
Chapter 2

Compact discretization of 3D generalized

convection-diffusion equation with variable

coefficients on nonuniform grids

2.1 Introduction

In this chapter, we lay our emphasis on the steady generalized CDE in three

dimensions. For the transport variable φ(x, y, z) over a cuboidal region Ω ⊂ R
3, the

CDE (1.4) in steady form is written as

−∇ · (D∇φ) +∇ · (Cφ) = s (2.1)

with boundary condition

φ = φb on ∂Ω. (2.2)

We work with a fully populated positive definite diffusion matrix D which along

with C in three dimensions (3D) is given by

D =




a1 −d1/2 −d3/2

−d1/2 a2 −d2/2

−d3/2 −d2/2 a3


 , C =




c1

c2

c3


 .

As mentioned in the previous chapter for the unknown function φ(x, y, z) in equa-

tion (1.4), we assume the variable coefficient functions ai(x, y, z), di(x, y, z), ci(x, y, z),

i ∈ {1, 2, 3} and the forcing function s(x, y, z, φ) to have sufficient smoothness in Ω.
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Using mathematical simplification, we can write the nonconservative form of

equation (1.4) as

(
−a1∂xx−a2∂yy−a3∂zz+d1∂xy+d2∂yz+d3∂zx+ e1∂x+ e2∂y+ e3∂z

)
φ = f (2.3)

where

e1 = −
∂a1
∂x

+
1

2

(
∂d1
∂y

+
∂d1
∂z

)
+ c1,

e2 = −
∂a2
∂y

+
1

2

(
∂d2
∂z

+
∂d2
∂x

)
+ c2,

e3 = −
∂a3
∂z

+
1

2

(
∂d3
∂x

+
∂d3
∂y

)
+ c3

and

f = s−

(
∂c1
∂x

+
∂c2
∂y

+
∂c3
∂z

)
φ.

The importance and relevance of CDE has been thoroughly discussed in Chap-

ter 1. It is well known that CDE finds applications in a diverse range of processes

as it correctly models convection and diffusion of various physical quantities. CDE

is well established in areas as diverse as biology, environmental science, financial

mathematics, and even sociology, in addition to chemical and physical systems.

The underlying system in many of these cases is three dimensional. However, due

to the prohibitive cost of computing, attempts to simulate the solution of CDE are

frequently limited to one dimension (1D) or two dimensions (2D). Another simplifica-

tion assumption often imposed on CDE is that the diffusion matrix instead of being

fully populated is considered to be an identity matrix. It is well documented in the

literature that the generalized CDE with mixed derivatives plays a significant role

in domains like mathematical biology [65] and financial mathematics [37, 64, 66].

Mixed derivatives signify correlations between the underlying processes. Further,

while applying coordinate transforms to CDE on nonrectangular domains one must

deal with the mixed-derivative terms in the transformed equation [116, 150]. How-

ever, the presence of second-order mixed-derivative terms introduces new challenges

towards the solvability of the generalized CDE.

The FD method has traditionally been recognized as the most promising numeri-
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cal methodology for solving CDE and is widely employed [2, 3, 33, 57, 104, 107, 108].

The enduring popularity of these methods can be gauged from continuous efforts in

the literature to develop even more efficient compact schemes [130, 131, 156, 160].

Discretization strategies are frequently established by analyzing one dimensional

(1D) and two dimensional (2D) CDE, and their derivation to 3D generalized CDE

may be involved. The pioneering work on 3D generalized CDE was carried out by

Ananthakrisnaiah et al. [3] by generalizing the strategy developed in [2]. The au-

thors created a fourth-order accurate FD method on uniform grids employing 27 grid

points in the presence of the cross-derivative terms in this study. That was the first

time a compact system of 27 points for 3D CDE was reported. This benchmark work

inspired several breakthroughs in FD discretizations especially for the 3D Poisson

equation [55, 108, 149, 152, 179]. In their work, Mohanty and Jain [108] developed

a fourth-order compact scheme for solving system of nonlinear elliptic PDE with

variable coefficients. The authors put their system through its paces on a variety

of problems, including 3D Poisson equation and steady-state viscous incompressible

N-S equations in polar coordinates. The duo successfully yielded oscillation-free

and accurate solutions for large values of Re even in the vicinity of singularity. In

the recent two decades, this has been followed by further advancement of 3D com-

pact techniques for nonlinear and quasi-linear elliptic PDE [104, 105, 106]. In 1998,

Zhang [179] made an effort to investigate generalized dominion for problems and

introduced an explicit fourth-order FD compact scheme for 3D CDE with variable

convection coefficients. For low and moderate Re values (0 ≤ Re ≤ 103), the scheme

returned stable and high-accuracy solutions. The computed accuracy was reported

to reduce to second-order for large Re (≥ 104), yet carrying higher accuracy than

the first-order upwind difference scheme then existed. Zhang [180], in 1998, further

came up with a fourth-order compact FD scheme with the multigrid algorithm to

solve the 3D Poisson equation. In the subsequent years, Ge [49] and Ge et al. [51]

used the similar approach to tackle 3D Poisson equation. Earlier in this century,

FD schemes for 3D linear elliptic PDE were also put forth [28, 29]. High accuracy

solution of 3D CDE using multigrid strategy was also reported in the work of Gupta

and Zhang [56] and Wang and Zhang [166]. Recent years have witnessed several

11



developments of FD based compact schemes for the 3D CDE. Among them, special

attention should be paid to the work of Zhang et al. [182], Karaa [79], Ma and Ge

[101], Ge et al. [50], Mohamed et al. [103] and Ma and Ge [100]. However, as previ-

ously stated, CDE in the presence of mixed derivative terms has not yet been utterly

explored. Here, it is important to cite a few recent works on 2D CDE with mixed

derivatives [42, 80, 94, 131]. But similar studies on 3D CDE with mixed derivative

[3, 81, 104] has gained lesser attention. Fournié and Karaa [42] in 2006 solved el-

liptic partial differential equation (PDE) in the presence of mixed derivatives and

constant coefficients. The authors used the PDE itself as an auxiliary relation to

derive a 9 point fourth-order compact finite difference scheme. The scheme was

limited to the unit diffusion coefficient. In another work, by developing a fourth-

order compact FD scheme using polynomial approximation, Karaa [80] solved 2D

parabolic and elliptic problems with mixed derivatives and variable coefficients, yet

again with the same restrictions on diffusion coefficients and mixed derivative co-

efficients as in [42]. Later on, the idea was expanded upon by Karaa and Othman

[81] for time-dependent 3D parabolic problems in the presence of mixed derivatives.

Along with FD compact systems, researchers have developed a number of other no-

table approaches to deal with steady CDE in 3D, both with [4, 97, 124, 141] and

without [165] mixed derivatives, throughout the years.

It is observed that at times uniform grid-based systems efficiently generate highly

accurate, stable numerical solutions but fall short of exhibiting the advantages of

nonuniform grids. This is especially true in the higher gradient regions of the flow

variables where it is essential to resolve small scales. One such conundrum ap-

pears when CDE becomes convection-dominated or singularly perturbed. Solutions

of singularly perturbed CDE generally consist of some boundary layers and/or in-

ner layers. Only by setting up very finer meshes can these high gradient regions

be resolved, which escalates the computational cost of any discretization on uni-

form grids and reduces the precision of the solution. One of the more effective

methods of efficient computation for these kinds of problems is to spread out the

grids in regions of low gradient and cluster them in regions with higher gradient.

