Chapter 4

Ensemble Learning Methods

4.1 Introduction

Supervised learning algorithms are effective in most application domains, however
they have limitations. A single learning model may miss out on some local regions
of the feature space, impacting overall performance. Ensemble learning techniques
can be helpful in this regard as they bring together a diverse set of learners, en-
suring that even if one misses a region of the feature space other members in the
ensemble may be able to learn the pattern. In other words, ensemble learning takes
into account the opinions of a number of learners to obtain the final decision [149].
It builds on traditional machine learning and ensures overall performance improve-
ment by overcoming the individual drawbacks of learners. Conventionally, only one
model is used to learn characteristics in the given data; the end performance of such
a model may often be average. The primary notion in ensemble learning is that a
group of decision makers is more reliable than a single decision maker. In litera-
ture, such grouping of decision makers is known by different names such as Blending
[150], Ensemble of Classifiers [151], Committee of experts [152], Perturb and Com-
bine [153], among many more. Based on whether existing knowledge is used or
not, ensemble learning algorithms are categorized as supervised and unsupervised.
Another category of ensemble learning is meta ensemble learning where an en-
semble of ensembles is built to further avoid biases of individual ensembles. The
purpose is to empirically investigate the performance of different ensemble methods
in conjunction with hyper-parameter tuning of the predictive models. The aim is
to study the performance of ensemble learning methods namely Bagging, Boosting,

Bagging-Boosting and Stacking using different benchmark datasets. It is based on

106

a data-centric supervised ensemble framework comprising of different engines each

with its own functionality.

4.1.1 Motivation

Ensemble learning is known to be a powerful technique which relies on aggregating
the decisions given by several learners. The ability and versatile nature of ensemble
learning methods specially, bagging, boosting and stacking to enhance model per-
formance has garnered tremendous attention from the research community. The
aim is to study the performance of each individual learner and their generaliza-
tion capabilities in the context of security datasets. The base learners are selected
from diverse backgrounds in order to eliminate the biasness of the individual learn-
ers. The proposed framework is designed by exploiting the consistently performing

learning algorithms to achieve best possible classification performance.

4.1.2 Contribution

In this chapter, an empirical evaluation of several benchmark security datasets
using well known ensemble methods such as Bagging, Boosting, Bagging-Boosting,
Stacking and a combination learner is carried out. Along with the evaluation,
an analysis on how hyper-parameter tuning can play a big role in achieving high

accuracy in case of most of the datasets is also done.

4.2 Background

This section presents in depth on what is ensemble learning, how to construct
an ensemble from scratch, types of ensemble learning along with some theoretical

basics of ensemble learning.

4.2.1 Ensemble Learning

An ensemble learning technique for a given task consists of a diverse set of learning
algorithms, whose findings are combined in some manner to better the performance
of an individual learner. The general idea behind such techniques is that the
decision taken by a committee of models is likely to be better than the decision

taken by a single model. This is because, each model in the committee may have

107

learned some distinct inherent properties in the data which other models may have
missed. So, each model may contribute some unique knowledge, impacting the
overall performance positively. Therefore, by way of explanation, ensemble learning
can be thought of as an opportunity to improve the decision-making process by
choosing a diverse group of superior to average learners rather than an individual
learner which may not give its best possible performance for a given task. This
usually indicates that the generalizing power of a group of models is usually better
than the generalizing power of an individual model. Figure describes a typical
framework of ensemble learning, where the outputs of different learning model are

combined using a combination function.

