
Chapter 4

Development of diverse (5,5)CC transient

compact schemes for computation of fluid

flow and heat transfer on nonuniform po-

lar grids

4.1 Introduction

Fluid flow problems involving circular geometries have attracted a significant

amount of attention over the years due to their theoretical significance and physical

relevance. For such importance, HOC schemes have been developed in the cylindri-

cal polar coordinates because of their potential in delivering higher accuracy with

lower computational cost. Preliminary works to develop HOC schemes in the cylin-

drical polar coordinate system mostly focused on the Poisson equation and uniform

grids [9, 67, 68, 88, 89, 187]. Here, it is important to mention that in polar coordi-

nates Poisson equation involves variable coefficients and thus the above-mentioned

works involved significant endeavors and were not mere extension of the works done

in the Cartesian coordinates. Additionally, a valid discretization at singularity r = 0

is necessary. Subsequently, considerable efforts could be found in the literature on

HOC discretization of N-S equations in the body-fitted polar coordinate system

[26, 69, 123, 126, 176]. In the year 2005, Sanyasiraju and Manjula [126] proposed a

higher-order semicompact technique to solve the flow around an impulsively started
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circular cylinder. The authors used a wider stencil to discretize a few terms of the

governing equation rendering semicompactness to the scheme. This strategy also

helped alleviate challenges associated with the variable coefficients of the second-

order derivative. Subsequently, Kalita and Ray [69] developed a spatially third-order

and temporally second-order accurate higher-order compact scheme for ψ−ω formu-

lation of unsteady N-S equations. As the authors worked with a modified differential

equation, the resulting difference equation carried a higher order of singularity. The

scheme was specially adapted to simulate incompressible flow past a circular cylin-

der directly on nonuniform polar grids. A rather straightforward adaptation of this

scheme for steady convection-diffusion equation (CDE) can be found in [123]. In the

year 2013, the pioneering work on compact difference schemes for the pure stream-

function formulation of N-S equations in polar coordinates was reported by Yu and

Tian [176]. The authors here worked with the steady biharmonic equation in polar

coordinates. The scheme developed therein is of second-order accuracy and carries

streamfunction and its first-order derivatives as the unknown variables. Of late, Das

et al. [26] also worked with steady second-order equation with variable coefficients in

polar coordinates and introduced a third-order accurate HOC scheme. The scheme

claimed to be implemented on a nonuniform grid used an implicit form of first-order

derivatives and was successful in simulating steady incompressible flows. It is clear

from the above discussion that classical HOC discretization of transient generalized

second-order PDE with variable coefficients in polar coordinates has not been at-

tempted apart from the work of Kalita and Ray [69] on streamfunction-vorticity

form of the N-S equations, whose extension to other governing equations such as

the Boussinesq equations is not immediate. Additionally, it is intriguing to notice

that developed HOC schemes in polar coordinates have been traditionally used to

handle the nonuniformity of grids in radial direction only. However, heat and fluid

flow problems are often associated with generation of steep gradients of streamfunc-

tion and vorticity near the bluff body or domain boundary walls and as such, grid

clustering in all directions should be economical.

Here, we intend to work with new transient compact formulations which can solve

fluid flow as well as heat transfer problems directly in polar coordinates. Schemes
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conceived in the process must be generalizable to approximate second-order equa-

tions with variable coefficients in polar coordinates and should be efficient for circular

geometries. Starting with a second-order PDE with variable coefficients, we advo-

cate a spatially second-order accurate discretization strategy amenable for extension

to a nonlinear system of N-S equations and beyond. Subsequently, this strategy is

manipulated further to introduce a new HOC scheme which carries third-order con-

vergence. Additionally, we adopt the philosophy of nonuniform grids for accurate

resolution of complex flow problems. We look forward to combining the virtues

of compact approximation of second-order derivatives in terms of flow variables

and their first-order gradients and Padé approximation of first-order derivatives on

nonuniform grids with variable coefficients. The schemes developed here lead to

stable higher-order discretization in case of both Dirichlet and convective boundary

conditions. The formulations are validated by applying it to the N-S equations and

the problem of an unsteady Gaussian pulse governed by the linear CDE. Both these

problems are equipped with known analytical solutions, which helps in error analysis

as well. Besides, we are also concerned to carry out a comparison study between

the solutions computed using newly proposed second-order and third-order compact

schemes. The spatial and temporal order of convergences are also established during

this process. However, to comprehend the robustness and adaptability of the new

schemes, we carry out the simulations for benchmark problems of both flow and heat

transfer, namely the flow inside a driven polar cavity, natural convection inside a

circular annulus, and forced convection around a stationary circular cylinder. These

flows are governed by N-S equations and Boussinesq equations, both the equations

being cast in transient incompressible form. The ψ−ω formulation of these coupled

nonlinear systems are tackled in the present computation.

