
Chapter 4

Ensemble Learning Methods

4.1 Introduction

Supervised learning algorithms are e�ective in most application domains, however

they have limitations. A single learning model may miss out on some local regions

of the feature space, impacting overall performance. Ensemble learning techniques

can be helpful in this regard as they bring together a diverse set of learners, en-

suring that even if one misses a region of the feature space other members in the

ensemble may be able to learn the pattern. In other words, ensemble learning takes

into account the opinions of a number of learners to obtain the �nal decision [149].

It builds on traditional machine learning and ensures overall performance improve-

ment by overcoming the individual drawbacks of learners. Conventionally, only one

model is used to learn characteristics in the given data; the end performance of such

a model may often be average. The primary notion in ensemble learning is that a

group of decision makers is more reliable than a single decision maker. In litera-

ture, such grouping of decision makers is known by di�erent names such as Blending

[150], Ensemble of Classi�ers [151], Committee of experts [152], Perturb and Com-

bine [153], among many more. Based on whether existing knowledge is used or

not, ensemble learning algorithms are categorized as supervised and unsupervised.

Another category of ensemble learning is meta ensemble learning where an en-

semble of ensembles is built to further avoid biases of individual ensembles. The

purpose is to empirically investigate the performance of di�erent ensemble methods

in conjunction with hyper-parameter tuning of the predictive models. The aim is

to study the performance of ensemble learning methods namely Bagging, Boosting,

Bagging-Boosting and Stacking using di�erent benchmark datasets. It is based on
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a data-centric supervised ensemble framework comprising of di�erent engines each

with its own functionality.

4.1.1 Motivation

Ensemble learning is known to be a powerful technique which relies on aggregating

the decisions given by several learners. The ability and versatile nature of ensemble

learning methods specially, bagging, boosting and stacking to enhance model per-

formance has garnered tremendous attention from the research community. The

aim is to study the performance of each individual learner and their generaliza-

tion capabilities in the context of security datasets. The base learners are selected

from diverse backgrounds in order to eliminate the biasness of the individual learn-

ers. The proposed framework is designed by exploiting the consistently performing

learning algorithms to achieve best possible classi�cation performance.

4.1.2 Contribution

In this chapter, an empirical evaluation of several benchmark security datasets

using well known ensemble methods such as Bagging, Boosting, Bagging-Boosting,

Stacking and a combination learner is carried out. Along with the evaluation,

an analysis on how hyper-parameter tuning can play a big role in achieving high

accuracy in case of most of the datasets is also done.

4.2 Background

This section presents in depth on what is ensemble learning, how to construct

an ensemble from scratch, types of ensemble learning along with some theoretical

basics of ensemble learning.

4.2.1 Ensemble Learning

An ensemble learning technique for a given task consists of a diverse set of learning

algorithms, whose �ndings are combined in some manner to better the performance

of an individual learner. The general idea behind such techniques is that the

decision taken by a committee of models is likely to be better than the decision

taken by a single model. This is because, each model in the committee may have
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learned some distinct inherent properties in the data which other models may have

missed. So, each model may contribute some unique knowledge, impacting the

overall performance positively. Therefore, by way of explanation, ensemble learning

can be thought of as an opportunity to improve the decision-making process by

choosing a diverse group of superior to average learners rather than an individual

learner which may not give its best possible performance for a given task. This

usually indicates that the generalizing power of a group of models is usually better

than the generalizing power of an individual model. Figure 4.1 describes a typical

framework of ensemble learning, where the outputs of di�erent learning model are

combined using a combination function.

OutputOutput OutputOutput

Train/test instances

Combination function

Classifier 
model 1

Preprocessor

Classifier 
model n

Classifier 
model n-1

Classifier 
model 2

Final output

Base learners

Figure 4.1: A Typical Ensemble Learning Framework

4.2.1.1 Types of Ensemble Learning

Depending on how a model learns, ensemble learning techniques can be of four

types, supervised ensemble, unsupervised ensemble, semi-supervised ensemble and

meta-ensemble. The �rst three kinds di�er from each other in the manner of how

they utilize the available knowledge. While supervised ensemble learning tech-

niques make use of existing knowledge to classify new instances into respective

classes (categories), unsupervised ensemble learning techniques �rst generate sev-

eral groups with the help of clustering algorithms and then combine these groups

towards generation of a best possible prediction using an appropriate consensus
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function [154], [155], [156],[157]. On the contrary, semi-supervised ensemble tech-

niques work with partial knowledge towards introduction of new knowledge or in-

formative data to the existing distribution in the process to expand the training set

[158],[159],[160],[161]. Meta-ensemble on the other hand, is an ensemble of ensem-

bles created to avoid the biases of individual ensembles [162],[163],[164],[165],[166].