Not only it could resolve smaller scales accurately, substantial reduction in compu-
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tation time could also be seen. Hence, for many flow configurations it is recom-

mended to use nonuniform meshes. One way to circumvent the use of computation

on the nonuniform grid is to use a suitable transformation from the physical do-

main to the numerical domain to capture the boundary layers efficiently. This

approach, followed elsewhere [131, 181], brings in its own set of advantages and

disadvantages and will not be adopted here. Furthermore, strategies developed on

nonuniform grids report back higher accuracy with the adoption of uniform spac-

ing. Thus, in cases where schemes could be developed on nonuniform grids, they

tend to be the sought after abstraction. Although, over the years, for 2D CDE a

plethora of transformation-free compact schemes are developed on nonuniform grids

[16, 30, 46, 47, 77, 78, 86, 120, 127, 150, 156, 158, 159, 160] but sufficient atten-

tion has not been provided towards the development of compact discretization for

3D CDE in the nonuniform grid. Here, it is important to mention that recently

Ge et al. [51] proposed the first transformation-free higher order compact scheme

and multigrid method to solve the 3D Poisson equation on nonuniform grids. The

scheme reported accuracy of order four under uniform grid setting and third to

fourth-order accuracy on nonuniform grids. To the best of the authors knowledge,

no compact schemes could be found in the literature which approximates 3D CDE

with cross-derivative terms on nonuniform grids.

Having recognized the challenges and potential, the main motivation of this

chapter is to develop compact discretization of the 3D generalized CDE (2.3) on

nonuniform grids without coordinate transformation. The present scheme is em-

ployed to eight diverse numerical test cases with varied complexities and the results

are compared to those available in the literature.

2.2 Numerical scheme development

We carry out the discretization process on a nonuniform 3D grid. Thus, we first

consider a cuboidal domain Ω = [ax, bx]×[ay, by]×[az, bz] in R
3. We take refinements
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for the intervals [ax, bx], [ay, by] and [az, bz] as

ax = x1 < x2 < x3 < · · · < xnx
= bx,

ay = y1 < y2 < y3 < · · · < yny
= by,

az = z1 < z2 < z3 < · · · < znz
= bz ,

where xi’s, i ∈ {1, 2, 3, . . . , nx}, yj’s, j ∈ {1, 2, 3, . . . , ny} and zk’s, k ∈ {1, 2, 3, . . . , nz}

need not be equally spaced. A grid generated in this fashion can be witnessed in

Fig. 2.1. Along x-, y- and z-directions the mesh sizes are given by

hxi = xi+1 − xi, i ∈ {1, 2, 3, . . . , nx − 1},

hyj = yj+1 − yj, j ∈ {1, 2, 3, . . . , ny − 1},

hzk = zk+1 − zk, k ∈ {1, 2, 3, . . . , nz − 1}.

These grid spacing varies with node and to cutback the complications of the scheme

furthermore, we define

αxi = hxi+1
/hxi, i ∈ {1, 2, 3, . . . , nx − 2},

αyj = hyj+1
/hyj , j ∈ {1, 2, 3, . . . , ny − 2},

αzk = hzk+1
/hzk , k ∈ {1, 2, 3, . . . , nz − 2}.

Although αxi, i ∈ {1, 2, 3, . . . , nx − 2}, αyj , j ∈ {1, 2, 3, . . . , ny − 2} and αzk , k ∈

{1, 2, 3, . . . , nz − 2} are arrays of real numbers and their values vary with change in

grid points, we shall drop the suffixes i, j and k from αxi, αyj and αzk for brevity

and shall refer them as αx, αy and αz respectively in the subsequent sections of

the chapter. It should also be mentioned that whenever the values αx, αy and αz

become unity the mesh turns to be a uniform one.

First and second-order finite difference operators in the x-direction, δx and δ2x,

are defined as

δxφi,j,k =
1

hxi + hxi−1

(φi+1,j,k − φi−1,j,k) (2.4)

and

δ2xφi,j,k =
2

hxi + hxi−1

[
φi+1,j,k

hxi
+
φi−1,j,k

hxi−1

−

(
1

hxi
+

1

hxi−1

)
φi,j,k

]
(2.5)

respectively, where φi,j,k = φ(xi, yj, zk). For the sufficiently smooth transport vari-

able φ(x, y, z), the first and second-order partial derivatives, ∂xφ and ∂xxφ respec-
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Fig. 2.1: The nineteen point compact nonuniform computational stencil used for discretiza-

tion.

tively, along the x-direction, at a point (xi, yj, zk) lying inside the reference cube can

be approximated using the Taylor series expansion as

∂xφi,j,k = δxφi,j,k −
1

2

(
hxi − hxi−1

)
∂xxφi,j,k −

1

6

(
h3xi + h3xi−1

hxi + hxi−1

)
∂xxxφi,j,k

−
1

24

(
h4xi − h4xi−1

hxi + hxi−1

)
∂xxxxφi,j,k +O

(
h5xi + h5xi−1

hxi + hxi−1

) (2.6)

and

∂xxφi,j,k = δ2xφi,j,k −
1

3

(
hxi − hxi−1

)
∂xxxφi,j,k −

1

12

(
h3xi + h3xi−1

hxi + hxi−1

)
∂xxxxφi,j,k

−
1

60

(
h4xi − h4xi−1

hxi + hxi−1

)
∂xxxxxφi,j,k +O

(
h5xi + h5xi−1

hxi + hxi−1

)
.

(2.7)

From equation (2.6), it is evident that

∂xxφi,j,k = δxφxi,j,k −
1

2

(
hxi − hxi−1

)
∂xxxφi,j,k −

1

6

(
h3xi + h3xi−1

hxi + hxi−1

)
∂xxxxφi,j,k

−
1

24

(
h4xi − h4xi−1

hxi + hxi−1

)
∂xxxxxφi,j,k +O

(
h5xi + h5xi−1

hxi + hxi−1

)
.

(2.8)
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As our intention is to derive the generalized version of HOC formulation advo-

cated in the work of Sen [130], we see from the above equations that the difference

operator (2δ2xφi,j,k − δxφxi,j,k) carries a first-order truncation error for the second-

order derivative on nonuniform grid vis-a-vis its fourth-order truncation error in

uniform grid and is given by

∂xxφi,j,k = (2δ2xφi,j,k−δxφxi,j,k)−
1

6
(hxi −hxi−1

)∂xxxφi,j,k+O

(
h4xi − h4xi−1

hxi + hxi−1

)
. (2.9)

This necessitates a further approximation of ∂xxxφi,j,k in equation (2.9) and is carried

out using equation (2.6) to arrive at

∂xxφi,j,k =2

(
h2xi − hxihxi−1

+ h2xi−1

h2xi + h2xi−1

(2δ2xφi,j,k − δxφxi,j,k)

−
hxi − hxi−1

h2xi + h2xi−1

(δxφi,j,k − φxi,j,k)

)
+

1

12
(hxi − hxi−1

)2∂xxxxφi,j,k

+O

(
(hxi − hxi−1

)(2h4xi − 2h3xihxi−1
+ 3h2xih

2
xi−1

− 2hxih
3
xi−1

+ 2h4xi−1
)

(h2xi + h2xi−1
)

)
.