The rest of the chapter is organised in four sections. In section 4.2, compact

discretization of transient CDE on cylindrical polar coordinate grids is shown. The

solution technique of algebraic system of equations is discussed in section 4.3. The

five test cases are described in the section 4.4 and finally, section 4.5 gives a gist of

the study.
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4.2 Mathematical formulation and discretization

procedure

The discretization process closely resembles that which is described in Chapter 3.

In the nonrectangular domain Ω = [ar, br]× [aθ, bθ], the polar (r, θ) form of the CDE

(3.2) is

aφt − φrr −
1

r2
φθθ + c1(r, θ, t)φr + c2(r, θ, t)φθ = f(r, θ, t), (4.1)

with convection coefficients c1 and c2 as

c1(r, θ, t) = c1(x, y, t) cos θ + c2(x, y, t) sin θ −
1

r
,

and

c2(r, θ, t) =
1

r
(−c1(x, y, t) sin θ + c2(x, y, t) cos θ)

respectively.

Both the coefficients carry singularity at r = 0 and as such, require special

treatments at the origin. Same, being problem dependent, will be discussed in

appropriate subsections.

(a) (b)

Fig. 4.1: (a) Projection of nonuniform computational stencil in (r, θ) plane and (b) Nonuni-

form computational stencil in (r, θ, t) hyper-plane.
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We discretize the domain by considering ar = r1 < r2 < r3 < · · · < rnr
= br and

aθ = θ1 < θ2 < θ3 < · · · < θnθ
= bθ where lengths between two consecutive ri’s,

i ∈ {1, 2, 3, . . . , nr} and θj ’s, j ∈ {1, 2, 3, . . . , nθ} may be unequal. A typical stencil

can be seen in Fig. 4.1. The figure depicts the grid points at the nth and (n+ 1)th

time level as well. We define the mesh sizes along radial and tangential directions

to be

hri = ri+1 − ri, i ∈ {1, 2, 3, . . . , nr − 1},

hθj = θj+1 − θj , j ∈ {1, 2, 3, . . . , nθ − 1}.

For the sufficiently smooth transport variable φ(r, θ), the finite difference oper-

ators δr and δ
2
r in the radial direction are defined as

δrφi,j =
1

hi + hi−1
(φi+1,j − φi−1,j) , (4.2)

and

δ2rφi,j =
2

hri + hri−1

[
φi+1,j

hri
+
φi−1,j

hri−1

−

(
1

hri
+

1

hri−1

)
φi,j

]
(4.3)

respectively, where φi,j denotes φ(ri, θj).

Considering the transport variable φ(r, θ) to be sufficiently smooth, the first-

order partial derivative ∂rφ and second-order partial derivative ∂rrφ along the r-

direction at a point (ri, θj) can be expressed as

∂rφi,j = δrφi,j −
1

2

(
hri − hri−1

)
∂rrφi,j −

1

6

(
h3ri + h3ri−1

hri + hri−1

)
∂rrrφi,j

−
1

24

(
h4ri − h4ri−1

hri + hri−1

)
∂rrrrφi,j +O

(
h5ri + h5ri−1

hri + hri−1

)
,

(4.4)

and

∂rrφi,j = δ2rφi,j −
1

3

(
hri − hri−1

)
∂rrrφi,j −

1

12

(
h3ri + h3ri−1

hri + hri−1

)
∂rrrrφi,j

−
1

60

(
h4ri − h4ri−1

hri + hri−1

)
∂rrrrrφi,j +O

(
h5ri + h5ri−1

hri + hri−1

)
.

(4.5)
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4.2.1 Second-order accurate scheme

Straightforward extension of the formulation discussed in section 2.2 yields the

second-order accurate approximation of second-order derivative as

∂rrφi,j =2

(
(h2ri − hrihri−1

+ h2ri−1
)

h2ri + h2ri−1

(2δ2rφi,j − δrφri,j)

−
hri − hri−1

h2ri + h2ri−1

(δrφi,j − φri,j )

)
+O

(
(hri − hri−1

)2
)
,

(4.6)

and

∂θθφi,j =2

(
(h2θj − hθjhθj−1

+ h2θj−1
)

h2θj + h2θj−1

(2δ2θφi,j − δθφθi,j )

−
hθj − hθj−1

h2θj + h2θj−1

(δθφi,j − φθi,j)

)
+O

(
(hθj − hθj−1

)2
)
.

