
Chapter 5

MICC-UD: A Mutual Information

and Correlation-based Feature

Selection Method

5.1 Introduction

In feature selection, a subset of features are selected from an original set of fea-

tures in machine learning or statistics [181]. Over the years, both supervised and

unsupervised feature selection methods have been proposed. Supervised machine

learning methods have garnered tremendous popularity and usage compared to

unsupervised feature selection methods. Feature selection methods enhance the

learning process by improving model performance enabling better visualization and

understanding of the data, and better utilization of computational resources [128].

A good feature selection method requires the selected feature subset to be highly

relevant to the target class. The features among themselves on the other hand,

should have less redundancy among themselves. Feature relevance is important

because it helps in distinguishing among the target classes. Otherwise, the feature

does not play a contributing role in predicting the target class for a given test in-

stance. Too many irrelevant features may also lead to the problem of over�tting.

Unnecessary features make the learning model unnecessarily complex and di�cult

to understand. On the other hand, the candidate features in a selected subset

should be irredundant of each other because redundant or dependent features do

not contribute any additional knowledge to the learning process and as a result

may bring down model performance.
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Feature selection is an optional step before classi�cation or prediction (in case of

supervised learning). Although, an optional step, many studies in the literature

have shown that the process of feature selection helps in attaining improved clas-

si�cation performance with reduced execution time. Moreover, in domains such as

network security where detection of malicious attacks is of outmost importance in

near real time, feature selection techniques may play a major role.

5.1.1 Feature

A feature, also called an attribute or variable, essentially describes the characteris-

tics of a data point. For example, if one considers a person to be a data point, then

height, weight, facial shape, hair color or eye color may be relevant features. All

features taken collectively describe the data point for the task at hand. Features

that are computed or derived from other features are called dervied features.

Particularly, in network security, the concept of features is not that simple. This is

because from a single network packet, tens, hundreds or even thousands of features

can be extracted. From these features, several other features may be derived in

turn.

5.1.2 Related Work

In the literature, supervised feature subset selection methods are common. Opti-

mal feature subset selection is the main focal point of these methods with an aim

to achieve best possible classi�cation performance [127, 182, 183]. Unsupervised

feature selection methods are also on the rise [184�186]. However, such techniques

are out of scope for this work. Irrespective of whether any knowledge is used or not,

many �lter, wrapper, embedded and ensemble feature subset selection methods are

very popular in the literature.

Filter methods rely on statistical measures such as information gain, correlation,

and mutual information to provide an ordered list of feature ranks [127, 187, 188].

These ranking schemes help highlight which features play important roles. Irrele-

vant features are �ltered out and removed before performing the classi�cation task

since their presence degrades the quality of the feature set. Many �lter methods

are also used in conjunction with population-based heuristic search approaches to

leverage the bene�ts of competitive ranking [189�192]. Mutual Information Feature

Selection (MIFS) method is a very popular method which makes use of feature-
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feature as well as feature-class mutual information for selecting a feature subset that

maximizes the classi�cation [193]. RELIEF is another popular technique where fea-

tures are ranked according to a relevance criterion [194]; however, a threshold needs

to be set for discarding a set of the irrelevant features. On the other hand, Bhatt

et al. [195] and Cekik et al. [196] use fuzzy rough set and rough set theory respec-

tively for feature subset selection. Using variable complementary measure Meyer

and Bontempi [197] proposed Double Input Symmetrical Relevance (DISR), which

is typically a �lter feature selection method. The method tries to �nd intrinsic

features from the data which has more information to identify the target class for

a given instance. Song, Ni and Wang [198] utilized the concepts of graph the-

ory in the proposed feature subset selection algorithm called Fast Clustering-based

Feature Selection Algorithm. Firstly, features are clustered into di�erent groups

using Minimum Spanning Tree. Secondly, a measure called Symmetric Uncertainty

measure [199] is used to eliminate the irrelevant and redundant features. Lastly,

cluster-based methods are used to �nd the optimal subset of features from the orig-

inal feature set. Another interesting method is the Conditional Mutual Information

Maximization (CMIM) method [200], which tries to choose only those features that

maximize the feature-class mutual information in an iterative manner provided the

information of the selected features so far. Perhaps one of the pioneer �lter methods

which introduces the concept of feature-feature correlation is the Minimum Redun-

dancy - Maximum Relevance method (mRMR) [201]. The main idea behind is to

choose uncorrelated but highly informative features using the correlation measure.

