Dedicated to Wanda (25.01.2022 - 17.07.2024), Vivek and Vibhan.

DECLARATION BY THE CANDIDATE

I, Dharmaraj Deka, hereby declare that the subject matter in this thesis entitled "Nonuniform Padé based compact schemes for fluid and heat flow problems: development and application" is the record of work done by me, that the contents of this thesis did not form basis of the award of any previous degree to me or to the best of my knowledge to anybody else, and that the thesis has not been submitted by me for any research degree in any other university/institute.

This thesis is being submitted to the Tezpur University for the degree of Doctor of Philosophy in Mathematical Sciences.

Date: 29 - 11 - 2024Place: Tezpur, Assam, India

Sharmaraj Dela.

Signature of the Candidate

-0

TEZPUR UNIVERSITY

Dr. Shuvam Sen, Professor, Department of Mathematical Sciences, Tezpur University, Napaam 784028, India

3

3

3

3

3

3

3

۲

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

)

)

Phone: 03712-27-5510 E-mail: shuvam@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled, "Nonuniform Padé based compact schemes for fluid and heat flow problems: development and application" submitted to the School of Sciences of Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Mathematical Sciences is a record of research work carried out by Dharmaraj Deka under my supervision and guidance. All the help received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

V

Date: 29-11-2024 Place: Tezpur

Somal

Shuvam Sen

Acknowledgements

First and foremost, I express my sincere gratitude to my thesis supervisor, Prof. Shuvam Sen for his constant encouragement and support throughout my Ph.D. journey. I am privileged to have worked with him, without whose guidance and inspiration, this work would not have had the spirit that it possesses now. I am deeply indebted to him for all the knowledge and experience that he has shared with me. I am extremely grateful to him for the opportunities that he has given and the trouble that he has taken for me.

My gratitude extends to my doctoral committee members Prof. Munmun Hazarika and Dr. Deepjyoti Goswami for their co-operation and support. I also take this opportunity to thank Prof. Milan Nath, Head of the Department of Mathematical Sciences, all the faculty members and staff members of the Department of Mathematical Sciences, Tezpur University for providing me all the facilities to carry out my research.

I wish to acknowledge the use of facilities of the university server "USHA" and the computing facility available at Tezpur University HPC laboratory *viz.* "PARAMTEZ" sponsored by DeitY, India in collaboration with C-DAC, India. I also wish to acknowledge the use of facilities of softwares like TECHPLOT available in the department.

I would like to convey special thank my friends cum mentors Dr. Parama Dutta and Dr. Nilufar Mana Begum for all their encouragement and support during this period. Besides, I take the opportunity to especially thank all my research scholar friends in Department of Mathematical Sciences, Tezpur University.

In the same vein I will like to acknowledge the Principal, Kamrup College, Chamata under whose leadership I have served for his flexibility and warmth. On the personal level, though it is beyond the scope of any acknowledgement, I offer my revered regards to my father Mr. Kanakeswar Deka and my mother Smt. Tarulata Deka. I am deeply indebted to them for their blessings, love, patience, inspiration and special care during my studies. Here my sister Jinti Deka and my brother-in-law Vikash Sisodia deserve special mention who have always safeguarded me in every crisis. They have an immense influence on my life and work. My special appreciation goes to my close friends Hemangona, Ananya, Dana, Rupam, Ravi and Suraj, with whom I have shared some of the best moments of my life.

Finally, I would like to acknowledge everybody who is important to the successful completion of the thesis as well as express my apology that I could not mention each of them individually. And above all, I thank God for everything.

Date:

Place: Tezpur, Assam, India

Dharmaraj Deka

List of Figures

2.1	The nineteen point compact nonuniform computational stencil used	
	for discretization.	15
2.2	Nonuniform grid distribution on xy -plane for a $17 \times 17 \times 17$ grid : (a)	
	triginometrically generated with $\lambda_x = \lambda_y = -0.8$ and (b) geometri-	
	cally generated with $\alpha_x = \alpha_y = 1.1.$	23
2.3	Problem 1: Maximum error vs stretching parameter for different grid	
	sizes: (a) $c = 10^3$ and (b) $c = 10^4$	25
2.4	Problem 2: Maximum error versus iteration numbers: (a) $c = 10^3$	
	and (b) $c = 10^4$	26
2.5	Problem 5: (a) Computed solution and (b) analytical solution on the	
	plane $y = 0.5$ for $\varepsilon = 0.05$ on $33 \times 33 \times 33$ grid	33
2.6	Problem 6: Numerical solution $((a) \text{ and } (b))$ and maximum error $((c)$	
	and (d)) on the plane $z = 0.5$ computed using $41 \times 41 \times 41$ grid for	
	$\varepsilon = 0.01$ (left) and $\varepsilon = 0.005$ (right).	34
3.1	(a) Projection of nonuniform computational stencil in xy plane and	
	(b) Nonuniform computational stencil in xyt hyper-plane	42
3.2	Problem 1: Typical 161×161 nonuniform grids : (a) geometric	
	stretching and (b) centrosymetric variation (only every fourth gridline	
	along each direction are shown)	49
3.3	Problem 1: Numerical (blue) and analytical (red) contour plots of the	
	Gaussian pulse at (a) $t = 0.25$, (b) $t = 0.50$ for $a = 100$, $c_1 = c_2 = 150$	
	and at (c) $t = 1.0$, (d) $t = 1.5$ for $a = 100$, $c_1 = c_2 = 50$.	50

3.4	Problem 1: Time evolution of I_{\perp} , I_{\perp} and I_{\perp} norm errors for $a = 100$	
J.4	Problem 1: Time evolution of L_1 , L_2 and L_{∞} -norm errors for $a = 100$, $\delta t = 2.5c$, $5(a) c = c = 150$, $Pc = 2$ and (b) $c = c = 50$, $Pc = 1$	51
25	$\delta t = 2.5e - 5$ (a) $c_1 = c_2 = 150$, $Pe = 2$ and (b) $c_1 = c_2 = 50$, $Pe = 1$.	51
3.5	Problem 2: Convergence history showing maximum absolute error	
	of ψ vs iterations numbers on (a) geometrically stretched grid with	
	$\alpha_x = \alpha_y = 1.001$ and (b) trigonometrically scattered grids with $\lambda_x =$	50
	$\lambda_y = -0.6.$	53
3.6	Problem 3: Surface plots at $t = 1$ (red) and $t = 15$ (blue) for (a) u ,	
	(c) v , (e) p and numerical (red) and exact (blue) contours plots at	
	t = 15 for (b) u , (d) v , (f) p	55
3.7	Problem 4: (a) Schematic of lid-driven square cavity problem, (b)	
	typical 33×33 nonuniform centrosymmetric grid	58
3.8	Problem 4: Comparisons of steady-state velocities (a) u along the	
	vertical centreline and (b) v along the horizontal centre line with [52]	
	for $Re = 1000, 3200, 5000$ and 7500	59
3.9	Problem 4: (a) Time history of vorticity ω and (b) power spectrum	
	of u and v with phase portrait of u vs v (inset) for $Re = 8050.$	64
3.10	Problem 4: Time evolution of streamfunction and vorticity in one full	
	cycle for Re = 8050 on a 129 \times 129 grid at t = t_0 , t = $t_0 + T/3$,	
	$t = t_0 + 2T/3$ and $t = t_0 + T$ from left to right.	65
3.11	Problem 5: Schematic diagram of the configuration for flow past a	
	square cylinder problem.	66
3.12	Problem 5: Nonuniform grid generated using trigonomertic stretching	
	functions.	67
3.13	Problem 5: Streamline plots at the steady state: (a) $Re = 5$, (b)	
	$Re = 40. \ldots \ldots$	67
3.14	Problem 5: (a) Time history of C_D and C_L for $Re = 60$, (b) power	
	spectra of C_D and C_L for different Reynolds numbers	67
3.15	Problem 5: (a)-(d) Streamline patterns and (e)-(h) vortex shedding	
-	for $Re = 60$ at $t = t_0$, $t = t_0 + T_{60}/3$, $t = t_0 + 2T_{60}/3$ and $t = t_0 + T_{60}$.	68
3.16	Problem 5: Time history of (a) C_D and (b) C_L for different Reynolds	-
0.10	numbers. \ldots	68
	пишонь	00