(2.10)

The discretization of ∂xxφi,j,k in equation (2.10) reports a only second-order trun-

cation error on nonuniform grid but reverts to fourth-order accurate HOC scheme

given in Sen [130] for uniform grids. As far as we are aware, it is the simplest

generalization of Padé based compact scheme to nonuniform grids. Despite having

second-order truncation accuracy, we advocate the above numerical discretization

because of excellent numerical characteristics of (2δ2xφi,j,k − δxφxi,j,k) in the context

of CDE as documented earlier [130].

Analogously, along y- and z-direction we can approximate

∂yyφi,j,k =2

(
h2yj − hyjhyj−1

+ h2yj−1

h2yj + h2yj−1

(2δ2yφi,j,k − δyφyi,j,k)

−
hyj − hyj−1

h2yj + h2yj−1

(δyφi,j,k − φyi,j,k)

)
+

1

12
(hyj − hyj−1

)2∂yyyyφi,j,k

+O

(
(hyj − hyj−1

)(2h4yj − 2h3yjhyj−1
+ 3h2yjh

2
yj−1

− 2hyjh
3
yj−1

+ 2h4yj−1
)

(h2yj + h2yj−1
)

)

(2.11)
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and

∂zzφi,j,k =2

(
h2zk − hzkhzk−1

+ h2zk−1

h2zk + h2zk−1

(2δ2zφi,j,k − δzφzi,j,k)

−
hzk − hzk−1

h2zk + h2zk−1

(δzφi,j,k − φzi,j,k)

)
+

1

12
(hzk − hzk−1

)2∂zzzzφi,j,k

+O

(
(hzk − hzk−1

)(2h4zk − 2h3zkhzk−1
+ 3h2zkh

2
zk−1

− 2hzkh
3
zk−1

+ 2h4zk−1
)

(h2zk + h2zk−1
)

)

(2.12)

respectively. The mixed derivatives can be approximated as

∂xyφi,j,k =δxφyi,j,k + δyφxi,j,k − δxδyφi,j,k +
1

4
(hxi − hxi−1

)(hyj − hyj−1
)∂xxyyφi,j,k

+O

(
(h3xi + h3xi−1

)(hyj − hyj−1
)

hxi + hxi−1

,
(hxi − hxi−1

)(h3yj + h3yj−1
)

hyj + hyj−1

)
,

(2.13)

∂yzφi,j,k =δyφzi,j,k + δzφyi,j,k − δyδzφi,j,k +
1

4
(hyj − hyj−1

)(hzk − hzk−1
)∂yyzzφi,j,k

+O

(
(h3yj + h3yj−1

)(hzk − hzk−1
)

hyj + hyj−1

,
(hyj − hyj−1

)(h3zk + h3zk−1
)

hzk + hzk−1

)

(2.14)

and

∂zxφi,j,k =δzφxi,j,k + δxφzi,j,k − δzδxφi,j,k +
1

4
(hzk − hzk−1

)(hxi − hxi−1
)∂zzxxφi,j,k

+O

(
(hxi − hxi−1

)(h3zk + h3zk−1
)

hzk + hzk−1

,
(h3xi + h3xi−1

)(hzk − hzk−1
)

hxi + hxi−1

)
.

(2.15)

Having found the first-order, second-order and cross-derivative terms on nonuni-

form grids, we can express equation (2.3) around the central node (i, j, k) in the

discrete form as follows,

[Aφ]i,j,k = fi,j,k. (2.16)
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Here, the discrete operator A is defined as

[Aφ]i,j,k =−

(
2A1δ

2
x + 2A2δ

2
y + 2A3δ

2
z +

A4

hxi−1

δx +
A5

hyj−1

δy +
A6

hyj−1

δz

+ d1δxδy + d2δyδz + d3δzδx

)
φi,j,k

+

(
A1δx + d1δy + d3δz +

A4

hxi−1

+ e1

)
φxi,j,k

+

(
A2δy + d1δx + d2δz +

A5

hyj−1

+ e2

)
φyi,j,k

+

(
A3δz + d2δy + d3δx +

A6

hzk−1

+ e3

)
φzi,j,k

(2.17)

where

A1 =
2a1(1− αx + α2

x)

(1 + α2
x)

, A2 =
2a2(1− αy + α2

y)

(1 + α2
y)

, A3 =
2a3(1− αz + α2

z)

(1 + α2
z)

,

A4 =
2a1(1− αx)

(1 + α2
x)

, A5 =
2a2(1− αy)

(1 + α2
y)

, A6 =
2a3(1− αz)

(1 + α2
z)

.

The values of Ai, i ∈ {1, 2, . . . , 6}, varies node to node in case of grids with nonregu-

lar spacings. Note that for uniform grids they remain fixed as αx, αy, and αz remain

constant throughout. Utilizing the operators δx, δy, δz, δ
2
x, δ

2
y , and δ2z we achieve

the following compact formulation for generalized 3D CDE (2.3) on a nineteen point

stencil, shown in Fig. 2.1, as

1∑

lx=−1

1∑

ly=−1

1∑

lz=−1

Âi+lx,j+ly,k+lzφi+lx,j+ly,k+lz = Fi,j,k, (2.18)

with the coefficients

Âi,j,k = 4

(
A1

αxh2xi−1

+
A2

αyh2yj−1

+
A3

αzh2zk−1

)

Âi+1,j,k = −
1

h2xi−1
(1 + αx)

(
4A1

αx
+ A4

)
, Âi−1,j,k = −

1

h2xi−1
(1 + αx)

(4A1 + A4) ,

Âi,j+1,k = −
1

h2yj−1
(1 + αy)

(
4A2

αy
+ A5

)
, Âi,j−1,k = −

1

h2yj−1
(1 + αy)

(4A2 + A5) ,

Âi,j,k+1 = −
1

h2zk−1
(1 + αz)

(
4A3

αz
+ A6

)
, Âi,j,k−1 = −

1

h2zk−1
(1 + αz)

(4A3 + A6) ,

Âi−1,j+1,k = Âi+1,j−1,k = −Âi−1,j−1,k = −Âi+1,j+1,k =
d1

hxi−1
hyj−1

(1 + αx)(1 + αy)
,

Âi,j−1,k+1 = Âi,j+1,k−1 = −Âi,j+1,k+1 = −Âi,j−1,k−1 =
d2

hyj−1
hzk−1

(1 + αy)(1 + αz)
,

Âi+1,j,k−1 = Âi−1,j,k+1 = −Âi+1,j,k+1 = −Âi−1,j,k−1 =
d3

hxi−1
hzk−1

(1 + αx)(1 + αz)
,
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and

Fi,j,k =fi,j,k −

(
A4

hxi−1

+ c1

)
φxi,j,k −

(
A5

hyj−1

+ c2

)
φyi,j,k −

(
A6

hzk−1

+ c3

)
φzi,j,k ,

−
A1

hxi−1
(1 + αx)

(
φxi+1,j,k

− φxi−1,j,k

)
−

d1
hyj−1

(1 + αy)

(
φxi,j+1,k

− φxi,j−1,k

)

−
d3

hzk−1
(1 + αz)

(
φxi,j,k+1

− φxi,j,k−1

)
−

A2

hyj−1
(1 + αy)

(
φyi,j+1,k

− φyi,j−1,k

)

−
d1

hxi−1
(1 + αx)

(
φyi+1,j,k

− φyi−1,j,k

)
−

d2
hzk−1

(1 + αz)

(
φyi,j,k+1

− φyi,j,k−1

)

−
A3

hzk−1
(1 + αz)

(
φzi,j,k+1

− φzi,j,k−1

)
−

d2
hyj−1

(1 + αy)

(
φzi,j+1,k

− φzi,j−1,k

)

−
d3

hxi−1
(1 + αx)

(
φzi+1,j,k

− φzi−1,j,k

)
.

