crawler

targeted the URI http://wangxiaorong.com/favicon.ico. Subsequently,

an HTML page is received in response, served from aMicrosoft-IIS/8.5 server.

WARC/1.0
WARC-Type: response
WARC-Target-URI: http://wangxiaorong.com/favicon.ico
WARC-Date: 2017-03-02T14:31:27Z
WARC-Payload-Digest: sha1:VJPKYMLZR5K7CFTSG5CNHLQDXP3V6QCV
WARC-IP-Address: 52.204.129.22
WARC-Record-ID: <urn:uuid:b11a851c-aac3-47d7-a127-af70b91d97be>
Content-Type: application/http; msgtype=response
Content-Length: 428

HTTP/1.1 302 Found
Cache-Control: private
Content-Type: text/html; charset=utf-8
Date: Thu, 02 Mar 2017 14:31:54 GMT
Location: http://static.hugedomains.com/faviconhd.ico
Server: Microsoft-IIS/8.5
X-Powered-By: ASP.NET
Content-Length: 160
Connection: Close

…HTML content

Figure 3.5: Example of WARC Content

2. Script_ext_m: The script extractor module in stage 1, is responsible for

extracting only the script content from the Web archive �les obtained pre-

viously. The input received is in the form of a text �le, and the module

comprises of C routines. With the help of such routines, one can speci�cally

collect the content enclosed within <script>and </script>tags. The primary

reason behind collecting content from only within these two tags is because,

this is the only portion where any kind of JavaScript can be embedded in a

Web page. The collected scripts are stored in a database, and the feature

extraction algorithm is called on each of these scripts.

3. Feature_extractor_m: This module operating in Stage 2, is the heart of

the data generation framework. The main goal of this module is to extract

features from the scripts earlier extracted in Stage 1 and URLs collected from

di�erent sources. The scripts and URLs collected can both be malicious and

legitimate. The extraction of the script-based and URL-based features are

done with the help of C routines. To extract the features from each of the

95

http://wangxiaorong.com/favicon.ico

scripts, the module makes use of a C routine named extractFeature and several

other sub-routines. It receives input in the form of a text �le named scriptFile,

which consists of all the extracted scripts. The work �ow of this module is

speci�ed by Algorithm 1. As shown in the algorithm, for all the scripts in

the scriptFile �le, features such as the number of characters, the number of

lines, the number of methods called, are extracted. All the extracted features

are then passed on to the function dispAndWrite(), which displays and also

writes the extracted features into a .csv �le. Thus, the output of this module

is a .csv �le containing the extracted features for each script in scriptFile �le.

A similar process is followed for extracting the URL-based features.

4. XSSD_generator_m: This module in Stage 3 receives as input the .csv �le

obtained in the previous stage. The .csv �le containing the extracted features

from the scripts and the URLs are normalized using Min-Max normalization.

The script and the URL-based instances are properly and accurately labeled

as either malicious or normal instances. The end output of this stage is the

XSSD dataset.

3.3.4 Tasks and Sub-tasks

Each of the four modules described in the previous section, has designated tasks

and sub-tasks to carry out as shown in Figure 3.6. The tasks are described below.

Input: File containing URL list

Output: Set of scripts extracted from Web pages

Task 1: Feed the URL seeds to the crawler

Task 2: Crawl the links one at a time to gather Web pages

Sub-task 1.1: For each link crawl its sub links

Sub-task 1.2: Repeat Task 2 for newly added links, if any

Task 3: Extract scripts from the collected Web pages

Task 4: Store the scripts in a repository

Input: scriptFile, a file containing scripts extracted from Web pages

Output: Text file containing features extracted from scripts and URLs

Task 1: Perform script based feature extraction

Task 2: Perform URL based feature extraction

Input: Features extracted from scripts and URLs

Output: XSSD dataset

Task 1: Label the instances as either malicious or normal

Task 2: Normalize the values using Min-Max normalisation

S
ta

g
e

1
S

ta
g

e
2

S
ta

g
e

3

Figure 3.6: Task and Sub-tasks of the Modules

96

Algorithm 1: Feature Extraction Algorithm

Input : scriptFile, a �le containing all scripts

Output: A �le with features extracted from each script

Function extractFeature(scriptFile):

if (scriptFile) then

foreach script Si in scriptFile do

countChar ← countNumberOfCharacters(Si);

countLine ← countNumberOfLines(Si);

avgCharPerLine ← countAvgCharPerLine(countChar,

countLine);

countPrcntgeBlankSpace ←
countPercentageOfBlankSpaces(countChar, Si);