3.17	Problem 5: Streakline patterns: (a) $Re = 60$, (b) $Re = 100$, (c)	
		71
3.18	Problem 5: Instantaneous streamfunction and vorticity contours at	
	stable periodic stage: (a)-(b) $Re = 100$ and (c)-(d) $Re = 200.$ 7	'3
3.19	Problem 6: Configuration of natural convection in thermally driven	
	square cavity problem	'4
3.20		
	(right) contours at the steady state: (a) $Ra = 10^5$, (b) $Ra = 10^6$,	
	(c) $Ra = 10^7$, (d) $Ra = 10^8$	'8
4.1	(a) Projection of nonuniform computational stencil in (r, θ) plane and	
	(b) Nonuniform computational stencil in (r, θ, t) hyper-plane 8	33
4.2	Problem 1: Exact and numerical contour plots of (a) ψ and (b)	
	ω (black: exact solution; blue: numerical solution obtained using	
	second-order accurate scheme; red: numerical solution obtained us-	
	ing third-order accurate scheme))5
4.3	Problem 2: (a) Typical 33×33 grids; exact and numerical contour	Ū
	plots of the Gaussian pulse at (b) $t = 0.25$, (c) $t = 0.50$; (d) time evo-	
	lution of L_1 (square), L_2 (circle) and L_∞ (triangle)-norm errors (black:	
	exact solution; blue: numerical solution obtained using second-order	
	accurate scheme; red: numerical solution obtained using third-order	
)6
4.4	Problem 3: (a) Schematic diagram and (b) typical 33×33 centrosym-	
	metric polar grid for flow inside a polar cavity)9
4.5	Problem 3: Contours of streamfunction (left) and vorticity (right)	
	computed with 65×65 grids: (a) $Re = 55$, (b) $Re = 350$, (c) $Re =$	
	1000, (d) $Re = 2000$, (e) $Re = 30001000$)2
4.6	Problem 3: The u and v velocities along the line $\theta = \frac{\pi}{2}$ computed	
	on grids of different sizes: (a) $Re = 55$, (b) $Re = 350$)4
4.7	Problem 3: Comparison of experimental [45] (left) and numerical	
	(right) steady-state streamfunction contours of driven polar cavity	
	problem: (a) $Re = 55$, (b) $Re = 350$)6

4.8 Problem 3: Comparisons of steady-state u and v velocity profiles π
along the radial line $\theta = \frac{\pi}{2}$ with [45]: (a) $Re = 55$, (b) $Re = 350$ 106
4.9 Problem 3: Steady-state (a) u and (b) v velocity profiles along $\theta = \frac{\pi}{2}$
for different Re values
4.10 Problem 3: Vorticity contours for different Re values along (a) the
moving wall and (b) $\theta = \frac{\pi}{2}$
4.11 Problem 3: (a) Temporal progression and (b) power spectrum of total
energy of the flow inside a polar cavity for $Re = 5000108$
4.12 Problem 4: (a) Problem setup and (b) typical noununiiform polar
grid for heat transfer in horizontal annulus
4.13 Problem 4: Steady-state isotherms at $Ra = 4.7 \times 10^4$, $Pr = 0.706$:
(a) experimental solution [85] and (b) numerical solution
4.14 Problem 4: Steady-state isotherms and streamlines: (a) $Ra = 2.38 \times$
10 ³ , (b) $Ra = 9.50 \times 10^4$, (c) $Ra = 6.19 \times 10^4$, (d) $Ra = 1.02 \times 10^5$. 112
4.15 Problem 4: (a) Configuration of the problem and (b) typical 65×97
nonuniform grid
4.16 Problem 4: Distribution of (a) vortcity and (b) local Nusselt number
at steady state along the cylinder surface for $Re = 10115$
4.17 Problem 4: Steady-state vorticity contours (left) and isotherms (right):
(a) $Re = 10$, (b) $Re = 20$, (c) $Re = 40$
4.18 Problem 4: Comparison of (a) surface vorticity distribution for $Re =$
10, 20 and 40 and (b) local Nusselt number distribution for $Re = 10$,
20 and 45 with existing numerical results $[7, 31]$
4.19 Problem 4: Evolution of vorticity (left) and isotherms (right) for
Re = 100 at (a) $t = 0.5$, (b) $t = 25$, (c) $t = 50$, (d) $t = 75$, (e) $t = 90$,
(f) $t = 100$, (g) $t = 250$
4.20 Problem 4: Temporal evolution of (a) C_D , (b) C_L , (c) (\overline{Nu}) at the
cylinder surface, (d) power spectra of C_D and C_L for $Re = 100, 140$
and 200