Equation (2.18) is the fully discretized compact scheme which is capable of solv-

ing the generalized 3D CDE on nonuniform grids. The scheme utilizes the values

of the transport variable φ at nineteen neighboring points around the inner node

(i, j, k) and the gradients of φ at six immediate neighbors denoted using red ink in

Fig. 2.1. To the best of our knowledge, this is the first higher-order approximation

that uses only nineteen grid points to approximate 3D CDE with mixed derivative

and is a marked improvement from the pioneering work of Ananthakrishnaiah et al.

[3]. Another potential advantage of this newly developed formulation is its suitabil-

ity involving variable coefficients and even for semi-linear PDEs and will be further

explored in numerical test cases. The gradients present in the discretization process

need to be computed up to the desired order of accuracy. On a nonuniform grid, we

generalize the idea of Lele [95] to arrive at the following approximation for spatial

derivatives in x-direction,

(
1 +

hxihxi−1

6
δ2x

)
φxi,j,k =

(
δx −

hxi − hxi−1

2
δ2x

)
φi,j,k

+O

(
(hxi − hxi−1

)(3h2xi + hxihxi−1
+ 3h2xi−1

)
)
.

(2.19)

The truncation error term in the above approximation reveals an accuracy of order
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three on nonuniform grids. Equation (2.19) can further be expanded to

φxi+1,j,k
+2 (1 + αx)φxi,j,k+αxφxi−1,j,k

=
3

αxhxi−1

(
φi+1,j,k − (1− α2

x)φi,j,k − α2
xφi−1,j,k

)
.

(2.20)

Correspondingly, in y- and z-direction we get

φyi,j+1,k
+2 (1 + αy)φyi,j,k+αyφyi,j−1,k

=
3

αyhyj−1

(
φi,j+1,k − (1− α2

y)φi,j,k − α2
yφi,j−1,k

)

(2.21)

and

φzi,j,k+1
+2 (1 + αz)φzi,j,k+αzφzi,j,k−1

=
3

αzhzk−1

(
φi,j,k+1 − (1− α2

z)φi,j,k − α2
zφi,j,k−1

)

(2.22)

respectively.

2.3 Solution of algebraic systems of equations

The system of equations resulting from the newly developed FD scheme (2.18)

can be written in matrix form as

M1Φ = F1(f,Φx,Φy,Φz), (2.23)

with

Φ =
(
φ1,1,1, φ1,1,2, . . . , φ1,1,nz

, φ1,2,1, φ1,2,2, . . . , φ1,ny,nz
, . . . , φnx,ny,nz

)T
,

Φx =
(
φx1,1,1 , φx1,1,2 , . . . , φx1,1,nz

, φx1,2,1, φx1,2,2 , . . . , φx1,ny,nz
, . . . , φxnx,ny,nz

)T
,

Φy =
(
φy1,1,1 , φy1,1,2 , . . . , φy1,1,nz

, φy1,2,1 , φy1,2,2 , . . . , φy1,ny,nz
, . . . , φynx,ny,nz

)T
,

and

Φz =
(
φz1,1,1 , φz1,1,2 , . . . , φz1,1,nz

, φz1,2,1 , φz1,2,2, . . . , φz1,ny,nz
, . . . , φznx,ny,nz

)T
,

where M1 is a sparse nonsymmetric matrix of dimension nxnynz. Nonsymmetricity

being correlated by the nonuniform grids taken under application. Moreover, due

to compactness of the presented scheme, M1 is a banded matrix with nineteen

diagonals.
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The solution for steady-state generalized CDE (2.18) is computed following an

outer-inner iterative technique. Once Φ is initialised appropriately, we approximate

Φx, Φy and Φz by solving the following tri-diagonal systems of equations

M2Φx = F2(Φ), (2.24)

M3Φy = F3(Φ) (2.25)

and

M4Φz = F4(Φ) (2.26)

respectively. Equations (2.24)–(2.26) are the matrix reperentation of equations

(2.20)–(2.22). We thus obtain the required initial values and use equation (2.23)

towards first iteration Φ(1) of Φ. This is followed by computation of Φ
(1)
x , Φ

(1)
y and

Φ
(1)
z leading to completion of one outer iteration. We begin the next outer iteration

by utilizing these values on the right hand side of equation (2.23) to compute Φ

again. The process continues unless the following condition is reached:

max|Φ
(n+1)
i,j,k − Φ

(n)
i,j,k| < ǫ1,

where Φ
(n+1)
i,j,k and Φ

(n)
i,j,k are the values of Φ computed at two successive outer itera-

tions.

An outer iteration involves the solution of as many as four systems of equations

given in equations (2.23)–(2.26). Each system of equations is handled by an iterative

solver. The Bi-Conjugate Gradient Stabilized (BiCGstab) method [83] is used to

perform all the inner computations. The tolerance criteria for inner iterations is set

to ǫ2. In our computations we recommend ǫ1 = ǫ2 = 1.0e − 14. It is important to

mention that under-relaxation was used in the inner iterations for a low diffusive

coefficient. All computations are executed on a Intel i7 based PC with 2.40 GHz

CPU and 16 GB RAM.
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2.4 Grid generation

To test our newly developed discretization strategy, we have adopted two differ-

ent types of nonuniform grids: (i) geometrically generated and (ii) trigonometrically

generated and are extensively used in numerical examples.

For the first scenario, we use the nonuniform grid that stretches geometrically in

all the three direction. The grid is generated with the help of algebraic relation

xi = X0

[
α
(i−1)
x − 1

αx − 1

]
, yj = Y0

[
α
(j−1)
y − 1

αy − 1

]
, zk = Z0

[
α
(k−1)
z − 1

αz − 1

]
, (2.27)

with X0, Y0 and Z0 being the initial spacings in x-, y- and z-direction respectively.

In the second case, a nonuniform grid is generated using trigonometric functions

given below:

xi = Lx

{
i

nx
+
λx
Θx

sin

(
Θxi

nx

)}
,

yj = Ly

{
j

ny
+
λy
Θy

sin

(
Θyj

ny

)}
,

zk = Lz

{
k

nz
+
λz
Θz

sin

(
Θzk

nz

)}
, −1 ≤ λx, λy, λz ≤ 1.

(2.28)

Here, Lx, λx and Θx respectively defines length of the domain, the clustering pa-

rameters and control angle along the x-direction. The control angle decides the area

which requires grid refinement and the clustering parameter controls the density of

grids in that area. Positive values of λx correspond to the clustering of grids in the

required zone while the negative value defines the otherwise. It should be noted that

the zero value of the clustering parameter restores to uniform grids. The parameters

Ly, Lz, λy, λz, Θy and Θz carries the same significance in the y- and z-directions.