Sequential selection methods and Heuristic search methods [129, 130, 188, 202, 203]

are two categories under Wrapper feature subset selection methods that are preva-

lent in the literature. Maldonado and Weber [204] propose a sequential backward

selection wrapper method using Support Vector Machines (SVMs) to select features

with fewer errors in a validation subset. Gang and Jin [205], use cosine similarity

along with SVMs to select relevant and irredundant features. On the other hand,

a hybrid feature selection method is proposed by Hsu et al. [206], where the �lter

methods help �nd the candidate features e�ciently and then the wrappers are re-

sponsible for providing the classi�cation results.

Ensemble feature selection methods such as [207] rely on base feature selection

methods to provide individual lists of ranked features. These individual ranked

features are then combined in some manner and the end result is �nal ranked list

of features. Tsymbal et al. [208] considers diversity measures to quantify diversity

in the ensemble feature selection techniques in conjunction with four search strate-
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gies namely ensemble forward and backward sequential selection, hill-climbing and

genetic search.

5.1.3 Limitations of the Existing Approaches

In the literature, a good number of mutual information and correlation based fea-

ture selection methods have been proposed. When considered individually, these

methods are not free from limitations. Some of the common limitations are outlined

below.

1. Univariate feature selection methods consider the correlation of a particular

feature with the target class only [209]. The feature-feature correlation is

not considered which is important because redundancy amongst the features

should be less [210, 211] or in other words, features should be independent

among themselves.

2. Correlation-based feature selection methods are helpful when the relationship

between a pair of entities (features) is linear [212, 213]. However, the rela-

tionships among the real world entities may not always be linear. Mutual

information based methods on the other hand, can also handle entities with

non-linear and complex relationships [214�216].

3. Correlation-based methods are highly sensitive to outliers which can incor-

rectly impact the selection of features [217]. On the other hand, Mutual in-

formation based methods are less sensitive to outliers and hence even in the

presence of noise/outliers such methods can identify valuable features[216].

4. Most Correlation-based methods consider the relationship between a given

feature and the target variable only. How the features behave when taken

in a combination is not taken into account, which is important because fea-

tures among themselves may be co-related. Highly co-related features do not

provide any new information.

From the above limitations it can be understood that depending only on mutual

information or only on correlation may not be su�cient to make an informed de-

cision on which features to select. To utilize the bene�ts of both, a feature selec-

tion method is proposed which combines both mutual information and correlation

measure e�ectively to obtain a comprehensive subset of relevant and irredundant

features. So, two points can be highlighted as below:
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� Select relevant features by utilizing feature-class mutual information.

� Select features which are irredundant among themselves using feature-feature

correlation.

5.1.4 Motivation

In recent times, the amount of available data has grown tremendously, in all do-

mains including network security, bioinformatics, text categorization, and computer

vision, to name a few in terms of number samples and dimensions. Although, data

are generated in large amounts, not all of the data are of sound quality and ready

for predictive data analysis. Machine learning methods, require relevant, easily

understandable, meaningful, complete and recent data to provide signi�cant in-

sights to predictive modeling. To this end, feature selection, essentially a crucial

pre-processing step. It helps a learning model simplify the learning process, and

thereby gain meaningful and necessary knowledge for predictive tasks. Although,

numerous feature selection techniques have been proposed, their ability to minimize

false positives remains a major issue, speci�cally for the network security domain.

Reducing irrelevant and redundant features from a feature set that characterizes

a network instance leads to not only better accurate predictions, but also reduces

computational time. All these reasons collectively, have motivated the development

of a feature selection technique which focuses on selecting relevant and irredundant

features, constituting an optimal feature subset, to achieve best predictive perfor-

mance.

5.1.5 Contribution

The primary contribution is in the form of a mutual information and correlation

based feature subset selection method called MICC-UD for identifying a subset

of highly relevant and irredundant feature subset so as to obtain best possible

classi�cation accuracy. The optimality of the feature subset given by MICC-UD

in terms of cardinality is substantiated using a total of 16 datasets. The proposed

method has been found e�ective in achieving best possible classi�cation accuracy

using a number of prominent ensemble classi�ers. Table 5.1 depicts the symbols

and notations used to describe the proposed method.
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Table 5.1: Symbol Table for the Proposed Method (MICC-UD)

Symbol Symbol Meaning Symbol Symbol Meaning

D Dataset R Random variable

d Dimension of dataset D S Random variable

F Original feature set of D r
Marginal probability

distribution of R

F'

Contains features whose mutual

information with target class is

greater than 0

s
Marginal probability

distribution of S

p(r,s)
Joint probability

distribution of R and S

fi Feature number i FFCorr Correlation matrix

fj Feature number j FCRel Feature class relevance

Mp Predictive model AvgCorr Average correlation

C Target class FFCClist
List containing

correlation values for features

I Mutual Information max_corr Maximum correlation

5.2 Problem Formulation

Let's assume a Dataset D, with feature set F = {f1, f2, f3, ....fd}, where d is the

dimension of the dataset. The main aim is to choose an optimal feature subset,

F ′ of relevant and irredundant features. Here, F ′ ⊆ F and F ′, is obtained to give

the best possible prediction for a predictive model Mp. Therefore, the goal is to

determine a feature subset F ′ containing features with high feature-class mutual

information, (fi, C) i.e. high relevance and low feature-feature (fi, fj) correlation

(irredundant features).