countCommLines ← countNumberOfComments(Si);

avgCommPerLine ← countAvgCommPerLine(countCommLines,

countLine);

countWords ← countNumberOfWords(Si);

countMethodsCalled ← countNumberOfMethodsCalled(Si);

countAvgArgLength ← avgArgLength(Si);

countUnicodeSymbol ← countNumberOfUniSymbol(Si);

countOctChars ← countNumberOfOctCharacters(Si);

countHEXChars ← countNumberOfHEXCharacters(Si);

countKeyWords ← countNumberOfKeyWords(Si);

humanReadability ← humanReadability(Si);

dispAndWrite(countChar, countLine, avgCharPerLine,

countPrcntgeBlankSpace, countCommLines, avgCommPerLine,

countWords, countMethodsCalled,

countAvgArgLength,countUnicodeSymbol, countOctChars,

countHEXChars, countKeyWords, humanReadability);

end

end

1. Tasks in Stage 1: For collecting various Web pages from the Internet, the

HERITRIX Web crawler is fed with an input �le seeds.txt consisting of a

set of URLs. The crawling session yields crawled content in the form of

97

.warc �les, from where Web pages need to be extracted. The primary task

is to extract scripts from these Web pages. To accomplish this, shell script

commands are written to extract the script content between <script>and

</script>tags. In a broader sense, a task of pattern matching is carried out.

Once it encounters a <script>tag, it writes the content, starting from the tag

to another output �le (named scriptFile) until it encounters a corresponding

</script>tag. The process is continued until the end of the input �le. The

output of this stage is a text �le called scriptFile containing the extracted

scripts.

2. Tasks in Stage 2: The primary task in this stage is the task of feature

extraction. The text �le, scriptFile, containing all the extracted scripts, is

fed as input to the feature extraction algorithm described earlier. A total

of 14 features are extracted for each script. Similar to script-based feature

extraction, URL-based feature extraction is also carried out on the collected

URLs.

3. Tasks in Stage 3: The last stage in the framework is concerned with the

tasks of normalizing and labeling the instances of the dataset as either normal

or malicious. Finally, the output of the stage is the XSS attack dataset, XSSD.

3.3.5 XSSD: The Dataset and Its Characteristics

The processes and modules involved in the dataset generation framework have been

discussed in detail in the previous sections. The output of the framework is the

dataset called XSSD comprising of two feature sets: a script-based feature set for

the extracted scripts and a URL-based feature set for the URLs collected from

various Web pages. It is worth noting that legitimate URLs are collected from

Alexa Top 500 websites [28] and malicious URLs from the XSSed repository [29].

Below a discussion on the two feature sets is presented in detail.

3.3.5.1 Script-based Features

Script-based features describe the characteristics of a script. These features help

gather the essence of a script and play a signi�cant role in distinguishing between a

malicious and a benign script. These features are extracted from raw scripts using

several C routines. The features can be speci�cally divided into �ve categories

98

which are discussed below. A total of 14 script-based features are listed in Table

3.7. The features are taken from [59] and grouped into di�erent categories based

on their functionality.

a) Basic features : As the name suggests, these features describe the basic charac-

teristics of a script. They help di�erentiate between a malicious and a normal

script in a signi�cant way. This is because, a malicious script usually has an

abnormally large or abnormally low (example: if the script is shortened using

some encoding scheme) number of characters or lines or words, compared to a

normal script. The reason behind may be to make it less suspicious. Another

feature worth mentioning in this category is the %ofWhitespace feature. This

feature plays an important role because malicious scripts when compared to

normal ones tend to have lower amount of white space, making it di�cult for

the user to read.

b) Comment-based features : This set of features help determine the comment-

related aspects of a script. Generally, comments are used for annotation

purposes by a programmer, so that a user can easily understand the opera-

tions of the script. But, a sophisticated attacker might not use any comments

in his/her especially crafted scripts. His/her ultimate goal is to fool the user

into doing something that is ill-advised.

c) Keyword-based features : These features determine the presence of any key-

word in the script. It is seen that, most malicious scripts have keywords such

as xss, hacker, redirect, noscript, click, trigger, javascript, cross-site, etc., in

them. These keywords are searched for in a script irrespective of the case

they are written in. Most keywords mentioned here do not occur in a normal

script, thus, signaling a major di�erence between the two kinds.

d) Function-based features : This set contains only two features, namely the num-

ber of methods called and the average argument length. While there can be

both built-in JavaScript methods and user-de�ned functions in a script, in

this set only the user-de�ned ones are considered, because the presence of the

built-in ones is already captured in the Keyword-based feature set. Attackers

may craft their own functions and use them as tools to carry out malicious

activities.

e) Obfuscation-based features : Obfuscation techniques are used solely to ensure

99

low human readability of the text. While they can be used for legitimate

purposes as well, most attackers adopt these techniques for evasion from

intrusion detection systems (example: signature-based or static-based IDS).