Train/testinstances

Preprocessor
| } I I }
Classifier Classifier Classifier Classifier
model 1 model 2 Base learners model n-1 model n .
Output Output Output Output
Combination function

\. J

Final output

Figure 4.1: A Typical Ensemble Learning Framework

4.2.1.1 Types of Ensemble Learning

Depending on how a model learns, ensemble learning techniques can be of four
types, supervised ensemble, unsupervised ensemble, semi-supervised ensemble and
meta-ensemble. The first three kinds differ from each other in the manner of how
they utilize the available knowledge. While supervised ensemble learning tech-
niques make use of existing knowledge to classify new instances into respective
classes (categories), unsupervised ensemble learning techniques first generate sev-
eral groups with the help of clustering algorithms and then combine these groups

towards generation of a best possible prediction using an appropriate consensus

108

function [154], [155], [156],[157]. On the contrary, semi-supervised ensemble tech-
niques work with partial knowledge towards introduction of new knowledge or in-
formative data to the existing distribution in the process to expand the training set
|158],[159],|160[,|161]. Meta-ensemble on the other hand, is an ensemble of ensem-
bles created to avoid the biases of individual ensembles [162],[163],[164],[165],[166].
It was first introduced by Dettling [167].

Ensemble learning can be accomplished at different levels, such as attribute (fea-
ture) level |168][169] or decision level [170]|171] based on the outputs given by the
individual machine learning techniques. For example, at feature level, the feature
ranks given by the individual feature selection algorithms can be combined using
combination rules to get an aggregated list of best possible relevant features. The
same learning models can be trained on random full-featured subsets of a dataset or
versions of the same dataset with sampled subsets of features. The learning models
are then tested on previously unseen samples. The final prediction of the models
can be combined using different combination rules. The main goal is to increase the
generalization capability of an ensemble, such that the final predictions are highly

accurate.

4.2.1.2 Base Learners

Several individual learners participate to form an ensemble. Such learners, usually
from distinct families, are referred to as base learners. In a supervised frame-
work, these base learners take as input a set of labeled samples (training data)
and learn significant characteristics from the data in order to classify the samples
with appropriate labels. The output of the base learners are combined to obtain
the final prediction of the ensemble. It is worth noting that the output of the
individual classifier models can be either class labels or continuous outputs or even
class probabilities. Depending on the type of output given by the base learners, the
combination function is chosen. For example, majority voting or weighted majority
voting works when combining class labels, whereas sum rule or mean rule works

when combining continuous value outputs|[123].

Definition 4.1 (Base learner). Individual learners that constitute an ensemble are

called the base learners.

109

4.2.1.3 Combination Function

A combination function tries to aggregate the outputs of learning models taking

part in the ensemble process. The outputs to be combined can be in class label

form, or continuous value outputs. Depending on the type of output of the base

learners, the combination function needs to be chosen.

Definition 4.2 (Combination Function). A function which combines the individ-

ual results of base learners to get the final output of the ensemble is called the

combination function.

Class label Combination: To combine the class label outputs of learning models

two simple strategies that can be used are: Majority voting and Weighted majority

voting.

(2)

Majority voting: Here, the ensemble chooses the class label with the most
number of votes. That is, all the learning models have equal opportunities to
choose their respective class label (these are counted as votes) and the label
with most number of votes is chosen as the final decision of the ensemble.
For example, let’s assume there are 10 learning models and 6 learning models
say that a particular instance say X; belongs to class A and 4 models assign
it to class B, then the final output will be class A for the instance X; (i.e. go
with the decision opted by the majority). This technique basically, can have
three different cases |123].

Case 1: All learning models agree unanimously without any conflicts into
predicting a single class label.

Case 2: At least one more than half the number of learning models agree
into predicting a class label.

Case 3: Class label with the highest amount votes is chosen the winner.
Although very popular, majority voting technique has its own limitations
because it may so happen that certain learning models are more suitable for
a given task compared to others. In that case, weights must be assigned to

the learning models.