It was �rst introduced by Dettling [167].

Ensemble learning can be accomplished at di�erent levels, such as attribute (fea-

ture) level [168][169] or decision level [170][171] based on the outputs given by the

individual machine learning techniques. For example, at feature level, the feature

ranks given by the individual feature selection algorithms can be combined using

combination rules to get an aggregated list of best possible relevant features. The

same learning models can be trained on random full-featured subsets of a dataset or

versions of the same dataset with sampled subsets of features. The learning models

are then tested on previously unseen samples. The �nal prediction of the models

can be combined using di�erent combination rules. The main goal is to increase the

generalization capability of an ensemble, such that the �nal predictions are highly

accurate.

4.2.1.2 Base Learners

Several individual learners participate to form an ensemble. Such learners, usually

from distinct families, are referred to as base learners. In a supervised frame-

work, these base learners take as input a set of labeled samples (training data)

and learn signi�cant characteristics from the data in order to classify the samples

with appropriate labels. The output of the base learners are combined to obtain

the �nal prediction of the ensemble. It is worth noting that the output of the

individual classi�er models can be either class labels or continuous outputs or even

class probabilities. Depending on the type of output given by the base learners, the

combination function is chosen. For example, majority voting or weighted majority

voting works when combining class labels, whereas sum rule or mean rule works

when combining continuous value outputs[123].

De�nition 4.1 (Base learner). Individual learners that constitute an ensemble are

called the base learners.

109



4.2.1.3 Combination Function

A combination function tries to aggregate the outputs of learning models taking

part in the ensemble process. The outputs to be combined can be in class label

form, or continuous value outputs. Depending on the type of output of the base

learners, the combination function needs to be chosen.

De�nition 4.2 (Combination Function). A function which combines the individ-

ual results of base learners to get the �nal output of the ensemble is called the

combination function.

Class label Combination: To combine the class label outputs of learning models

two simple strategies that can be used are: Majority voting and Weighted majority

voting.

(a) Majority voting : Here, the ensemble chooses the class label with the most

number of votes. That is, all the learning models have equal opportunities to

choose their respective class label (these are counted as votes) and the label

with most number of votes is chosen as the �nal decision of the ensemble.

For example, let's assume there are 10 learning models and 6 learning models

say that a particular instance say X1 belongs to class A and 4 models assign

it to class B, then the �nal output will be class A for the instance X1 (i.e. go

with the decision opted by the majority). This technique basically, can have

three di�erent cases [123].

Case 1 : All learning models agree unanimously without any con�icts into

predicting a single class label.

Case 2 : At least one more than half the number of learning models agree

into predicting a class label.

Case 3 : Class label with the highest amount votes is chosen the winner.

Although very popular, majority voting technique has its own limitations

because it may so happen that certain learning models are more suitable for

a given task compared to others. In that case, weights must be assigned to

the learning models.

(b) Weighted majority voting: Here, weights are assigned to the learning models

when predicting a class label for a given test instance. This is because, out

of all the participating learning models in the ensemble, some models may
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be more suitable compared to others. The suitable members of the ensemble

are assigned higher weights than others. Lets assume that a learning model

lt takes a decision dt,j and chooses class cj for an instance Xi. So, dt,j = 1, if

cj is chosen otherwise 0. Subsequently, all the learning models are assigned

weights based on their performances such that learning model lt has weight

wt. For a class cj the total weight can be given by the sum total of the product

of individual weights of the learning models and respective decisions given by

them. The �nal output is the class with the highest weighted vote. Therefore,

the �nal output is class J according to the assumption if the Equation 4.1

holds true .

T∑
t=1

wtdt,J(Xi) = maxC
j=1

T∑
t=1

wtdt,j (4.1)

An elaborate description on how to combine continuous valued outputs is given in

Appendix A.

4.2.1.4 Requirements of Base Classi�er Selection

There are two primary requirements on how to select the base classi�ers(learners).