5.3 Background

The proposed method is designed by exploiting two popular yet powerful statistical

measures namely Mutual Information and Correlation. The subsequent sections

discusses brie�y on the two measures and their usefulness in feature selection.
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5.3.1 Mutual Information for Feature Selection

Let us assume that R and S are two random variables. The amount of information

that R holds about S can be termed as Mutual Information[218]. Mathematically,

this can be conveyed as in Equation 5.1.

I(R;S) =
∑
r,s

p(r, s) log
p(r, s)

p(r)p(s)
(5.1)

As expressed, p(r, s) in Equation 5.1 is the joint probability distribution function

for the random variables R and S. On the other hand, p(r) and p(s) signify the

marginal probability distributions for R and S. It is important to note that, the

Mutual Information between R and S is said to be zero if they are statistically

independent.

The idea of mutual information is originally related to entropy, which helps measure

the amount of uncertainty that one can expect in a random variable[219][220].

Equation 5.2 highlights the relation between mutual information and entropy.

I(R;S) = H(R)−H(R|S) (5.2)

Here, H(R) is the marginal entropy, which signi�es distribution speci�c information

with regards to random variable R. On the other hand, the conditional entropy

which is expressed by H(R|S) measures the uncertainty in R due to the knowledge

of S. Intuitively, this is how I(R;S) explains the connection between the random

variables R and S in terms of entropy.

For feature selection, Mutual Information is signi�cant because it helps to establish

how relevantly a particular feature (or attribute) is related to the target class. In

other words, it helps �nd how useful a feature is in predicting a target class. A

feature, say fi, which has a higher mutual information score with the target class

compared to a feature say fj, will be hence, more useful in predicting the target

class as it will have more information regarding the target.

In information theory, mutual information measures how two quantities are related.

I(R,S), the mutual information between random variables R and S measures the

uncertainty in R due to the knowledge of S as expressed in Equation 5.1.

5.3.2 Correlation Co-e�cient for Feature Selection

In feature selection, correlation which is a statistical measure is used to �nd how

two features, say fi and fj, are related to each other. Two features can be positively,
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negatively or not co-related at all, i.e., correlation value may be positive, negative

or even zero. If strongly related, the presence of either one of them in the feature

set is enough. On the other hand, presence of both features would result in a

redundant feature set. Therefore, the aim is to choose a subset of features from

the original feature set in such a way that the redundancy amongst these features

is minimum.

Pearson's correlation coe�cient (given by Equation 5.3) describes two entities say

R and S, and the linear relationship between them. The correlation coe�cient gives

a value between -1 and +1. A value of -1 signi�es strong negative correlation and

a value of +1 signi�es strong positive correlation relationship. Moreover, a value

of 0 signi�es no correlation. For MICC-UD, the correlation coe�cient's absolute

value is considered as the goal is to determine the strength of the relation only and

not whether it is positive or negative.

Corr − Coeff =

∑
(ri − r̄)(si − s̄)√∑

(ri − s̄)2
∑

(si − s̄)2
(5.3)

5.4 MICC-UD: Proposed Method

MICC-UD comprises both mutual information and correlation measures to obtain

a �nal ranked list of features. Figure 5.1 illustrates the proposed framework.
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Figure 5.1: Proposed framework for MICC-UD
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5.4.1 Preprocessing Engine

After data is gathered/generated, preprocessing tasks are carried out by the pre-

processing engine. This engine comprises of three sub-modules. Missing values, if

any in the data, are either estimated or the example is removed. Missing value

estimation is performed by averaging the column values. Next, features with low

variance are removed as they do not contribute much to the decision making pro-

cess. The third step in this engine is the normalization step, for which min-max

normalization is used.

5.4.2 Feature Selection Engine

Next in the framework is the feature selection engine comprising three sub-modules:

Relevance �nding sub-module, Irredundant feature set identi�cation sub-module

and the MICC-UD feature ranking sub-module. The purpose of the feature se-

lection engine is to select the subset of features which are highly relevant and

irredundant.