The obfuscation-based features tend to make the script di�cult to read for the

user. As they can be used for legitimate purpose as well, these features work

best when used in conjunction with other features such as those mentioned

earlier.

Table 3.7: Script-based Features and their Description

No. Category Feature Feature description

NoOfChars
Number of characters in the

script

NoOfLines Number of lines in the script

1. Basic AvgCharPerLine
Average number of characters

per line

TotNoOfWords Total number of words

%ofWhitespace
Percentage of whitespace in the

script

NoOfComm
Number of comments in the

script

2.
Comment-

based
AvgCommPerLine Average comments per line

3.
Keyword-

based
NoOfkeywords

Number of keywords in the

script

4.
Function-

based
NoofMethods Number of methods called

AvgArgLength Average argument length

NoOfOctNum Number of octal numbers

NoofUnicodeSym Number of Unicode symbols

NoofHEXSym Number of HEX numbers

5.
Obfuscation-

based

Human readability in terms of 0

or 1. 0:No and 1:Yes. The

checking criteria are:

a) Percentage of words which

are >70% alphabetical

Human Readability
b) Percentage of words where

20%<vowels<60%

c) Percentage of words which

are less than 15 characters long

100

3.3.5.2 URL-based Features

URL-based features help describe the attributes of a URL, which help distinguish

between benign and malicious URLs. For collecting malicious URLs, the XSSed

repository and a list of blacklisted domains are used. Some malicious URLs are

also gathered from the previously collected malicious scripts. Similarly, the benign

URLs are collected from sites listed in the ALEXA Top 500 list. The features are

grouped into various categories: basic, keyword-based and obfuscation-based. The

seven URL-based features taken from [60] are listed in Table 3.8. The di�erent

categories of URL-based features are discussed below.

a) Basic features: The features under this category are the URL length, number

of domain occurrences and the number of characters in the URL, which help

describe the basic properties of a given URL.

b) Keyword-based: The keyword-based feature indicates the presence of any

keyword in the URL which may aid in the discrimination between a normal

and malicious URL.

c) Obfuscation-based: Obfuscation-based features render the URL hard to rec-

ognize. As a result, human readability is reduced.

3.3.5.3 Characteristics of XSSD

With reference to the points discussed in Section 3.1.1, the following are the charac-

teristics of the proposed XSSD dataset. Figure 3.7 and Figure 3.8 show snapshots

of the proposed XSSD dataset.

a) Labels in the data: The data rows in XSSD have two labels, Benign/Normal or

Malicious. The benign instances constitute the pro�le of the Normal/Benign

class, while the malicious instances constitute the pro�le of the Malicious/Attack

class.

b) Number of instances : There are a total of 6695 (6220 scripts and 475 URLs)

instances, of which 289 instances are malicious and the rest 6406 instances are

benign. As and when needed, the number of instances in any of the classes

can be increased by slight changes in the modules of the dataset generation

framework.

101

Table 3.8: URL-based Features and their Description

No. Category Feature Feature description

urlLen The length of the URL

1 Basic domOcc Total number of Domain Occurences

No.OfChars Total number of characters in the URL

2
Keyword-

based
keyOcc The Keywords occurred in the URL

unicodeOcc The unicode symbols in the URL

hexOcc Number of HEX numbers in the URL

3
Obfuscation-

based

Human readability in terms of 0 or 1.

0:No and 1:Yes. The checking criteria

are:

a) Percentage of words which are

>70% alphabetical

Human Readability
b) Percentage of words where

20%<vowels<60%

c) Percentage of words which are less

than 15 characters long

c) Number of features : A total of 21 features are extracted for XSSD, of which

14 are script-based and 7 are URL-based features. These features help di�er-

entiate between a malicious script/URL entity and a normal/benign one.

d) Balance between the classes : Although there is a slight imbalance in XSSD,

considering the number of instances in each class, it can be done right ei-

ther by sampling or collecting more instances. The modules in the proposed

dataset generation framework are �exible for such adaptations.

e) Recency : The scripts and URLs collected for populating XSSD dataset are

recent (dated early 2016). The attack vectors mentioned in [26], which are up-

dated every once in a while (the latest being 4th July 2018) are also included.