(a) Diverse nature: If one of the classi�ers overlook an inherent pattern in the

data, there is a high probability that a similar classi�er will also repeat similar

mistakes. Such patterns may correspond to a distinguishing or interesting

characteristic, in which case the classi�ers will perform poorly. This is why,

the classi�ers must be chosen from a diverse set of families [172]. This will

also make sure that the outputs of individual models are less correlated with

each other.

(b) Accuracy in the classi�er performance: The chosen base learners should be

high performers in terms of accuracy individually or at least perform better

than a random learner. If there are c classes in a dataset, a random classi�er

will have an average accuracy of 1
c
. On the other hand, a combination of

weak learners, each performing worse than a random learner, may not give

the desired quality outcomes.
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4.2.1.5 Ensemble Methods

Over the years, several ensemble construction approaches have been developed.

Some prominent ones are described next.

1. Bagging [173]: From the original dataset, samples are chosen at random with

replacement to obtain di�erent versions of the same dataset. It is known

as a bootstrap technique and the samples are called bootstrap samples. A

learning algorithm is then trained with these di�erent sets of samples in

parallel to obtain classi�er models which assign class labels to the samples.

The combination scheme used is majority voting, that is if majority of the base

learners predict a sample to be of a particular class, then the corresponding

label is assigned to it. Figure 4.2 illustrates an example of Bagging.

Original 

dataset

Resampled

Dataset 1

Resampled

Dataset 2

…
....

Resampled 

Dataset 4

Resampled

Dataset 3

Resampled

Dataset k

Base Classifier

Final predictionCombination by 

majority voting

…
.....

Base Classifier

Base Classifier

Base Classifier

Base Classifier

Figure 4.2: Bagging Example

De�nition 4.3 (Bagging). The process of constructing bootstrapped samples

from the original dataset and giving these as input to base classi�ers whose

outputs are combined by majority voting is known as Bagging.

2. Boosting [174]: Boosting is an ensemble approach which works sequentially

in iterations. It focuses on the misclassi�ed instances in every iteration. In

the �rst iteration, all the instances are assigned equal weights. In subsequent

iterations, the misclassi�ed samples of the previous iteration are given more

weight, or are said to be boosted. Such a mechanism works well with weak

learners as several weak learners can be combined to solve some hard task.

For Boosting to work, the weak learners must perform better than random

learners. Adaboost [175] is a popular Boosting model with which other learning
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models such as Decision trees or Naive Bayes as a base learner can be used.

Figure 4.3 illustrates an example of Boosting.

Original 

dataset
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Dataset B with 

modified
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Dataset k with 

modified

Weights
…...................

….............
Base Classifier Base ClassifierBase Classifier Base Classifier

Combination function

Final prediction

Figure 4.3: Boosting Example

De�nition 4.4 (Boosting). The process of building a sequence of classi�ers

that work together such that misclassi�ed instances are reweighted to boost

attention on them in each iteration is called Boosting.

3. Stacking (also known as Stacked Generalization) [176]: It is an ensemble ap-

proach where learning takes place in two levels. The layer-1 base classi�ers

are trained with a level-0 bootstrapped dataset. Their outputs are used as in-

put by the next level meta-learner. As the name suggests, one layer of dataset

and classi�er is stacked over another layer of dataset and meta-classi�er. It is

called a meta-classi�er because it learns from the behavior of set of classi�ers

above it. Figure 4.4 illustrates an example of Stacking.

De�nition 4.5 (Stacking (or Stacked Generalization)). The process of stack-

ing one learning layer on top of the other such that the output of one layer is

given as input to the next level meta learner is known as Stacking (or Stacked

Generalization).

4.3 Data-centric Supervised Ensemble Proposed Frame-

work

This section discusses in detail the proposed Data-centric Supervised Ensemble

Framework for the empirical study. The framework consists of four engines, namely
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Figure 4.4: Stacking Example

preprocessing engine, parameter tuning engine, ensemble engine, and performance

analysis engine. The data-centric framework illustrated in Figure 4.5 explains the

methodology of the empirical study. A detailed description of the participating

engines in the framework is provided below with necessary diagrams.