For problems with solutions containing steep boundary layers, we shall adopt the

trigonometrically generated grid as it allows us to accumulate more number of grids

in the required region compared to the geometric one as can be seen in Fig. 2.2.

Moreover, for the second type of grids, bigger values of αx, αy and αz lead to a

quick exponential increase of grid spacings.

Gird generations carried out using equations (2.27) and (2.28) can also be used

as transformations from physical to computational domain. The effect of such grid
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(a) (b)

Fig. 2.2: Nonuniform grid distribution on xy-plane for a 17×17×17 grid : (a) triginometri-

cally generated with λx = λy = −0.8 and (b) geometrically generated with αx = αy = 1.1.

stretching on the stability and accuracy in generalized setup for higher-order com-

pact schemes vis-à-vis higher-order discretization directly applied to the stretched

physical grid without using the coordinate transformation have been well docu-

mented in the work of Zhong [186]. Such a study in the context of 3D generalized

CDE might be revisited in the future but is avoided in the current context.

2.5 Numerical illustrations

In this section, we employ eight numerical test cases to examine the newly de-

veloped compact scheme articulated in this chapter. They exhibit the effectiveness,

accuracy, convergence order and adaptivity of the scheme for various 2D and 3D

linear and nonlinear PDEs, including singularly perturbed problems with boundary

layer as well as elliptic PDEs with mixed derivatives. A detailed analysis of our

computed results along with a comprehensive comparison to those available in the

literature is carried out.

All the test initializations are done with zero value. Although for steady-state

problems at times, it is preferable to work with an initial approximation closer to

the exact solution to assure the convergence, it is heartening to say that the zero

initial guesses have worked fine for all the test problems under consideration. The
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numerical rate of convergence for each problem is to calculate with the help of the

following definition:

Order of convergence =
log
(
E
H1/EH2

)

log(H2/H1)
, (2.29)

where E
H1 and E

H2 are the maximum error of the solution with total grid points

H1 and H2 respectively.

2.5.1 Test problem 1

We begin our numerical test cases with the following 2D homogeneous linear

elliptic PDE

∂2φ

∂x2
+
∂2φ

∂y2
+ c

∂φ

∂x
= 0, 0 ≤ x, y ≤ 1. (2.30)

This equation admits exact solution

φ(x, y) =

(
y(1− y)−

2x

c

)
e−cx (2.31)

with a vertical boundary layer at x = 0 as noted by Tian et al. [156]. With increasing

c, this boundary layer gets narrower. Thus, any effective capture of this vertical

layer necessitates nonuniform grid distribution in the x-direction, with clustering in

the vicinity of x = 0. We thus put our numerical scheme to the test by varying

the stretching parameters while laying a uniform grid in the conjugate y-direction.

Computations are performed using grids of various sizes and stretching parameters,

with the Dirichlet boundary condition applied along both sides. Maximum error

corresponding to c = 103 and 104 are plotted in Fig. 2.3a and 2.3b respectively.

From the Fig. 2.3a and 2.3b, it is clear that for a particular value of λx, inaccuracy

decreases as the number of grid points increases. Alternatively, error reduction can

be accomplished by carefully raising the magnitude of λx, which has been shown to

be highly effective. This documents the efficiency of the nonuniform grids advocated

in this study.

Following Tian et al. [156], further computations for this problem are performed

with c = 10, 102, 103 and 104. This allows us to compare our newly developed

method to the best accessible in the literature. In Table 2.1, the maximum errors
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Fig. 2.3: Problem 1: Maximum error vs stretching parameter for different grid sizes: (a)

c = 103 and (b) c = 104.

Table 2.1: Test problem 1: Maximum error of φ for different scheme on grids of different

sizes and order of convergence.

Grid size
[156] Present scheme

Max.

error
order

Max.

error
order

c = 10 21× 21 3.94e-6 3.77e-6

λx = −0.30 41× 41 2.46e-7 4.00 2.52e-7 3.90

c = 102 21× 21 2.54e-5 5.40e-5

λx = −0.85 41× 41 1.50e-6 4.09 3.65e-6 3.89

c = 103 41× 21 4.40e-5 9.00e-5

λx = −0.95 81× 41 2.40e-6 4.19 5.08e-6 4.15

c = 104 121× 41 7.45e-6 6.22e-6

λx = −1.00 241× 81 4.44e-7 4.07 4.03e-7 3.95

of the computed solutions are shown. In this table, we also present errors reported

by the compact scheme of Tian et al. [156]. Though the newly developed scheme

has a theoretical accuracy of second order, the order of convergence was observed

to gravitate to the highest attainable order four in each case. Additionally, we

can observe that the present scheme is quite suitable in capturing extremely thin

boundary layers with equivalent efficiency as that of Tian et al. [156].
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2.5.2 Test problem 2

The course of this study is furthered by resolving boundary layers of the following

PDE in the presence of mixed derivative

−

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+ b

∂2φ

∂x∂y
− c

(
∂φ

∂x
−
∂φ

∂y

)
= f(x, y), 0 ≤ x, y ≤ 1. (2.32)

Here, |b| < 2 and the exact solution of this elliptic PDE is given by

φ(x, y) =
ec(1−x) + ecy − 2

ec − 1
. (2.33)

Equation (2.33) helps in determining the source function f(x, y) and the Dirichlet

boundary conditions [42]. The analytical solution admits vertical boundary layers

along x = 0 and y = 1. As recognized by Fournié and Karaa [42], the boundary

layer thickness changes inversely with c, making accurate resolution of the same

exceedingly demanding. Another issue for any discretization is the question of con-

vergence as |b| assume values close to 2. The stability of diversified discretization

near and beyond such a choice is well documented in [42]. As b→ 2, the associated

diffusion matrix tends to lose positive definiteness and the nature of the PDE in

equation (2.32) becomes parabolic. Thus, testing our newly developed discretiza-

tion, particularly with larger c at a steep b value, should be interesting. We start

by considering a suitable nonuniform grid capable in capturing the boundary layers

by using the stretching function (2.28) with Θx = −Θy = π.

Iteration
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Fig. 2.4: Problem 2: Maximum error versus iteration numbers: (a) c = 103 and (b)

c = 104.

26



Table 2.2: Test problem 2: Comparison of maximum error and order of convergence of

different methods, 1 ≤ c ≤ 103.

c
[42] Present Scheme

65× 65 order 129× 129 65× 65 order 129× 129 λ

b = 0.2

1 1.19e-11 5.18 3.28e-13 8.34e-12 3.83 5.85e-13 0.10

10 4.85e-7 4.00 3.03e-8 8.29e-8 3.99 5.22e-9 0.65

102 5.45e-3 4.12 3.12e-4 3.63e-6 3.99 2.29e-7 0.95

103 6.73e-1 0.92 3.55e-1 5.29e-5 3.94 3.45e-6 0.99

b = 1.0

1 1.26e-11 4.01 7.80e-13 8.51e-12 3.89 5.76e-13 0.10

10 4.88e-7 4.00 3.05e-8 8.86e-8 3.99 5.59e-9 0.65

102 5.35e-3 4.18 3.06e-4 3.65e-6 3.98 2.31e-7 0.95

103 6.57e-1 0.95 3.41e-1 5.28e-5 3.94 3.45e-6 0.99

b = 1.8

1 1.54e-11 4.21 8.27e-13 9.48e-12 3.94 6.16e-13 0.10

10 5.26e-7 4.00 3.28e-8 1.03e-7 3.99 6.49e-9 0.65

102 5.54e-3 4.05 3.34e-4 3.69e-6 3.99 2.33e-7 0.95

103 6.64e-1 1.01 3.30e-1 5.27e-5 3.93 3.45e-6 0.99

b = 1.99

1 – – – 1.01e-11 3.84 7.03e-13 0.10

10 – – – 1.09e-7 3.99 6.87e-9 0.65

102 – – – 3.70e-6 3.98 2.34e-7 0.95

103 – – – 5.28e-5 3.94 3.45e-6 0.99

Table 2.3: Test problem 2: Maximum error and order of convergence for c = 104.