5.4.2.1 Relevance Finding

The �rst sub-module calculates feature-class mutual information using Equation

5.1. This helps �nd the highly relevant features for the prediction task. A feature

say fi is said to be highly relevant if it has high mutual information with the target

class, say C. On the other hand, the feature fi is regarded as not relevant if it has

zero mutual information with the target class C. Such a feature is dropped from

the �nal list of features as such a feature will play no role in the prediction task.

De�nition 5.1. (Feature Relevance) The relevance of a feature fi with respect to

a target class C is de�ned in terms of mutual information between the feature and

the class. Higher the mutual information score for a feature fi with C higher is its

relevance.

5.4.2.2 Irredundant Feature Identi�cation

The second sub-module is responsible for identifying the irredundant features by

calculating the feature-feature correlation. Pearson correlation is used to �nd the

dependency between two features using Equation 5.3. Pearson's correlation gives

a value between -1 and +1. However, the correlation score's absolute value is
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considered as the point of interest is the strength of the relationship between the

two features and not the magnitude (positive or negative) of the strength.

De�nition 5.2. (Feature Redundancy) For a feature fi, its redundancy is de�ned

in terms of average correlation with all other features in F i.e. f1 to fd, where i ̸= d.

Lower the average correlation score for a feature fi, lower is its redundancy.

De�nition 5.3. (Average Correlation of a feature) The average correlation of a

feature fi, is de�ned in terms of the summation of correlation values between feature

fi and feature fj (where fj ∈ F, i ̸= j and j ≤ d) divided by d, where d is the total

number of features in F .

5.4.2.3 MICC-UD Ranking of Features

The third sub-module is the heart of the framework and computes the rank of

each feature according to the Equation 5.4. The feature selection engine works in

conjunction with a parameter tuning module which is responsible for providing as

input a threshold value. Only those features whose score as given by MICC-UD is

greater than a particular threshold value are chosen for prediction.

MICC-UD(fi) =
Relevance_score(fi, C)

maxi ̸=j(|avg_Corr|(fi)− Corr(fi, fj))
(5.4)

The relevance score and average correlation (avg_Corr) mentioned in Equation 5.4

is calculated as shown below in Equation 5.5 and Equation 5.6.

Relevance_score(fi, C) = MutualInformation(fi, C) (5.5)

avg_Corr(fi) =

∑d
j=1
i ̸=j

(Corr(fi, fj))

d
(5.6)

De�nition 5.4. (MICC-UD score) The MICC-UD score is de�ned as the mutual

information correlation coe�cient for a given feature fi, which is estimated in terms

of both relevance and (mutual information) and irredundance (average correlation),

where fi should have high relevance with the target class C and at the same time

should be less redundant on the other selected features from F .

Speci�cs of MICC-UD: To assess the strength of the relationship between two

features correlation is used, speci�cally Pearson's correlation coe�cient. Higher

strength indicates that the features are highly correlated. The proposed method

uses Pearson's correlation coe�cient because of three main reasons: i) It measures

138



the relationship between two continuous variables (raw values of the variables), un-

like other correlation measures such as Spearman Rank Correlation which takes into

consideration the ranks of the data or Kendall's Tau correlation measure which con-

siders the ordinal association between two variables [221], ii) It is a widely accepted

standard measure and hence is not in�uenced by the scales of the continuous valued

features [222], iii) Pearson's correlation coe�cient is simple and fast in terms of

computational complexity (O(n)) compared to Spearman's coe�cient (O(n log n))

[223]. Additionally, as already mentioned that correlation measures (in this case the

Pearson's correlation measure) are sensitive to outliers. This drawback is overcome

with a two fold solution. First, mutual information (as it is insensitive to outliers

[216]) is introduced to the proposed score. Second, to negate out the outlier e�ects

of a feature say fj when calculating the correlation with feature fi, the average

correlation of fi is introduced and subtraction of the two entities is performed as

shown in Equation 5.4. This ensures that the outlier values of fj will not in�uence

the values of feature fi.

Initially, a feature fi's relevance with the target class is calculated using feature-

class mutual information. All features which have zero relevance are removed. So,

the candidate feature set now includes only those features which have relevance

to the target class. For each feature, say fi currently present in the candidate

set, the pairwise correlation with all the other features fj in the candidate set is

determined. The average correlation of each feature fi is next. The list FFCClist

(initially empty) consists of values which signify the di�erence between the average

correlation of feature fi and the pairwise correlations of fi with fj. From this list,

the maximum value, max_corr is chosen for fi. The �nal score for each feature is

the relevance score divided by the max_corr value of that feature. Finally, a ranked

list is obtained which consists of relevant features and their MICC-UD scores.