Weighted majority voting: Here, weights are assigned to the learning models
when predicting a class label for a given test instance. This is because, out

of all the participating learning models in the ensemble, some models may

110

be more suitable compared to others. The suitable members of the ensemble
are assigned higher weights than others. Lets assume that a learning model
l; takes a decision d; ; and chooses class c; for an instance X;. So, d;; = 1, if
c; is chosen otherwise 0. Subsequently, all the learning models are assigned
weights based on their performances such that learning model [, has weight
wy. For a class ¢; the total weight can be given by the sum total of the product
of individual weights of the learning models and respective decisions given by
them. The final output is the class with the highest weighted vote. Therefore,
the final output is class J according to the assumption if the Equation
holds true .

T
Z wedy g (X;) = Trwwsf:1 Z wydy (4.1)

An elaborate description on how to combine continuous valued outputs is given in

Appendix A.

4.2.1.4 Requirements of Base Classifier Selection

There are two primary requirements on how to select the base classifiers(learners).

(a)

Diverse nature: If one of the classifiers overlook an inherent pattern in the
data, there is a high probability that a similar classifier will also repeat similar
mistakes. Such patterns may correspond to a distinguishing or interesting
characteristic, in which case the classifiers will perform poorly. This is why,
the classifiers must be chosen from a diverse set of families [172]. This will
also make sure that the outputs of individual models are less correlated with

each other.

Accuracy in the classifier performance: The chosen base learners should be
high performers in terms of accuracy individually or at least perform better
than a random learner. If there are ¢ classes in a dataset, a random classifier
will have an average accuracy of % On the other hand, a combination of
weak learners, each performing worse than a random learner, may not give

the desired quality outcomes.

111

4.2.1.5 Ensemble Methods

Over the years, several ensemble construction approaches have been developed.

Some prominent ones are described next.

1. Bagging |173]: From the original dataset, samples are chosen at random with
replacement to obtain different versions of the same dataset. It is known
as a bootstrap technique and the samples are called bootstrap samples. A
learning algorithm is then trained with these different sets of samples in
parallel to obtain classifier models which assign class labels to the samples.
The combination scheme used is majority voting, that is if majority of the base
learners predict a sample to be of a particular class, then the corresponding

label is assigned to it. Figure [£.2]illustrates an example of Bagging.

[Resampled Base Classifier
Dataset 1

Base Classifier —|———

Dataset 2

Original Resampled, Base Classifier Combination by Final prediction
dataset [Dataset 3 majority voting >

[Resampled Base Classifier
Dataset 4

T)@T)ﬁ)

[Resamp e Base Classifier
[Dataset k

I

Figure 4.2: Bagging Example

Definition 4.3 (Bagging). The process of constructing bootstrapped samples
from the original dataset and giving these as input to base classifiers whose

outputs are combined by majority voting is known as Bagging.

2. Boosting [174]: Boosting is an ensemble approach which works sequentially
in iterations. It focuses on the misclassified instances in every iteration. In
the first iteration, all the instances are assigned equal weights. In subsequent
iterations, the misclassified samples of the previous iteration are given more
weight, or are said to be boosted. Such a mechanism works well with weak
learners as several weak learners can be combined to solve some hard task.
For Boosting to work, the weak learners must perform better than random

learners. Adaboost[175] is a popular Boosting model with which other learning

112

models such as Decision trees or Naive Bayes as a base learner can be used.

Figure [4.3] illustrates an example of Boosting.

— Datase
Original with modified
dataset Weights

| Base Classifier | |BaseCIassifier | | Base Classifier | | Base Classifier |

|

Combination function

Final prediction

Figure 4.3: Boosting Example

Definition 4.4 (Boosting). The process of building a sequence of classifiers
that work together such that misclassified instances are reweighted to boost

attention on them in each iteration is called Boosting.

3. Stacking (also known as Stacked Generalization) [176]: Tt is an ensemble ap-
proach where learning takes place in two levels. The layer-1 base classifiers
are trained with a level-0 bootstrapped dataset. Their outputs are used as in-
put by the next level meta-learner. As the name suggests, one layer of dataset
and classifier is stacked over another layer of dataset and meta-classifier. It is
called a meta-classifier because it learns from the behavior of set of classifiers
above it. Figure illustrates an example of Stacking.