Grid b = 0.2 b = 1.0 b = 1.8 b = 1.99

129× 129 7.71e-5 7.71e-5 7.71e-5 7.71e-5

257× 257 5.33e-6 5.33e-6 5.41e-6 5.41e-6

order 3.84 3.84 3.83 3.83

Fournié and Karaa [42] solved this problem on a uniform grid with a general-

ized nine-point fourth-order compact formulation. The scheme generated by them

outperformed the traditional central difference method in terms of accuracy and con-

vergence of the solution. A close comparison of the solutions computed by Fournié

and Karaa [42] and the present scheme has been shown Table 2.2. Both the schemes

27



could properly tackle the issues associated with boundary layers and numerical os-

cillations for c ≤ 100. In this context, the current formulation, which similarly

employes nine-point stencil in two dimensions, reports better accuracy as it is pro-

ficient in dealing with nonuniform grid generated using λx = λy = λ. However,

for c = 103 the compact approach established in [42] cannot maintain the requisite

accuracy and convergence. We further probe the newly developed formulation for

convection coefficient c = 104 using the finer grid and report results in Table 2.3. Our

newly developed formulation is again found to be efficient in capturing the narrow

boundary layers and reports higher than the theoretical order of convergence.

The convergence history for c = 103 and 104 are presented in Fig. 2.4a and 2.4b

respectively. It is seen that on a 129 × 129 grid, variation of b has little effect on

the convergence pattern. The correlation between the number of iterations and b

remains undetermined as c is increased to 104. This might be attributed to the

nonuniform grid’s ability to resolve boundary layers effectively. Note that working

with a uniform grid Fournié and Karaa [42] demonstrated that with an increase in

b more iterations are necessary to achieve convergence.

2.5.3 Test problem 3

We next pass on to three dimensional test cases and consider the CDE

−ε

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
+

1

1 + y

∂φ

∂y
= f(x, y, z), 0 ≤ x, y, x ≤ 1. (2.34)

The exact solution of this equation is

φ(x, y, z) = z
(
ey−x + 2−

1

ε (1 + y)1+
1

ε

)
. (2.35)

Here, the Dirichlet boundary conditions and the source function f(x, y, z) are gen-

erated from equation (2.35). This problem was studied by Ge and Zhang [48] and

Mohamed et al. [103] using uniform grids. The problem admits a steep boundary

layer at y = 1 for large value of 1/ε. We use the stretching function given in equa-

tion (2.28) to lay out a nonuniform grid with clustering near y = 1 to evaluate the

efficiency of our discretization scheme in a nonuniform setup.

Ensuring the work done by Mohamed et al. [103], we carried out the computa-
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Table 2.4: Test problem 3: Comparison of maximum error and order of convergence of

different schemes for different ε.

Grid size
[103] [48] Present scheme

Max.

error
order

Max.

error
order

Max.

error
order

ε = 1.00 7× 7× 7 1.94e-7 4.74e-7 1.89e-8

λy = 0.10 11×11×11 3.25e-8 3.95 8.32e-8 3.85 2.84e-9 3.71

21×21×21 2.07e-9 3.96 5.25e-9 3.99 2.12e-10 3.74

41×41×41 1.29e-10 4.00 3.31e-10 3.99 1.48e-11 3.84

ε = 0.10 7× 7× 7 8.13e-5 2.32e-4 5.08e-5

λy = 0.40 11×11×11 1.42e-5 3.86 3.88e-5 3.96 7.29e-6 3.80

21×21×21 8.91e-7 3.99 2.40e-6 4.00 4.89e-7 3.90

41×41×41 5.58e-8 4.00 1.50e-7 4.00 3.16e-8 3.95

ε = 0.01 11×11×11 1.27e-3 1.71e-1 1.93e-3

λy = 0.85 21×21×21 7.02e-4 0.78 2.90e-2 2.56 7.12e-5 4.76

41×41×41 8.58e-5 3.03 2.48e-3 3.54 4.65e-6 3.94

tions for ε = 1, 0.1 and 0.01. Table 2.4 shows the accuracy and convergence of the

current scheme. The numerical results of the present scheme are compared to results

obtained with a discretization strategy developed by Ge and Zhang [48] with the

help of symbolic computations and exponential HOC scheme proposed by Mohamed

et al. [103]. Both these schemes being limited to uniform meshes only, a superior

performance of the present scheme is noticed in Table 2.4. For higher ε values, all

three approaches exhibit satisfactory results in terms of accuracy and convergence

in case of gentle boundary layers. However, the present scheme maintains a conver-

gence near to fourth-order as the boundary layer becomes thinner. Furthermore, for

all the values of ε the present scheme shows notably higher accuracy than the other

two.

2.5.4 Test problem 4

Next, we apply our methodology on the linear CDE whose coefficients are ex-

ponential functions of spatial coordinates in the cubic domain [0, 1]3 represented by
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e2x
∂2φ

∂x2
+ e2y

∂2φ

∂y2
+ e2z

∂2φ

∂z2
+ e(x+y+z)

(
∂φ

∂x
+
∂φ

∂y
+
∂φ

∂z

)
= f(x, y, z). (2.36)

The equation admits exact solution

φ(x, y, z) = cos(x) + cos(y) + cos(z) (2.37)

and is traditionally used by various researchers as a numerical test for three-dimensional

code verification [3, 4, 105]. Indeed the problem was studied by Ananthakrishnaiah

et al. in their classical work [3]. Later Mohanty and Setia solved this linear prob-

lem to establish a fourth-order compact off-step discretization in their work [105].

Recently Aziz et al. [4] while introducing a Haar wavelet-based method again took

recourse to this problem. Our aim here is to compare the computational effective-

ness of the newly developed discretization with a fast second-order central difference

approximation in addition to measuring the accuracy of the proposed discretization.

Table 2.5: Test problem 4: Comparisons of maximum error and order of convergence of

different schemes.