As and when new attack vectors come up, the dataset can be populated

accordingly.

f) Relevance: The extracted script-based and URL-based features collectively

work to provide a clear distinction between a malicious entity and a normal

entity. To the best of our knowledge, these features are relevant in di�eren-

tiating between the two, and are also concise.

102

Figure 3.7: A Snapshot of XSSD (Script-based Features)

Figure 3.8: A Snapshot of XSSD (URL-based Features)

3.3.6 Performance Evaluation and Validation

The performance of XSSD can be evaluated with the help of learning algorithms.

The reason behind using learning algorithms for evaluation is to assess the e�ec-

tiveness of XSSD so that it can be used to develop XSS attack detection techniques

based on machine learning models. After going through a preliminary preprocess-

ing step, the dataset is fed to a total of �ve classi�ers as shown in Figure 3.9 and

3.10. From the obtained results, it is seen that the Extra Trees and XGBoost clas-

103

si�ers perform better than the others in terms of accuracy.

To evaluate the goodness of classi�cation, the ROC curve is plotted. Figure

3.11 and 3.12 illustrates the ROC curve for the script and URL datasets, respec-

tively. Both the �gures depict the TPR and FPRs of di�erent classi�ers at di�erent

decision threshold values. The classi�ers perform well on URL based dataset as

compared to the script based dataset. This may be due to the problem of class

imbalance which can be handled with sampling techniques or addition of new data

instances to the minority class. The corresponding AUC values are reported in

Table 3.9.

97.8

98

98.2

98.4

98.6

98.8

99

SCRIPT DATASET RESULTS

AdaBoost Random Forest Extra trees Gradient Classifier XGBoost

98.768
98.822

98.768
98.822

98.179

A
cc

u
ra

cy

Figure 3.9: Performance Evaluation for the Script

Dataset

97.902

97.203

97.902

95.804

97.902

94.5

95

95.5

96

96.5

97

97.5

98

98.5

AdaBoost Random Forest Extra trees Gradient

Classifier

XGBoost

URL DATASET RESULTS

A
cc

u
ra

cy

Figure 3.10: Performance Evaluation for the URL

Dataset

Figure 3.11: ROC Curve for the Script Dataset Figure 3.12: ROC Curve for the URL Dataset

3.4 Discussion

E�ectiveness of detection methods can be established only with the help of appro-

priate datasets. In this chapter, several security datasets corresponding to di�erent

104

Table 3.9: AUC Values for all Five Classi�ers

Classi�er Script dataset URL dataset

AdaBoost 0.668 0.98

Random Forest 0.695 0.968

Extra trees 0.771 0.977

XGBoost 0.71 0.974

Gradient Boost 0.683 0.983

attacks are described. Table 3.10 gives a summary of the datasets used in the pro-

posed methods discussed later on.

Table 3.10: Summary of All the Datasets Used

Security Dataset

Dataset for Dataset name
No. of

samples

No. of

features

No. of

classes

Year of

release

Cross-site

Scripting Attacks
XSSD 6695 14 2 2018

HTTP Flooding

Attacks

UNSW-NB15 25,40,044 49 2 2015

CICIDS2017 28,30,540 80 2 2017

HTTP-Flood 21,60,668 28 2

Cyber Physical

System

SWaT 4,44,496 51 2 2016

Gas Pipeline 2,74,627 20 2 2015

Water Storage 2,36,179 24 2 2015

Malware

Attacks

TUANDROMD 3,250 590 2 2020

Ransomware dataset 1524 30,967 12 2016

Phishing Phishing Websites 11,055 31 2 2015

IoT-Botnet
Kitsune Network

Attack
7,64,137 116 2 2018

The datasets discussed in this chapter are used for evaluation purposes in the

subsequent chapters. XSSD discussed in Section 3.3.1 is used in Chapter 5 for

evaluating MICC-UD, the proposed detection method for evaluating XSS attacks

in the application layer. MICC-UD is also evaluated with other datasets like the

Malware datasets (Section 3.2.4.1), Phishing dataset (Section 3.2.4.2) and the Kit-

sune Network Attack Dataset (Section 3.2.4.3). HTTP Flooding Datasets discussed

in Section 3.2.2 are used in Chapter 6 for evaluating an incremental detection mech-

anism named INFS-MICC for detecting HTTP Flooding Attacks. Lastly, Cyber

Physical System Datasets discussed in Section 3.2.3 is used in Chapter 7 for eval-

uating FSRA, an ensemble detection method for detecting attacks in the Critical

Infrastructure.

105

	07_chapter 3