Definition 4.5 (Stacking (or Stacked Generalization)). The process of stack-
ing one learning layer on top of the other such that the output of one layer is
given as input to the next level meta learner is known as Stacking (or Stacked

Generalization).

4.3 Data-centric Supervised Ensemble Proposed Frame-

work

This section discusses in detail the proposed Data-centric Supervised Ensemble

Framework for the empirical study. The framework consists of four engines, namely

113

———
Layer -0
dataset
/

~
Base Classifier 1 Base Classifier 2) Base Classifier 3 Base Classifier 4

Layer —1 Base learners

i

Meta classifier

Final output

Figure 4.4: Stacking Example

preprocessing engine, parameter tuning engine, ensemble engine, and performance
analysis engine. The data-centric framework illustrated in Figure [4.5| explains the
methodology of the empirical study. A detailed description of the participating

engines in the framework is provided below with necessary diagrams.

Dataset

Pre-processing engine

A

Parameter tuning engine

\ 4

Ensemble engine

A

: v
Feedback |e Performance Analysis
analyser Engine

Satisfactory | performance

output

Figure 4.5: Data-centric Supervised Ensemble Framework

4.3.1 Preprocessing Engine

It is the first engine in the framework that consists of three sub-modules as shown

in Figure The first sub-module checks for the presence of any missing values. If

114

missing values are not present, the next sub-module is executed. If missing values
are however present, then they are either removed or appropriate missing value
estimation techniques are applied. Missing values can be estimated in a number of
ways as mentioned in [177]. Popular methods include k-NN Impute [178] and Row
averaging [177]. The second sub-module helps in removing zero variance features,
i.e. the features with no interesting patterns. Meaning, there may exist some
features in a dataset whose values are same (for example: a column with all Os or
all 1s) all throughout. Such features do not contribute in any way for improving
the performance of the predictor/classifier. In fact, the existence of such features
will only downgrade the performance of the classifier. These features are therefore,
removed in the pre-processing step as they do not contribute any knowledge in
the prediction task and will in turn lead to overfitting the model. The third sub-
module helps in normalizing each dataset. A suitable Normalization technique
ensures that all the values are in the same scale [179]. For example, two features
may have different range of values, one from say 0 to 100 and one from -1 to 1. In
such cases, both these two features must be normalized and brought under the same
range (may be from 0 to 1). However, before applying normalization technique, all
the non-numeric data must first be converted to numeric data. The normalization
step is absolutely necessary, particularly for predictors such as k-nearest neighbors
which rely on distance based measures for prediction. This is because, feature
values may not lie in the same range and hence, need to be explicitly brought into
uniform scale of 0 to 1. In this work, Min-Maz normalization technique [180] is

used.

Zero variance

Missing value Estimation
feature removal

Normalization

Pre-processing engine

Figure 4.6: Preprocessing Engine

4.3.2 Parameter Tuning Engine

Parameter tuning engine is also known as the model selection engine. Model tuning

or model selection is done to select appropriate set of hyper-parameters for each

115

model, and is specific to each dataset. This is the reason why the framework is a
data-centric framework. For selecting the best possible set of hyper-parameters for a
model, a grid is constructed with a list of potential values for each hyper-parameter.
Each potential value of one hyper-parameter is checked with each potential value
of every other hyper-parameter as data is fit into the model, and the technique is
called GridSearch (searching the grid for best possible values). In this manner, in
a permutation fashion the best possible set of hyper-parameter for each model is
obtained. Here, the best possible set of hyper-parameter values for a model are
evaluated in terms of accuracy, precision and recall. It is important here to note
that, not all hyper-parameters of a model are tuned. Only crucial hyper-parameters
which plays a potential role in determining the performance of a model is tuned.
Figure illustrates the working of this engine.