Grid size
[3] [105] [4] Present scheme

Max.

error
order

Max.

error
order

Max.

error
order

Max.

error
order

5× 5× 5 8.88e-5 2.63e-5 1.06e-4 2.11e-7

9× 9× 9 5.18e-6 4.10 1.65e-6 3.99 3.34e-5 1.67 1.25e-8 4.08

17×17×17 3.18e-7 4.03 1.03e-7 4.00 8.52e-6 1.97 8.02e-10 3.96

We refrain from employing nonuniform meshes because the exact solution (2.37)

carries symmetry and smoothness in all directions. This also provides us with an

opportunity to check whether the discretization is able to report close to its highest

possible order of convergence. In keeping with the literature, we also compare max-

imum error on grids 5 × 5 × 5, 9 × 9 × 9 and 17 × 17 × 17 with classical works in

Table 2.5. The extinguishing performance of our newly developed formulation be-

comes apparent from this table as well. It is imperative to mention that the results

obtained by the present scheme remain more accurate compared to results obtained

by the central schemes available in the literature. The fourth-order convergence in

the uniform grid is indeed reported by the current approach, as shown in Table 2.5.
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2.5.5 Test problem 5

We now investigate our scheme for homogeneous CDE in presence of mixed

derivatives given by

−∇ · (D∇φ) +∇ · (Cφ) = 0 (2.38)

where

D = ε




2 −b b

−b 2 −b

b −b 2


 ,

C =
[
−2 tanh

(
x−0.5
2ε

)
,−2 tanh

(
y−0.5
2ε

)
,−2 tanh

(
z−0.5
2ε

)]T
.

Here, b conforms the positive definiteness ofD and the Dirichlet boundary conditions

conform to the exact solution

φ(x, y, z) = − tanh

(
x− 0.5

2ε

)
− tanh

(
y − 0.5

2ε

)
− tanh

(
z − 0.5

2ε

)
(2.39)

which admits three vertical boundary layers along x = 0.5, y = 0.5 and z = 0.5. Our

goal in this particular problem is to evaluate the efficiency of the discretization ap-

proach for various values of b within the allowable range. In terms of computational

time, we also compare our method with the traditional second-order central differ-

ence method using ε = 0.5 and 0.05. All the computations are done on a centrosym-

metric nonuniform grid generated using equation (2.28) with Θx = Θy = Θz = 2π.

Solutions computed for b = 0.5, 1.0, 1.2 and 1.6 using three different grids 9×9×9,

17 × 17 × 17 and 33 × 33 × 33 are shown in Table 2.6. The relative CPU time of

our recently established scheme and that of a second-order central scheme, which

requires less computing, is also reported in this table.

Table 2.6 shows that the second-order central scheme is nearly six times faster

than our recently proposed formulation for smaller b values at ε = 0.5. With bound-

ary layers becoming steep at ε = 0.05, this discrepancy in CPU time is substantially

evened out. This is attributed to the large number of iterations required by the

central scheme for convergence. The central scheme is inefficient in terms of com-

putational cost and accuracy for b = 1.6 and struggles to converge even for the case
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Table 2.6: Test problem 5: Comparisons of maximum error, order of convergence and

relative CPU time.

ε β Grid size
Central scheme Present scheme

Max.

error
order Time

Max.

error
order Time

0.5

0.5

9× 9× 9 3.53e-5 1 3.75e-7 4.9

17× 17× 17 9.85e-6 1.84 10.4 2.83e-8 3.73 63

33× 33× 33 2.53e-6 1.96 221 1.90e-9 3.90 1333.3

1.0

9× 9× 9 4.20e-5 1.9 4.37e-7 5.7

17× 17× 17 1.21e-5 1.80 12.5 3.11e-8 3.81 76.3

33× 33× 33 3.16e-6 1.94 285.6 2.02e-9 3.94 1614

1.2

9× 9× 9 4.70e-5 1.6 4.66e-7 6

17× 17× 17 1.56e-5 1.59 25.1 3.24e-8 3.85 82

33× 33× 33 – – – 2.08e-9 3.96 1705.3

1.6

9× 9× 9 1.64e-4 16186.6 5.31e-7 6

17× 17× 17 – – – 3.54e-8 3.85 96

33× 33× 33 – – – 2.21e-9 3.96 2032.4

0.05

0.5

9× 9× 9 2.16e-2 18.1 3.96e-3 19.4

17× 17× 17 5.91e-3 1.87 159.5 3.02e-4 3.71 154.2

33× 33× 33 1.52e-3 1.96 2172.8 1.98e-5 3.93 1683.4

1.0

9× 9× 9 2.20e-2 19.4 4.00e-3 20

17× 17× 17 5.98e-3 1.88 160.7 3.04e-4 3.72 167.7

33× 33× 33 1.54e-3 1.96 1916.6 2.00e-5 3.93 1754.5

1.2

9× 9× 9 2.21e-2 23 4.02e-3 20.7

17× 17× 17 6.02e-3 1.88 158.2 3.05e-4 3.72 176.8

33× 33× 33 1.55e-3 1.96 2419 2.00e-5 3.93 1980.5

1.6

9× 9× 9 – – 4.07e-3 21.4

17× 17× 17 – – – 3.07e-4 3.73 193.7

33× 33× 33 – – – 2.01e-5 3.93 2275.2

ε = 0.5. In terms of maximum error, the Table 2.6 clearly shows that the newly

proposed formulation attains close to fourth-order convergence.

In Fig. 2.5, a qualitative comparison of the present numerical solution and the

exact solution is carried out. It is encouraging to see that the solution computed

on a 33 × 33 × 33 grid on the plane y = 0.5 for ε = 0.05 is essentially identical to

analytical solution.
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Fig. 2.5: Problem 5: (a) Computed solution and (b) analytical solution on the plane

y = 0.5 for ε = 0.05 on 33× 33× 33 grid.

2.5.6 Test problem 6

Next, we solve the nonlinear elliptic PDE on a unit cube using the present

method. The nonlinear equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− φ

(
∂φ

∂x
+
∂φ

∂y
+
∂φ

∂z

)
= f(x, y, z) (2.40)

with source term f(x, y, z) possesses analytic solution

φ(x, y, z) = ze(1−x)(1−y)/ε. (2.41)

Table 2.7: Test problem 6: Computed maximum error and order of convergence for dif-

ferent ε.

Grid size

ε = 1 ε = 10−1 ε = 10−2 ε = 5× 10−3

λ = 0.00 λ = 0.40 λ = 0.85 λ = 0.95

Max

error
order

Max

error
order

Max

error
order

Max

error
order

9× 9× 9 1.15e-9 4.99e-6 1.07e-3 –

17×17×17 8.86e-11 3.70 4.83e-7 3.37 8.95e-5 3.58 7.40e-4 –

25×25×25 1.87e-11 3.84 1.10e-7 3.65 1.93e-5 3.78 1.72e-4 3.60

33×33×33 6.08e-12 3.91 3.75e-8 3.74 6.37e-6 3.85 5.85e-5 3.75

41×41×41 2.49e-12 4.00 1.60e-8 3.82 2.67e-6 3.90 2.49e-5 3.83
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Fig. 2.6: Problem 6: Numerical solution ((a) and (b)) and maximum error ((c) and (d))

on the plane z = 0.5 computed using 41 × 41 × 41 grid for ε = 0.01 (left) and ε = 0.005

(right).