5.4.3 Optimal Feature Subset Identi�cation using Recursive

Feature Elimination

After obtaining the ranked list of features, next the optimal feature subset needs to

be identi�ed. Optimal subset of features mean adding features to this subset does

not increase the classi�er performance and at the same time, removing any feature

from the subset deteriorates the classi�er performance. Here, the optimal feature
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subset is obtained by recursively eliminating the features from the ranked list. The

recursive feature elimination step works primarily with �ve predictors for making

predictions. After the �nal predictions are obtained, performance of the predictors

are evaluated and if not satisfactory, any of the two engines namely preprocessing

engine or feature selection engine or the feature subsets identi�ed may have to be

�ne tuned.

5.4.4 Proposed Algorithm

MICC-UD relies on computing feature-class mutual information using functionMu-

tualInformation, feature-feature correlation using function Correlation and the pro-

posed score which calculates the �nal rank for each feature fi. The input is a dataset

D with feature set F = {f1, f2, · · · , fd}. The output is a ranked list of features

containing each feature's MICC-UD score. The MICC-UD method is described in

Algorithm 2.

For a feature fi ∈ F , the MutualInformation function computes the relevance

with the target class C in terms of Mutual Information as given in Equation 5.1.

This module is also responsible in removing features which have zero relevance

with the target class. After removing such features, a set F
′
is obtained. For two

features fi, fj ∈ F , the Correlation function computes the correlation between the

features using Equation 5.3. For each feature fi, the MICC-UD score according to

the formula given in Equation 5.4 is calculated.

Proposition 5.1. Features selected by MICC-UD are relevant.

Proof. Let F ′ be a subset of features selected by MICC-UD, where F ′ ⊆ F , i.e.,

the original set of features. Let fi ∈ F ′, be a selected feature, which is not relevant.

MICC-UD selects a feature i� it has high relevance with a given class. In other

words, fi ∈ F ′ only when the relevance, i.e., mutual information score for fi is

signi�cantly high. Therefore, the assumption contradicts. Hence, the proof. ■

Proposition 5.2. Two features fi and fj are included in F ′ if they are less redun-

dant with each other.

Proof. Let (fi, fj) ∈ F ′ be a pair of features included in the selected feature subset

F ′, and let us assume (fi, fj) are redundant. The proposed method selects a feature
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Algorithm 2: MICC-UD

Input : Dataset D, with dimension d, and feature set

F = {f1, f2, · · · , fd}
Output: Ranked list of features

Steps:

for i=1 to d, do
Calculate MutualInformation (fi, C)

end

Select feature fi with MutualInformation (fi, C) > 0

F ′ = F ′ ∪ {fi}
for i=1 to d do

for j=1 to d do
FFCorr = Calculate Correlation (fi, fj)

end

end

for each feature fi ∈ F ′, do
FCRel (fi) = Calculate MutualInformation (fi, C)

AvgCorr = average correlation of feature fi with other features

FFCClist = |AvgCorr − FFCorr|
Select for feature fi, max_corr, the maximum correlation from list

FFCClist

MICC-UD(fi) =
FCRel(fi)

max_corr(fi)

Ranked_list = MICC-UD(fi)

end

Return Ranked_list

fi only if it has lower correlation with the other selected features in F ′. From Equa-

tion 5.4, it is clear that the score value of MICC-UD is inversely proportional to the

correlation score. For a given pair of features (fi, fj) and for a given relevance score

of fi, if the correlation is high, then the overall score will be less and consequently

it will not be selected. It contradicts the assumption. Hence, the proof. ■

5.5 Complexity Analysis

The governing factor in calculating the complexity of MICC-UD is in the construc-

tion of the correlation matrix incorporating the correlation values of each feature
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fi with fj. Larger the dimension of the dataset D, larger the correlation matrix.

Thus, complexity of the algorithm largely depends on the input dataset. If the

input dataset is of dimension d, the complexity of MICC-UD is given by O(n2).

MICC-UD relies on constructing a correlation matrix for �nding irredundant fea-

tures from the original feature set. Even though, to build the correlation matrix

only those features are considered which have mutual information with target class

greater than 0, the size of the matrix is still governed largely by the dimensions of

the input data. This is why, the complexity of the proposed method is in the factor

of (n2). However, this complexity could be reduced further if the proposed method

could use parallel implementations to build the correlation matrix among the fea-

tures. Such implementations are to be incorporated in future work to enhance

MICC-UD.