GridSearch is an additional step in fine tuning a model. Each model has default
set of values for each hyper-parameter but most of the times model tuning the
classifier gives a better result. This means, it may so happen for a classifier and for
a specific dataset that model selection gives poorer results compared to the default
hyper-parameter values of the model. In that case, the default values are chosen.
After best possible parameter values are obtained, next the ensemble methods of

Bagging, Boosting, Bagging combined with Boosting and Stacking are taken up.

Hyper-parameter tuning

!

Search for optimal hyper-parameters

Train supervised model
with particular
hyper-parameter setting

l

Evaluate the model performance

Repeat for all settings

A

Choose best model

Parameter tuning engine

Figure 4.7: Parameter Tuning Engine

4.3.3 Ensemble Engine

The ensemble engine consists of methods such as Bagging, Boosting, Bagging-
Boosting and Stacking (or Stacked Generalization) as shown in Figure 4.8 For

116

Bagging five inducers namely, k-Nearest Neighbors (kNN), Support Vector Ma-
chines (SVM), Decision Trees (DT), Logistic Regression (LR) and Naive Bayes
(NB) are used. For Boosting, AdaBoost, Extreme Gradient Boosting (XGB), Light
Gradient Boosting (LGB), Hist Gradient Boosting (HGB) and Gradient Boosting
(GB) are used. For Bagging-Boosting ensemble method, the bagging technique is
combined with each of the boosting inducers separately. For Stacking however, the
best inducers obtained from Bagging, Boosting and Bagging-Boosting methods are
considered. The best inducers are then stacked one on top of the other to obtain
the results. It is important to note that for each ensemble method employed, a con-
sensus function (majority voting) is also applied to all the base inducers to obtain

a final result.

Ensemble methods

Baggi Boostin, Bagging + Boosti Stackin
NB: Naive Bayes agging 8 agging + Boosting > f g
SVM: Support Vector Machines | NB | | LR | | AdaB | XGB | Ba _ inner from _
gg(AdaB) Bagg(XGB)
KNN: k- Nearest Neighbours Bagglﬂgl BOOS(IT}?
ensemble ensemble

LR: Logistic Regression
DT: Decision Tree | SVM | | kNN | | LGB |

)) | GB Bagg(LGB) Bagg(GB) Bagging + Boosting
:gaBB;Atdaptle Bo;sn:g ; ensemble
: Extreme Gradien oosting
DT B: HGB;
GB: Gradient Boosting - 2e8lHee) 1

LGB: Light Gradient Boosting
Majority Vote Majority Vote

HGB: Hist Gradient Boosting l
Bagg(AdaB): Bagging with Adaptive Boosting .
Bagg(XGB): Bagging with Extreme Gradient Majority Vote
Boosting

Bagg(GB): Bagging with Gradient Boosting

Bagg(LGB): Bagging with Light Gradient Boosting i i
Bagg(HGB): Bagging with Hist Gradient Boosting Find Winner

Ensemble engine

Meta Estimator

Figure 4.8: Ensemble Engine

4.3.4 Performance Analysis Engine

This engine is responsible for analysing the results obtained from the Ensemble
Engine. Results if not satisfactory is forwarded to the Feedback Analyser. The
Feedback Analyser then scrutinizes the output obtained from each of the engine in

the process.

4.4 Experimental Results

In this section, the experiment results are reported on 6 datasets, and information
on each of the datasets can be found in Table For the ransomware multiclass
dataset which contains a total of 12 classes (11 ransomware families and 1 normal

family) all the results are shown in a class specific manner and separately from

117

the rest of the datasets. This is because class specific data analysis helps to find

intrinsic characteristics with respect to each class.