For smaller values of ε, this solution develops two vertical layers along the bound-

aries x = 1 and y = 1 respectively. In order to properly capture the solution, it is

essential to generate nonuniform grids along the x- and y-directions, and a uniform

grid in the z-direction. Grids are clustered in the vicinity of x = 1 and y = 1 using

equation (2.28), with the grid stretching function being Θx = Θy = π. Computa-

tions are carried up to ε = 5.0e− 3. We obtain a smooth solution for ε = 1 that is

successfully handled by uniform grids in all directions. However, it becomes more

challenging to capture the boundary layers of the nonlinear equation for smaller

values of ε. For each value of ε we have chosen different clustering parameter

λx = λy = λ which can be seen in Table 2.7. This table clearly shows that the

newly developed scheme is able to sustain its theoretical rate of convergence and
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accuracy for this nonlinear problem, thereby affirming the adaptivity of the present

scheme in simulating challenging situations. Finally, numerical solution on the plane

z = 0.5 computed using 41× 41× 41 grid for ε = 0.01 and ε = 0.005 are presented

in Fig. 2.6a and 2.6b respectively. In both cases, our computation is seen to capture

the boundary layer with ease. To further understand error distribution we present

maximum error for the previously mentioned two values of ε in Fig. 2.6c and 2.6d

respectively. As could be expected, a relatively higher error was recorded in the

regions with high gradients.

2.5.7 Test problem 7

Following Mohanty and Dey [104] and recent works of Lin and Reutskiy [97] as

well as Reutskiy and Lin [124] we further implement the newly developed scheme

for the following 3D nonlinear elliptic PDE with mixed derivatives

−a1 (φxx + φyy + φzz)+d1φxy+d2φyz+d3φzx−bφ (φx + φy + φz) = f(x, y, z) (2.42)

where

a1(x, y, z) = −(1 + ex+y+z),

d1(x, y, z) = 1 + sin(x) cos(y) cos(z),

d2(x, y, z) = 1 + cos(x) sin(y) cos(z),

d3(x, y, z) = 1 + cos(x) cos(y) sin(z).

The exact solution defined inside and on a unit cube

φ(x, y, z) = ex cos(y) sin(z) (2.43)

provides for source function f(x, y, z). This solution doesn’t possess sharp features

and hence does not necessarily attract nonuniform grids. Nevertheless, to validate

our nonuniform code we employ grids generated using equation (2.27) with αx =

αy = αz = 1.01.

In order to discretize equation (2.42) with b = 1, 10, 102, 103, Mohanty and Dey

[104] implemented a fourth-order single-cell FD scheme on uniform cubic grids of

sizes 9×9×9, 17×17×17 and 33×33×33. On the other hand, Lin and Reutskiy [97]
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Table 2.8: Test problem 7: Comparison of maximum error and order of convergence of

different methods.

Grid size
[97] [124] [104] Present scheme

Max

error

Max

error

Max

error
order

Max

error
order

b = 1

9× 9× 9 1.17e-6 4.08e-8

17×17×17 7.31e-8 4.00 3.07e-9 3.73

33×33×33 2.97e-9 4.62 1.94e-10 3.98

30050 NFP — —

b = 10

9× 9× 9 1.96e-6 7.94e-8

17×17×17 1.24e-7 3.98 6.56e-9 3.60

33×33×33 7.62e-9 4.02 5.23e-10 3.65

30050 NFP 1.67e-6 7.02e-7

b = 102

9× 9× 9 7.55e-5 2.27e-7

17×17×17 4.83e-6 3.97 1.85e-8 3.62

33×33×33 3.01e-7 4.00 1.56e-9 3.57

30050 NFP 1.87e-6 6.52e-6

b = 103

9× 9× 9 7.78e-4 3.17e-7

17×17×17 6.39e-5 3.61 2.49e-8 3.67

33×33×33 4.41e-6 3.86 2.06e-9 3.60

30050 NFP 1.35e-6 8.47e-7

b = 104

9× 9× 9 — 5.58e-7

17×17×17 — — 3.14e-8 4.15

33×33×33 — — 2.17e-9 3.85

30050 NFP 1.46e-6 1.05e-6

employed a cubic B-spline semi-analytical algorithm whereas Reutskiy and Lin [124]

worked with a redial basis function (RBF) based method for solving this problem.

Numerical solutions calculated with b = 10, b = 102, b = 103 and b = 104 with

a number of free parameters (NFP) of 30050, 60100 and 120200 can be found in

both of these works. These numbers roughly correspond to number of mesh points
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associated with grids 33 × 33 × 33, 41 × 41 × 41 and 51 × 51 × 51 respectively.

This inspired us to run numerical simulations for b = 1, 10, 102, 103 and 104 on

nonuniform grids of sizes same as those of [104]. In Table 2.8, we have presented the

numerically approximated maximum error and order of convergence. The computed

data from Table 2.8 vividly illustrates the accuracy and effectiveness of the present

formulation. The proposed scheme not only projects the least erroneous solution

but also reports a higher order of convergence in all cases.

2.5.8 Test problem 8

Finally, in order to highlight the versatility of the new 19-point scheme, we

compare it to a fully compact 27-point scheme. We consider linear PDE with the

second-order cross-derivative terms in the unit cube [0, 1]3 represented as in [3]

10 (φxx + φyy + φzz)+φxy+2φyz+3φzx−13φx+11φy+10φz−7φ = f(x, y, z). (2.44)

The Dirichlet boundary conditions and the forcing function f are chosen so as to

conform to the analytical solution

φ(x, y, z) = exp(x+ y + z). (2.45)

We use uniform mesh to solve this problem and compare our results to those of

Table 2.9: Test problem 8: Maximum error of φ for different scheme on grids of different

sizes and order of convergence.

Grid size
[3] Present scheme

φ(0.5, 0.5, 0.5)
Max error order Max error order

5× 5 2.53e-4 7.34e-6 4.4816589355

9× 9 1.64e-5 3.95 6.35e-7 3.53 4.4816870689

17× 17 1.04e-6 3.98 4.52e-8 3.81 4.4816889762

Ananthakrishnaiah et al. [3] in Table 2.9. This table further includes numerically

estimated values of φ at (0.5, 0.5, 0.5) along with the maximum error and order of

convergence. Although [3] converges with a faster rate, it is found that our scheme

has better accuracy for all the grids considered. Nevertheless, it appears that the

newly developed formulation consistently comes close to a convergence of order four.
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The table shows that even for the coarse 5 × 5 × 5 grid, the numerical solution at

the center of the cube estimated up to the tenth decimal place remains accurate.

2.6 Conclusion

This chapter pertains to a compact FD scheme for generalized 3D steady CDE.

The newly proposed scheme developed on nonuniform grid does not employ any

transformation between the physical plane and the computational plane. The scheme

is seen to be quite efficient in capturing boundary or transitional layers present in

the solution domain. By employing a flexible discretization strategy our scheme is

seen to be quite adaptable to the singularities in the domain. In 3D, the scheme

uses at most nineteen neighboring nodal points and is computationally efficient for

stiffer choices of parameters. To the best of the authors’ knowledge, this is the first

attempt to compactly approximate 3D generalized CDE on nonuniform grids. Fur-

ther extension of the discretization strategy in the presence of nonlinear as well as

linear reaction terms is found to be rather straightforward. The scheme exhibit close

to fourth-order of numerical convergence. A comprehensive comparison is carried

out with some of the best-known discretization procedures of the CDE available in

the literature. These comparisons indeed reveal the superior accuracy virtues of the

present scheme especially in the presence of boundary layers.

38


	06_chapter 2