	Problem 4: (a) Distribution of local Nusselt number on the cylinder surface for $Re = 100, 140, 200$ and (b) comparison of local Nusselt number distribution over the cylinder surface for $Re = 200$ with re- sults from [109, 183]
5.1	(a) Flow configuration and (b) typical 61×81 nonuniform grid with
	$\lambda_{\theta} = 0.6. \dots $
5.2	Geometrcial parameters
5.3	Steady-state steamline (left) and vorticity (right) contours: (a) $Re =$
	10, (b) $Re = 20$, (c) $Re = 40$
5.4	(a) Evolution of C_D with time for $Re = 10, 20$ and 40; (b) Distribution
	of vortcity at steady state along the entire surface of the cylinder for
	$Re = 40. \ldots \ldots$
5.5	Comparison of the surface distribution of vorticity for low Re 's with
	existing results $[31, 40]$
5.6	Evolution of steamlines for $Re = 100$ at (a) $t = 2.5$, (b) $t = 15$, (c)
	t = 40, (d) $t = 60$, (e) $t = 70$, (f) $t = 80$, (g) $t = 90$, (h) $t = 100$, (i)
	t = 150 and (j) $t = 200137$
5.7	(a) Temporal evolution of C_D and C_L ; (b) Power spectrum of C_D and
	C_L for $Re = 100.$
5.8	Temporal evolution of (a) C_D and (b) C_L for $Re = 200$ and 300 138
5.9	Steady-state streamlines (left), vorticity contours [negative values are
	represented by dotted lines] (middle) and streaklines (right): (a) $Re =$
	100, (b) $Re = 200$, (c) $Re = 300$
5.10	Comparison between the instantaneous streaklines for $Re = 105$ cap-
	tured in the (a) experimental study of Taneda [153] and (b) present
	computation. $\ldots \ldots 142$
5.11	(a) Power spectrum of C_D and C_L for $Re = 200$ and 300; (b) Phase
	portrait of C_L vs C_D for different Re 's

5.12	The bulge phenomenon: (a) Time evolution of surface vorticity and (b) streamlines at $t = 2.0$ for $Re = 300$; (c) Time evolution of surface vorticity and (d) streamlines at $t = 1.3$ for $Re = 550$
5.13	The secondary eddy phenomenon: Streamlines for $Re = 550$ at (a) $t = 1.5$ and (b) $t = 3.0. \ldots 145$
5.14	Experimental streamlines (top half) from [10] and numerically esti- mated streamlines (bottom half) at nondimensional time $t = 2.5$: (a) $Re = 300$, (b) $Re = 550 \dots 145$
5.15	The radial velocity distribution on $\theta = 0$ line behind the cylinder at different instants of the flow and comparison with experimental results from [10]: (a) $Re = 550$, (b) $Re = 3000146$
5.16	Evolution of steamlines for $Re = 1000$ at (a) $t = 0.5$, (b) $t = 1.0$, (c) $t = 1.25$, (d) $t = 1.5$, (e) $t = 2.0$ and (f) $t = 2.5$
5.17	Experimental streamlines (top half) from [99] and numerically esti- mated streamlines (bottom half) for $Re = 3000$ at (a) $t = 1.0$, (b) t = 1.5, (c) $t = 2.0$ and (d) $t = 2.5$
5.18	Time history of surface vorticity: (a) $Re = 1000$, (b) $Re = 3000$ 149
5.19	Evolution of streamlines for $Re = 5000$ at (a) $t = 1.0$, (b) $t = 1.15$, (c) $t = 1.5$ and (d) $t = 2.0$ with experimental snapshots from [10] wherever available
5.20	Evolution of streamlines for $Re = 9500$ at (a) $t = 1.0$, (b) $t = 1.5$ and (c) $t = 2.0$ with experimental snapshots from [10]
5.21	Streamlines for $Re = 5000$ at time $t = 2.5$: comparison with (a) experimental study [10] and numerical studies (b) Kalita and Sen [72], (c) Kalita and ray [69] and (d) Sanyashiraju and Manjula[126]. 151
5.22	(a) Distribution of surface vorticity for $Re = 5000$ at different in- stants and (b) the radial velocity distribution on $\theta = 0$ line behind the cylinder and comparison with numerical and experimental results from [10, 73, 87] for $Re = 5000$ at nondimensional time $t = 3.0.$ 152

List of Tables

2.1	Test problem 1: Maximum error of ϕ for different scheme on grids of	
	different sizes and order of convergence	25
2.2	Test problem 2: Comparison of maximum error and order of conver-	
	gence of different methods, $1 \le c \le 10^3$	27
2.3	Test problem 2: Maximum error and order of convergence for $c = 10^4$.	27
2.4	Test problem 3: Comparison of maximum error and order of conver-	
	gence of different schemes for different ε	29
2.5	Test problem 4: Comparisons of maximum error and order of conver-	
	gence of different schemes	30
2.6	Test problem 5: Comparisons of maximum error, order of convergence	
	and relative CPU time	32
2.7	Test problem 6: Computed maximum error and order of convergence	
	for different ε	33
2.8	Test problem 7: Comparison of maximum error and order of conver-	
	gence of different methods	36
2.9	Test problem 8: Maximum error of ϕ for different scheme on grids of	
	different sizes and order of convergence.	37
3.1	Problem 1: L_1 , L_2 and L_{∞} -norm errors of ϕ at different grids and	
	spatial rate of convergence along with relative CPU time	49
3.2	Problem 1: L_1 , L_2 and L_{∞} -norm errors of ϕ for different time spacing	
	and temporal order of convergence.	51
3.3	Problem 2: L_2 -norm errors for ψ , ω and \mathcal{T} with relative CPU time	
	for different grid sizes.	53
	-	