5.6 Experimental Results

In this section, the datasets used to evaluate the proposed work are discussed and

the experimental results are presented. Table 5.2 gives description of the datasets

used. Special importance is the Ransomware (multiclass) dataset, where there

are a total of 11 ransomware families. To handle this special case, the dataset

is divided into 11 di�erent datasets each containing the normal class (0) and an

attack variant. So, from a single multiclass dataset, 11 di�erent datasets of varied

number of instances are obtained. In this special case hence, for detailed analysis

the results are presented in class-speci�c manner as well.

Table 5.2: Datasets Used

Sl No. Dataset No. of features No. of instances No. of classes

1 Android Dataset 1 [142] 242 2140 2

2 Android Dataset 2 [142] 348 1110 2

3 Kitsune Network Attack [145] 116 7,64,137 2

4 Phishing [144] 31 11,055 2

5 XSSD 14 6695 2

6 Ransomware (multiclass) [143] 30, 967 1524 11
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5.6.1 Results and Analysis

For all datasets, after �nding a ranked list of features according to the scores

given by MICC-UD, recursive feature elimination is performed in association with

�ve conventional well-known ensemble classi�ers, namely Adaboost [175], Gradient

Boosting [224], Extreme Gradient Boosting [225], Random Forest [226] and Extra

Trees [227]. For the experiments ensemble classi�ers are considered because such

classi�ers are known to provide stable and reliable performances compared to indi-

vidual learners [120][122]. Ensemble learning relies on the idea that decision given

by a group of experts is always better than the decision given by an individual.

Errors or misclassi�cations made by any one of the base learner in the ensemble

may be canceled out by other learners participating in the ensemble. This is how

a stable and reliable outcome is reached.

All classi�er performances are recorded in a 10-fold cross-validation setting. Elimi-

nating features recursively helps �nd an optimal subset of features for which a stable

classi�cation performance is achieved. Here, optimal subset of features means a fea-

ture set from which adding or removing features does not show any improvement

in the classi�cation performance.

Figure 5.2 illustrates the result analysis of the proposed method with respect to

three measures namely, Accuracy, Precision and Recall. From the results, it is

seen that of all the �ve classi�ers used, Extra Trees performs best for four out of

the six datasets (namely, Android Dataset 1, Phishing, XSSD and Ransomware

Multiclass Dataset). However, for Android Dataset 2 and Kitsune Network Attack

Dataset, Random Forest gives the best classi�cation performance. With regards to

the Ransomware Multiclass Dataset, the results presented in Figure 5.2 specify the

average accuracy, precision, recall for the whole dataset. Figure 5.3 presents the

class-speci�c results of the Ransomware Multiclass Dataset. From the results it can

be seen that, Extreme Gradient Boosting classi�er gives better performance than

the rest for four out of the eleven ransomware variants (namely variants Kollah,

Kovter, Locker and TeslaCrypt). Random Forest classi�er on the other hand, shows

better performance for three ransomware variants (namely, variants CryptoWall,

Pgpcoder and Trojan-Ransom).

Table 5.3 shows the top 10 ranked features for the XSSD dataset considered as

given by the proposed feature selection method. The columns Feature_name and

index gives the name of the feature and the index number in the dataset.
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Table 5.3: Top 10 Ranked Features of the XSSD Dataset

Feature_name index

Keywords 10

No. Of Lines 1

No. Of words 6

NumberOfChars 0

No. of Unicode Symb 8

Avg Char per Line 2

No. Of methods called 7

No. Of Comment Lines 4

Avg Comment per Line 5

No. Of HEX symb 9

5.6.2 Comparison with Existing Works

In Table 5.4 and Table 5.5, a comparative analysis of MICC-UD is presented with

other well-known feature selection methods such as MIFS [193], CMIM [200], and

mRMR [228][201]. For the comparative analysis, we use F1-score instead of Ac-

curacy as a measure. This is because F1-score is a better measure than Accuracy

when it comes to unbalanced datasets.

In both the tables when comparing the methods, the average F1-score and the

Number of Selected Features (NSF) using Recursive Feature Elimination is indi-

cated. For example, in Table 5.4, it can be seen that in case of Android Dataset 1,

for MICC-UD and AdaBoost classi�er an average F1-score of 98.06% is obtained

and the number of features selected to obtain the speci�ed F1-score is 32. Here it is

to be noted that for the Ransomware Multiclass dataset in Table 5.4, the F1-score

comparisons of all the methods is reported on average across all the 11 classes.

Here, in the table it can also be seen that for all the six datasets MICC-UD gives

better performance in terms of F1-score measure for almost all the classi�ers. How-

ever, in case of Android Dataset 2, XSSD and the Ransomware Multiclass datasets,

when considering the number of selected features criteria it can be seen that MIFS

outperforms MICC-UD as it selects less number of features for reporting the corre-

sponding F1-scores. Therefore, it can be said that there is a trade o� between both

the criteria as the method which gives better performance in terms of F1-score may

not always give the least number of features.