Table 4.1: Description of Datasets Used

Dataset name #instances #features #classes
Android Dataset 1 [142] 2140 241 2
Android Dataset 2 [142] 1110 347 2
Phishing [144] 11,055 31 2
Kitsune Network

Attack Dataset [145] 7,64,137 116 2

SWaT [139] 4,44.,496 51 2
Ransomware

Multiclass dataset [143] 1524 30,967 12

4.4.1 Bagging Results

Figures and presents the results for Bagging ensemble method for all the
datasets in terms of Accuracy, Precision and Recall. In Appendix B.1 the hyper-
parameter tuned values for the Bagging ensemble method with respect to all the
classifiers considering all the datasets is enlisted. It is important here to note that
for the Naive Bayes (Gaussian) model, there aren’t any hyper-parameters to be
tuned so GridSearch is not carried out for the model. With respect to Figure [4.9|it
can be seen that Decision Tree (DT) when taken in a Bagging ensemble emerges as
the winner (highest accuracy). Again, with respect to Figure Support Vector
Machine (SVM) clearly dominates, as out of the 11 classes it emerges as winner for

a majority of 6 times.

4.4.2 Boosting Results

Figure and illustrates the results for Boosting ensemble method for all the
datasets in terms of Accuracy, Precision and Recall. The hyper-parameter tuned
values for Boosting ensemble method are enlisted in Appendix B.2 with respect to
all classifiers considering all the datasets. With respect to both Figure and
Figure it can be seen that Gradient Boosting outperforms other classifiers as

it wins for majority of the datasets (in terms of highest accuracy).

118

s1aseIR(] A1IN29G 10] s3[nsay SurdSeq :6°'F 9In31q

1958180 YOV HIOMION SUNSIN M BulySIyd W IBMSE z39seled ploipuy m T 395eleq ploipuy m

20 10qy8IaN 1saJeaN-y

Jauysse|d Sunop Saulyde|A 40329/ 1oddng uolissaJday 21151807 saAeg anleN ECIRY]

||e29y uolsIald Adeandoy 1|29y uolsiald Adeandoy 1|29y uolsiald Adeandoy 1|29y uosioald Adeuandoy |29y uosidald Adeiandoy [IEEEN] uosidald Adeundoy

syaselep A1unoas 4oy synsaJ 3uiddeg

o O O O O O o o o o
d 0O KN © ! F o & o

a8ejuaniad

119

Percentage

102

100

w0
=

©
N

w0
o

00
00

00

6

Bagging results for ransomware multiclass dataset

o]
[N}

Accuracy Precison Recall Accuracy Precison Recall Accuracy Precison Recall Accuracy Precison Recall Accuracy Precison Recall Accuracy Precison Recall
k-Nearest Neighbor Decison Tree Naive Bayes Logistic Regression Support Vector Machine Voting Classifier
M Citroni M CryptLocker m CryptoWall Kollah ®mKovter ™ Locker M Matsnu MPgpcoder MReveton MTeslaCrypt M Trojan-Ransom

Figure 4.10: Bagging Results for Ransomware Multiclass Dataset

sjeseje(] A}1Ind9g 10} synsey Sursooq :I1'F oINS

3oB1Y JIOMIBN dunsyy W 1emSm Sulysiydm g 19seleq ploipuy m T 33seleq plodpuy m

210/ Ayoley 1500gIURIPEIDISIH 15009 judIpeJ 1y 15009 JUBIPEID dWAIIXT 15009 JUdIpEID 1s00gepy

SREN] uoisidald Adeandoy [[I==EH] uoisiald Adeandoy 11e2ay uoisald Adeandoy [[I=EN] uosipald Adeundoy ||e2ay uosipald Adeundoy ||e2ay uosiald Adeundoy