3.4	Problem 3: L_2 -norm errors for u, v and p for different grid sizes along	
	with relative CPU time	56
3.5	Problem 4: L_1 and L_2 -norm difference in streamfunction and per-	
	ceived order of convergence in space.	58
3.6	Problem 4: L_1 and L_2 -norm difference in vorticity and perceived order	
	of convergence in space.	59
3.7	Problem 4: Strength and position of the centre of primary vortex for	
	different Reynolds numbers.	60
3.8	Problem 4: Strength and position of the centre of secondary bottom	
	vortices for different Reynolds numbers.	61
3.9	Problem 4: Strength and position of the centres of secondary top left	
	and tertiary bottom right vortices for different Reynolds numbers.	62
3.10	Problem 5: Comparison of Recirculation length (L/D) at steady	
	states for different Reynolds numbers.	70
3.11	Problem 5: Comparison of flow parameters at unsteady state for	
	different Reynolds numbers.	72
3.12	Problem 6: L_2 -norm difference in streamfunction, vorticity and tem-	
	perature with their perceived order of convergence in space for differ-	
	ent Rayleigh numbers.	76
3.13	Problem 6: Comparison of various relevant flow parameters computed	
	using different schemes for different Rayleigh numbers	77
11	Duckleys 1. I. I. and I. many among of a stability and a stability of the	
4.1	Problem 1: L_1 , L_2 and L_{∞} -norm errors of ψ and ω at different grids	
	and spatial rate of convergence computed using the second-order ac- curate scheme	94
4.0		94
4.2	Problem 1: L_1 , L_2 and L_{∞} -norm errors of ψ and ω at different grids	
	and spatial rate of convergence computed using the third-order accu-	0.4
	rate scheme.	94
4.3	Problem 2: L_1 , L_2 and L_{∞} -norm errors of ϕ at different grids and	
	spatial rate of convergence, computed using second-order accurate	
	scheme	97

4.4	Problem 2: L_1 , L_2 and L_{∞} -norm errors of ϕ at different grids and spa-
	tial rate of convergence, computed using third-order accurate scheme. 97
4.5	Problem 2: L_1 , L_2 and L_{∞} -norm errors of ϕ at different values of
	δt and temporal rate of convergence, computed using second-order
	accurate scheme.
4.6	Problem 2: L_1 , L_2 and L_{∞} -norm errors of ϕ at different values of δt
	and temporal rate of convergence, computed using third-order accu-
	rate scheme
4.7	Problem 3: L_1 and L_2 -norm difference in streamfunction and per-
	ceived order of convergence in space
4.8	Problem 3: L_1 and L_2 -norm difference in vorticity and perceived order
	of convergence in space
4.9	Problem 3: Strength and position of the centre of primary vortex for
	different Reynolds numbers
4.10	Problem 3: Strength and position of the centre of secondary vortices
	for different Reynolds numbers
4.11	Problem 4: Comparison of average nusselt number (\overline{Nu}) computed
	using different schemes for different Rayleigh numbers
4.12	Problem 4: Comparison of steady-state wake length, drag coefficient
	and average Nusselt number for different <i>Re.</i>
4.13	Problem 4: Comparison flow parameters C_D , C_L , St and \overline{Nu} for
1.10	different $Re. \ldots \ldots$
5.1	Grid-independence of the numerical results on three different grids
	for steady-state flows
5.2	Comparison of L , θ_s and C_D at steady state for different $Re. \ldots 134$
5.3	Comparison of numerical values of l_{max} and $x_{l_{max}}$ for various Re and
	t with experimental results from [10] (within the parenthesis) 136
5.4	Comparison of Strouhal number, drag coefficient and lift coefficient
	of steady periodic flow for $Re = 100, 200$ and $300. \dots $
5.5	Effect of domain modification on wake length an separation angle at
	different times for $Re = 5000.$