Table 5.5 reports the class-speci�c comparison of MICC-UD with three other

state of the art feature selection methods. It can be seen from the results that for
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Table 5.4: Comparison of F1-scores for all Datasets

Comparison of F1-scores for all Datasets

Adaboost
Gradient

Boosting

Extreme Gradient

Boosting

Random

Forest

Extra

Trees

F1-score NFS F1-score NFS F1-score NFS F1-score NFS F1-score NFS

Android

Dataset 1

CMIM 97.92 30 98.12 11 98.48 27 98.79 19 98.79 27

MIFS 97.03 57 97.29 6 97.36 70 97.38 70 97.41 71

MRMR 97.93 29 98.26 15 98.4 27 98.61 26 98.65 29

MICC-UD 98.06 32 98.17 4 98.63 25 98.87 14 98.89 12

Android

Dataset 2

CMIM 89.89 4 91.82 14 91.62 9 92.07 16 91.77 14

MIFS 91.07 6 91.07 5 90.89 5 91.11 6 91.17 5

MRMR 89.75 13 91.49 20 91.44 18 91.8 26 91.58 27

MICC-UD 90.13 9 92.02 16 91.98 13 92.28 16 92.17 25

Phishing

CMIM 91.51 21 92.83 7 94.72 12 94.72 12 94.89 12

MIFS 91.42 12 92.59 13 94.28 13 94.3 13 94.38 13

MRMR 91.33 6 92.7 8 94.63 12 94.67 13 94.76 12

MICC-UD 91.72 3 92.83 6 94.73 9 94.82 9 94.89 10

Kitsune Network Attack

CMIM 96.86 68 97.26 68 97.94 68 97.94 71 97.47 85

MIFS 97.44 68 97.64 68 97.87 71 97.58 71 96.46 64

MRMR 97.53 68 97.72 68 97.93 68 97.64 68 96.48 64

MICC-UD 97.45 56 97.42 81 97.95 81 98.08 81 97.66 9

XSSD

CMIM 99.58 12 99.66 10 99.84 7 99.81 7 99.83 7

MIFS 99.12 4 99.14 4 99.36 4 99.11 4 99.11 4

MRMR 99.63 15 99.67 14 99.78 11 99.78 11 99.78 11

MICC-UD 99.84 7 99.85 5 99.95 5 99.96 5 99.97 7

Ransomware

Multiclass

CMIM 94.25 25 94.48 23 94.47 23 94.63 26 94.63 25

MIFS 94.45 12 94.37 11 94.11 11 94.48 12 94.5 12

MRMR 93.85 25 94.46 23 94.61 22 94.69 21 94.64 21

MICC-UD 94.98 18 95.33 17 95.33 18 95.33 17 95.31 18

ransomware variants Kovter to Trojan-Ransom MICC-UD gives on par or better

performance for most of the predictive models considering the F1-score measure.

However, for variants Citroni to Kollah, with respect to F1-score criteria, CMIM

method outperforms MICC-UD. Nonetheless, MICC-UD gives better performance

than CMIM when considering the number of selected features criteria.

5.7 Discussion

MICC-UD helps in the identi�cation of a feature subset comprising of relevant

and irredundant features. The main idea is to choose features which have high
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relevance with the target class but low correlation values with other features. To

demonstrate the e�ectiveness of the proposed method, it is tested with 16 datasets

and the results are reported in terms of accuracy, precision and recall. The results

show that tree-based learners namely Extreme Gradient Boosting, Extra Trees and

Random Forest achieves better prediction performance for the 16 datasets consid-

ered. However, when it comes to choosing the optimal number of features and the

best predictive performance in terms of F1-score, there are trade o�s. Depending

on the situation, one needs to choose the signi�cance between the predicted perfor-

mance and the number of features selected. Additionally, a detailed comparative

analysis is conducted with three benchmark feature subset selection methods and

it is seen that MICC-UD performs better for most of the cases. Two limitations

of the proposed method however are: i) it depends on a user-threshold as input

to select the k-top features, ii) parallel implementations are not utilized to build

the correlation matrix which can be very time consuming in case of large datasets.

As future work, MICC-UD would have to be implemented in such a way that it

is totally independent of the user-input. Also, more time e�cient implementations

will have to be introduced in building the correlation matrix.