sjaselep Aunoaas 4oy synsaJ Suiisoog

o
0

n
0

o
D

n
N

00T

a8ejuaolad

121

Percentage

102

100

©
00

©
@

©
5

[}
N

©0
o

0

8

Accuracy

Precison

Adaboost

Recall

Accuracy

m Citroni

Precison
Gradient Boosting

m CryptLocker

Boosting results for ransomware multiclass dataset

Recall

m CryptoWall

Accuracy Precison Recall
Extreme Gradeint Boosting

Kollah m Kovter m Locker

Accuracy Precison Recall
Light Gradient Boosting

W Matsnu m Pgpcoder M Reveton

Accuracy Precison Recall
HistGradient Boosting

Hm TeslaCrypt m Trojan-Ransom

Figure 4.12: Boosting Results for Ransomware Multiclass Dataset

Accuracy

Precison

Majority Voting

Recall

122

4.4.3 Bagging-Boosting Results

Figure and presents the illustrations for Bagging-Boosting combination in
terms of Accuracy, Precision and Recall. All the Boosting classifiers are enveloped
inside the Bagging ensemble method. Here, with respect to Figure 4.13] it can be
seen that Extreme Gradient Boosting (XGB) emerges as the winner (in terms of
accuracy). However, for Figure , Gradient Boosting wins for a total of 7 times

overall and emerges as the sole winner.

4.4.4 Stacking Results

Table 4.2 and Table [4.3] show the Level 1 estimators used in the Stacking ensemble
method for all datasets. In this level, a total of three models are used. Each of these
three models are the winner from Bagging, Boosting and Bagging-Boosting ensem-

ble method. As already mentioned earlier, in Level 2 a Random Forest Classifier
is used. Illustrations for the same are shown in Figure and [4.16]

Table 4.2: Stacking Ensemble Results

Ensemble Method: Stacking

Dataset name Level 1 estimators Accuracy Precison Recall

Support Vector Machine
Android Dataset 1 Gradient Boosting 97.67 98.64 98.22
Bagg(Gradient Boosting)

Support Vector Machine
Android Dataset 2 Extreme Gradient Boosting 89.5 90.4 89.6
Bagg(Hist Gradient Boosting)

Decision Tree
SWaT Extreme Gradient Boosting 96.5 97.3 96.8

Security datasets Bagg(Extreme Gradient Boosting)

Decision Tree
Phishing Hist Gradient Boosting 94.75 94.72 92.93
Bagging(Light Gradient Boosting)

Decision Tree
Kitsune Network Attack Gradient Boosting 95.5 94.3 92.8
Bagg(Extreme Gradient Boosting)

4.4.5 QObservations

A few points have been observed during this study.

e Naive Bayes classifier works well when the data is not normalized.

123

Percentage

100

o
[l

o
o

00
[

o]
o

~
(]

Bagging-Boosting results for security datasets

Accuracy Precison Recall Accuracy Precison Recall Accuracy Precison Recall Accuracy Precision Recall Accuracy Precision Recall

Bagg(Adaboost) Bagg(Gradient Boost) Bagg(Extreme Gradient Boost) Bagg(Light Gradient Boost) Bagg(HistGradientBoost)

itsune Network Attack

M Android Dataset 1 M Android Dataset2 M Phishing mSwat ®

Figure 4.13: Bagging-Boosting results for Security Datasets

Accuracy

Precision

Majority Voting

Recall

124

S1eseIR(] SSR[OI)N]A olemuosury IoJ sjmsol 3uljsoog-sursdeyq :H1'F 2InsIg

wosuey-uefos| m 1dAIDE|ISO WM UOIPASY M J9POddSdm NUSIBA W JDYO0TE JOINOYNEm Ye||lo) llemoidAiym uoyoomndAidm uonDm
Ja11sse|) 8unop (8unsoog juaipeinisiy)33eg (8unsoog juaipesn 1ysi7)33eg (8unsoog julepesn awaux3)s8eg (8unsoog juaipetn)ddeg (1sooqepy)33eg
[[EEN] uosIoald Adeandoy ||e2ay uosIoald Aoeandoy ||esay uosIoald Adeandoy ||eaay uosIald Adeandoy [[EECH] uosIoald Adeandoy [[EEEH] uosinald Adeandoy