Satisfactory performance

Ensemble engine

Dataset

Pre-processing engine

Feedback 
analyser

Performance Analysis
Engine

Parameter tuning engine

output

Figure 4.5: Data-centric Supervised Ensemble Framework

4.3.1 Preprocessing Engine

It is the �rst engine in the framework that consists of three sub-modules as shown

in Figure 4.6. The �rst sub-module checks for the presence of any missing values. If
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missing values are not present, the next sub-module is executed. If missing values

are however present, then they are either removed or appropriate missing value

estimation techniques are applied. Missing values can be estimated in a number of

ways as mentioned in [177]. Popular methods include k-NN Impute [178] and Row

averaging [177]. The second sub-module helps in removing zero variance features,

i.e. the features with no interesting patterns. Meaning, there may exist some

features in a dataset whose values are same (for example: a column with all 0s or

all 1s) all throughout. Such features do not contribute in any way for improving

the performance of the predictor/classi�er. In fact, the existence of such features

will only downgrade the performance of the classi�er. These features are therefore,

removed in the pre-processing step as they do not contribute any knowledge in

the prediction task and will in turn lead to over�tting the model. The third sub-

module helps in normalizing each dataset. A suitable Normalization technique

ensures that all the values are in the same scale [179]. For example, two features

may have di�erent range of values, one from say 0 to 100 and one from -1 to 1. In

such cases, both these two features must be normalized and brought under the same

range (may be from 0 to 1). However, before applying normalization technique, all

the non-numeric data must �rst be converted to numeric data. The normalization

step is absolutely necessary, particularly for predictors such as k-nearest neighbors

which rely on distance based measures for prediction. This is because, feature

values may not lie in the same range and hence, need to be explicitly brought into

uniform scale of 0 to 1. In this work, Min-Max normalization technique [180] is

used.

Normalization

Zero variance 
feature removal

Missing value Estimation

Pre-processing engine

Figure 4.6: Preprocessing Engine

4.3.2 Parameter Tuning Engine

Parameter tuning engine is also known as the model selection engine. Model tuning

or model selection is done to select appropriate set of hyper-parameters for each
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model, and is speci�c to each dataset. This is the reason why the framework is a

data-centric framework. For selecting the best possible set of hyper-parameters for a

model, a grid is constructed with a list of potential values for each hyper-parameter.

Each potential value of one hyper-parameter is checked with each potential value

of every other hyper-parameter as data is �t into the model, and the technique is

called GridSearch (searching the grid for best possible values). In this manner, in

a permutation fashion the best possible set of hyper-parameter for each model is

obtained. Here, the best possible set of hyper-parameter values for a model are

evaluated in terms of accuracy, precision and recall. It is important here to note

that, not all hyper-parameters of a model are tuned. Only crucial hyper-parameters

which plays a potential role in determining the performance of a model is tuned.

Figure 4.7 illustrates the working of this engine.

GridSearch is an additional step in �ne tuning a model. Each model has default

set of values for each hyper-parameter but most of the times model tuning the

classi�er gives a better result. This means, it may so happen for a classi�er and for

a speci�c dataset that model selection gives poorer results compared to the default

hyper-parameter values of the model. In that case, the default values are chosen.

After best possible parameter values are obtained, next the ensemble methods of

Bagging, Boosting, Bagging combined with Boosting and Stacking are taken up.
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Figure 4.7: Parameter Tuning Engine

4.3.3 Ensemble Engine

The ensemble engine consists of methods such as Bagging, Boosting, Bagging-

Boosting and Stacking (or Stacked Generalization) as shown in Figure 4.8. For
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Bagging �ve inducers namely, k-Nearest Neighbors (kNN), Support Vector Ma-

chines (SVM), Decision Trees (DT), Logistic Regression (LR) and Naive Bayes

(NB) are used. For Boosting, AdaBoost, Extreme Gradient Boosting (XGB), Light

Gradient Boosting (LGB), Hist Gradient Boosting (HGB) and Gradient Boosting

(GB) are used. For Bagging-Boosting ensemble method, the bagging technique is

combined with each of the boosting inducers separately. For Stacking however, the

best inducers obtained from Bagging, Boosting and Bagging-Boosting methods are

considered. The best inducers are then stacked one on top of the other to obtain

the results. It is important to note that for each ensemble method employed, a con-

sensus function (majority voting) is also applied to all the base inducers to obtain

a �nal result.