The next chapter introduces an incremental feature selection method named

INFS-MICC which is based on the foundations of MICC-UD. INFS-MICC is capa-

ble of di�erentiating between HTTP Flooding attack and normal HTTP tra�c.
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Table 5.5: Class-speci�c Comparison of F1-scores for Ransomware Multiclass Dataset

Class-speci�c Comparison of F1-scores for Ransomware Multiclass Dataset

AdaBoost
Gradient

Boosting

Extreme Gradient

Boosting

Random

Forest

Extra

Trees

Feature

Selection

Methods

F1-score NFS F1-score NFS F1-score NFS F1-score NFS F1-score NFS

Citroni

CMIM 96.46 13 96.53 16 96.51 14 96.47 9 96.48 9

MIFS 96.08 5 96.44 5 96.17 6 96.24 7 96.38 7

MRMR 96.28 11 96.3 12 96.34 9 96.26 8 96.27 7

MICC-UD 96.47 10 96.45 4 96.44 5 96.38 5 96.39 5

CryptLocker

CMIM 94.95 17 95.38 11 95.5 12 95.52 11 95.4 11

MIFS 95.04 16 95.07 7 95.14 6 95.1 8 95.21 7

MRMR 95.03 19 95.09 18 95.27 18 95.19 18 95.04 18

MICC-UD 93.49 16 93.49 9 93.48 7 93.69 7 93.74 6

CryptoWall

CMIM 95.78 38 96.26 34 96.22 37 96.15 37 96.11 37

MIFS 94.76 14 93.79 11 93.57 11 94.36 15 94.36 15

MRMR 95.22 46 95.76 26 95.78 15 95.67 16 95.59 15

MICC-UD 95.22 7 95.48 11 95.38 11 95.52 12 95.44 12

Kollah

CMIM 97.07 23 97.02 22 96.98 21 96.88 21 96.86 21

MIFS 96.45 16 96.31 15 96.14 10 96.48 17 96.46 16

MRMR 96.49 13 96.58 18 96.54 18 96.3 14 96.26 10

MICC-UD 95.53 28 95.67 28 95.73 28 95.57 27 95.57 28

Kovter

CMIM 91.77 25 91.68 13 91.62 25 92.03 25 92.05 25

MIFS 94.2 10 94.24 10 93.86 6 94.15 10 94.16 10

MRMR 91.45 34 92.24 36 92.39 36 92.52 36 92.53 37

MICC-UD 94.93 3 95 5 95.24 12 95.15 12 95.09 12

Locker

CMIM 92.2 16 92.95 30 92.82 11 93.21 40 93.11 44

MIFS 93.2 13 93.37 7 92.76 15 93.37 8 93.4 8

MRMR 89.72 21 91.31 24 91.45 29 91.7 28 91.32 27

MICC-UD 92.01 18 93.98 17 94.05 18 93.88 17 93.86 18

Matsnu

CMIM 91.26 26 91.58 22 91.74 23 91.83 23 91.92 22

MIFS 94.59 12 94.4 12 94.14 18 94.41 18 94.42 22

MRMR 91.98 41 92.39 28 92.75 26 92.89 26 92.96 26

MICC-UD 94.19 25 94.82 26 94.68 26 94.68 26 94.65 26

Pgpcoder

CMIM 99.76 10 99.8 12 99.82 13 99.76 10 99.76 7

MIFS 99.6 6 99.6 14 99.46 8 99.61 5 99.61 6

MRMR 99.58 10 99.6 10 99.62 10 99.59 10 99.58 10

MICC-UD 99.81 5 99.88 12 99.89 6 99.92 5 99.9 6

Reveton

CMIM 91.4 31 91.54 25 91.36 22 91.75 28 91.8 22

MIFS 90.6 15 90.67 11 90.36 10 90.76 11 90.76 12

MRMR 91.11 29 93.26 25 93.68 28 93.93 23 93.97 24

MICC-UD 93.37 29 93.97 20 93.87 20 93.87 20 93.77 20

TeslaCrypt

CMIM 93.78 51 93.95 37 93.98 50 94.48 50 94.53 50

MIFS 91.66 19 91.62 18 91.49 18 91.61 19 91.68 19

MRMR 93.87 25 93.94 26 94.05 27 94.33 27 94.38 27

MICC-UD 95.64 25 95.67 27 95.72 27 95.72 27 95.72 27

Trojan-Ransom

CMIM 92.35 28 92.63 27 92.68 27 92.89 28 92.92 28

MIFS 92.83 10 92.63 10 92.19 11 93.29 10 93.07 10

MRMR 91.62 28 92.6 25 92.91 25 93.21 25 93.22 25

MICC-UD 94.18 34 94.23 32 94.18 34 94.31 32 94.3 34
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