S19Sejep SSe|dI}nw asemwosued oy s3nsaJ 3uinsoog-3uiddeg

8

0

o
a

o~
o

<
[}

©
(<

=
<

0T

98ejuaniad

125

Table 4.3: Stacking Ensemble Results for Ransomware Multiclass Dataset

Stacking Results

Level 1 classifier Accuracy Precison Recall

Decison Tree
Citroni Gradient Boosting 05.94 02.68 99.64
Bagg(Gradient Boosting)

Support Vector Machine
CryptLocker Gradient Boosting 95.06 95.59 95.42

Bagg(Gradient Boosting)

Support Vector Machine
CryptoWall Gradient Boosting 95.6 95.42 95.42
Bagg(Gradient Boosting)

Support Vector Machine
Kollah Gradient Boosting 97.01 96.83 97.01
Bagg(AdaBoost)

Support Vector Machine
Kovter Adaboost 94.17 95.94 94.88

Bagg(Adaboost)

Support Vector Machine
Locker Light Gradient Boosting 94.71 94.71 94.71
Bagg(Gradient Boosting)

Decison Tree
Matsnu Extreme Gradient Boosting 95.95 95.95 95.95

Bagg(AdaBoost)

k-Nearest Neighbors
Pgpcoder Gradient Boosting 100 100 100

Bagg(Hist Gradient Boosting)

Support Vector Machine
Reveton Light Gradient Boosting 96.29 95.58 95.58
Bagg(Adaboost)

k-Nearest Neighbors
TeslaCrypt Adaboost 99.65 99.65 99.65
Bagg(Gradient Boosting)

Decison Tree
Trojan-Ransom Gradient Boosting 95.07 95.24 95.42
Bagg(Gradient Boosting)

e Not all set of hyper-parameters need to be tuned, grid search in general takes
a lot of time for execution in CPU. In an ideal world, with all the time
and computational resource, all hyper-parameters can be fitted into a grid.
But since, resources are limited hence, potential hyper-parameters with more

impactful role only needs to be tuned for each model.

e Boosting takes more time to execute because of its sequential nature of exe-

cution compared to Bagging.

e For Bagging ensemble methods, Support Vector Machine (SVM) emerged as

a clear winner for almost all the datasets.
e For Boosting, Gradient Boosting (GB) performs well in most of the datasets

126

Stacking results for security datasets

100
98
96
94
()
7
S
S 92
2
9]
o
90
88
86
84
Android Dataset 1 Android Dataset 2 SWaT Phishing Kitsune Network Attack

M Accuracy M Precision M Recall
Figure 4.15: Stacking Results for Security Datasets

Stacking results for ransomware multiclass dataset
102

100

98

96
94
92
90
88

Citroni CryptLocker Cryptowall Kollah Kovter Locker Matsnu Pgpcoder Reveton TeslaCrypt Trojan-Ransom

Percentage

W Accuracy M Precison M Recall

Figure 4.16: Stacking Results for Ransomware Multiclass Datasets

considered.

e For Bagging-Boosting however, Extreme Gradient Boosting (XGB) emerged

as the winner.

4.4.6 Discussion

Ensemble learning is a relatively well-studied area in machine learning. Ensembles
are flexible in structure and composition. An ensemble can be combined with other
approaches in a seamless manner with some effort. It can be used not only with

traditional machine learning methods like supervised and unsupervised learning

127

but also with more advanced concepts like deep learning and transfer learning. An
ensemble for supervised learning can be constructed at different levels, for example
at sample level, or feature level or even at output level. Most of the research in
the literature is focused on building ensembles at feature level and at output level.
How well an algorithm works on previously unseen samples depends on the quality
of the learning process. The quality of learning depends on a number of issues such
as the choice of values of parameters and hyper-parameters of the learning model,

the quality of data used, and preprocessing techniques employed, to name a few.

The next chapter discusses a traditional feature selection method named MICC-
UD for the detection of XSS attacks. The method is based on a mutual information

and correlation based score.

128

	08_chapter 4