Boosting

Ensemble methods
Bagging Bagging + Boosting Stacking

HGB

NB

Majority Vote

DT

LR

kNNSVM LGB GB

XGB Bagg(AdaB) Bagg(XGB)
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Bagg(HGB)

Bagging + Boosting
ensemble

Boosting 
ensemble

Bagging 
ensemble

Winner from

Meta Estimator

Ensemble engine

AdaB

Majority VoteMajority Vote

Find Winner

NB: Naïve Bayes
SVM: Support Vector Machines
kNN: k- Nearest Neighbours
LR: Logistic Regression
DT: Decision Tree
AdaB: Adaptive Boosting
XGB: Extreme Gradient Boosting
GB: Gradient Boosting
LGB: Light Gradient Boosting
HGB: Hist Gradient Boosting
Bagg(AdaB): Bagging with Adaptive Boosting
Bagg(XGB): Bagging with Extreme Gradient 
Boosting
Bagg(GB): Bagging with Gradient Boosting
Bagg(LGB): Bagging with Light Gradient Boosting
Bagg(HGB): Bagging with Hist Gradient Boosting

Figure 4.8: Ensemble Engine

4.3.4 Performance Analysis Engine

This engine is responsible for analysing the results obtained from the Ensemble

Engine. Results if not satisfactory is forwarded to the Feedback Analyser. The

Feedback Analyser then scrutinizes the output obtained from each of the engine in

the process.

4.4 Experimental Results

In this section, the experiment results are reported on 6 datasets, and information

on each of the datasets can be found in Table 4.1. For the ransomware multiclass

dataset which contains a total of 12 classes (11 ransomware families and 1 normal

family) all the results are shown in a class speci�c manner and separately from
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the rest of the datasets. This is because class speci�c data analysis helps to �nd

intrinsic characteristics with respect to each class.

Table 4.1: Description of Datasets Used

Dataset name #instances #features #classes

Android Dataset 1 [142] 2140 241 2

Android Dataset 2 [142] 1110 347 2

Phishing [144] 11,055 31 2

Kitsune Network

Attack Dataset [145] 7,64,137 116 2

SWaT [139] 4,44,496 51 2

Ransomware

Multiclass dataset [143] 1524 30,967 12

4.4.1 Bagging Results

Figures 4.9 and 4.10 presents the results for Bagging ensemble method for all the

datasets in terms of Accuracy, Precision and Recall. In Appendix B.1 the hyper-

parameter tuned values for the Bagging ensemble method with respect to all the

classi�ers considering all the datasets is enlisted. It is important here to note that

for the Naive Bayes (Gaussian) model, there aren't any hyper-parameters to be

tuned so GridSearch is not carried out for the model. With respect to Figure 4.9 it

can be seen that Decision Tree (DT) when taken in a Bagging ensemble emerges as

the winner (highest accuracy). Again, with respect to Figure 4.10, Support Vector

Machine (SVM) clearly dominates, as out of the 11 classes it emerges as winner for

a majority of 6 times.

4.4.2 Boosting Results

Figure 4.11 and 4.12 illustrates the results for Boosting ensemble method for all the

datasets in terms of Accuracy, Precision and Recall. The hyper-parameter tuned

values for Boosting ensemble method are enlisted in Appendix B.2 with respect to

all classi�ers considering all the datasets. With respect to both Figure 4.11 and

Figure 4.12 it can be seen that Gradient Boosting outperforms other classi�ers as

it wins for majority of the datasets (in terms of highest accuracy).
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4.4.3 Bagging-Boosting Results

Figure 4.13 and 4.14 presents the illustrations for Bagging-Boosting combination in

terms of Accuracy, Precision and Recall. All the Boosting classi�ers are enveloped

inside the Bagging ensemble method. Here, with respect to Figure 4.13, it can be

seen that Extreme Gradient Boosting (XGB) emerges as the winner (in terms of

accuracy). However, for Figure 4.14, Gradient Boosting wins for a total of 7 times

overall and emerges as the sole winner.

4.4.4 Stacking Results

Table 4.2 and Table 4.3 show the Level 1 estimators used in the Stacking ensemble

method for all datasets. In this level, a total of three models are used. Each of these

three models are the winner from Bagging, Boosting and Bagging-Boosting ensem-

ble method. As already mentioned earlier, in Level 2 a Random Forest Classi�er

is used. Illustrations for the same are shown in Figure 4.15 and 4.16.

Table 4.2: Stacking Ensemble Results

Ensemble Method: Stacking

Dataset name Level 1 estimators Accuracy Precison Recall

Support Vector Machine

Gradient BoostingAndroid Dataset 1

Bagg(Gradient Boosting)

97.67 98.64 98.22

Support Vector Machine

Extreme Gradient BoostingAndroid Dataset 2

Bagg(Hist Gradient Boosting)

89.5 90.4 89.6

Decision Tree

Extreme Gradient BoostingSWaT

Bagg(Extreme Gradient Boosting)

96.5 97.3 96.8

Decision Tree

Hist Gradient BoostingPhishing

Bagging(Light Gradient Boosting)

94.75 94.72 92.93

Decision Tree

Gradient Boosting

Security datasets

Kitsune Network Attack

Bagg(Extreme Gradient Boosting)

95.5 94.3 92.8

4.4.5 Observations

A few points have been observed during this study.

� Naive Bayes classi�er works well when the data is not normalized.
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Table 4.3: Stacking Ensemble Results for Ransomware Multiclass Dataset

Stacking Results

Level 1 classi�er Accuracy Precison Recall

Citroni

Decison Tree

95.94 92.68 99.64Gradient Boosting

Bagg(Gradient Boosting)

CryptLocker

Support Vector Machine

95.06 95.59 95.42Gradient Boosting

Bagg(Gradient Boosting)

CryptoWall

Support Vector Machine

95.6 95.42 95.42Gradient Boosting

Bagg(Gradient Boosting)

Kollah

Support Vector Machine

97.01 96.83 97.01Gradient Boosting

Bagg(AdaBoost)

Kovter

Support Vector Machine

94.17 95.94 94.88Adaboost

Bagg(Adaboost)

Locker

Support Vector Machine

94.71 94.71 94.71Light Gradient Boosting

Bagg(Gradient Boosting)

Matsnu

Decison Tree

95.95 95.95 95.95Extreme Gradient Boosting

Bagg(AdaBoost)

Pgpcoder

k-Nearest Neighbors

100 100 100Gradient Boosting

Bagg(Hist Gradient Boosting)

Reveton

Support Vector Machine

96.29 95.58 95.58Light Gradient Boosting

Bagg(Adaboost)

TeslaCrypt

k-Nearest Neighbors

99.65 99.65 99.65Adaboost

Bagg(Gradient Boosting)

Trojan-Ransom

Decison Tree

95.07 95.24 95.42Gradient Boosting

Bagg(Gradient Boosting)

� Not all set of hyper-parameters need to be tuned, grid search in general takes

a lot of time for execution in CPU. In an ideal world, with all the time

and computational resource, all hyper-parameters can be �tted into a grid.

But since, resources are limited hence, potential hyper-parameters with more

impactful role only needs to be tuned for each model.

� Boosting takes more time to execute because of its sequential nature of exe-

cution compared to Bagging.

� For Bagging ensemble methods, Support Vector Machine (SVM) emerged as

a clear winner for almost all the datasets.

� For Boosting, Gradient Boosting (GB) performs well in most of the datasets
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Figure 4.15: Stacking Results for Security Datasets
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Figure 4.16: Stacking Results for Ransomware Multiclass Datasets

considered.

� For Bagging-Boosting however, Extreme Gradient Boosting (XGB) emerged

as the winner.

4.4.6 Discussion

Ensemble learning is a relatively well-studied area in machine learning. Ensembles

are �exible in structure and composition. An ensemble can be combined with other

approaches in a seamless manner with some e�ort. It can be used not only with

traditional machine learning methods like supervised and unsupervised learning
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but also with more advanced concepts like deep learning and transfer learning. An

ensemble for supervised learning can be constructed at di�erent levels, for example

at sample level, or feature level or even at output level. Most of the research in

the literature is focused on building ensembles at feature level and at output level.

How well an algorithm works on previously unseen samples depends on the quality

of the learning process. The quality of learning depends on a number of issues such

as the choice of values of parameters and hyper-parameters of the learning model,

the quality of data used, and preprocessing techniques employed, to name a few.

The next chapter discusses a traditional feature selection method named MICC-

UD for the detection of XSS attacks. The method is based on a mutual information

and correlation based score.
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