(4.7)

Once these approximations are achieved, they are used in the CDE (4.1) to

obtain its semidiscrete form around the node (i, j) as,

a
∂φ

∂t

∣∣∣∣
i,j

+ [Cφ]i,j = fi,j. (4.8)

The operator C is defined as

[Cφ]i,j =−

(
2C1δ

2
r +

2C2

r2i
δ2θ +

C3

hri−1

δr +
C4

r2i hθj−1

δθ

)
φi,j

+

(
C1δr +

C3

hri−1

+ c1

)
φri,j +

(
C2

r2i
δθ +

C4

r2i hθj−1

+ c2

)
φθi,j

(4.9)

which is accompanied by the coefficients

C1 =
2(1− αr + α2

r)

(1 + α2
r)

, C2 =
2(1− αθ + α2

θ)

(1 + α2
θ)

, C3 =
2(1− αr)

(1 + α2
r)
, C4 =

2(1− αθ)

(1 + α2
θ)
.

In the coefficients C1, C2, C3 and C4 the terms αr and αθ are used to replace the

arrays αri, i ∈ {1, 2, 3, . . . , nr − 2} and αθj , j ∈ {1, 2, 3, . . . , nθ − 2} respectively,

which are characterized as follows,

αri = hri+1
/hri, i ∈ {1, 2, 3, . . . , nr − 2},

αθj = hθj+1
/hθj , j ∈ {1, 2, 3, . . . , nθ − 2}.

It is fairly evident that the values of αr and αθ varies with the change in the values

of grid spacing and so are the values of Ci’s, i ∈ {1, 2, 3, 4}. Since we seek to time

march from nth to (n+1)th level, we further carry out the temporal discretization of
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the unsteady term in equation (4.8). With the aid of Crank-Nicolson approximation,

the fully discretized form of CDE (4.1) can be expressed as
(
2a

δt
+C

)
φn+1
i,j =

(
2a

δt
−C

)
φni,j +

(
fn+1
i,j + fni,j

)
. (4.10)

Finally, making use of the operators δr, δθ, δ
2
r and δ2θ in C, the algebraic system

associated with equation (4.10) can be derived as
(
2a

δt
+ Ĉ1

)
φn+1
i,j − Ĉ2φ

n+1
i+1,j − Ĉ3φ

n+1
i−1,j − Ĉ4φ

n+1
i,j+1 − Ĉ5φ

n+1
i,j−1

=

(
2a

δt
− Ĉ1

)
φni,j + Ĉ2φ

n
i+1,j + Ĉ3φ

n
i−1,j + Ĉ4φ

n
i,j+1 + Ĉ5φ

n
i,j−1

− Ĉ6

(
φn+1
ri+1,j

− φn+1
ri−1,j

)
−
(
Ĉ7 + c1

)
φn+1
ri,j

− Ĉ8

(
φn+1
θi,j+1

− φn+1
θi,j−1

)
−
(
Ĉ9 + c2

)
φn+1
θi,j

− Ĉ6

(
φnri+1,j

− φnri−1,j

)
−
(
Ĉ7 + c1

)
φnri,j

− Ĉ8

(
φnθi,j+1

− φnθi,j−1

)
−
(
Ĉ9 + c2

)
φnθi,j

+
(
fn+1
i,j + fni,j

)

(4.11)

where,

Ĉ1 =4

(
C1

αrh2ri−1

+
C2

αθh2θj−1
r2i

)
,

Ĉ2 =
1

(1 + αr)h2ri−1

(
4C1

αr
+ C3

)
, Ĉ3 =

1

(1 + αr)h2ri−1

(4C1 − C3) ,

Ĉ4 =
1

(1 + αθ)h2θj−1
r2i

(
4C2

αθ
+ C4

)
, Ĉ5 =

1

(1 + αθ)h2θj−1
r2i

(4C2 − C4) ,

Ĉ6 =
C1

(1 + αr)hri−1

, Ĉ7 =
C3

hri−1

,

Ĉ8 =
C2

(1 + αθ)hθj−1
r2i
, Ĉ9 =

C4

hθj−1
r2i
.

4.2.2 Third-order accurate scheme

In this section, we intend to derive a third-order accurate Padé based compact

approximation of the second-order derivative. As established in Chapter 2, the
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equation (4.6) with its second-order truncation term can be written as

∂rrφi,j =2

(
(h2ri − hrihri−1

+ h2ri−1
)

h2ri + h2ri−1

(2δ2rφi,j − δrφri,j)

−
hri − hri−1

h2ri + h2ri−1

(δrφi,j − φri,j )

)
+

1

12
(hri − hri−1

)2∂rrrrφi,j

+O

(
(hri − hri−1

)(2h4ri − 2h3rihri−1
+ 3h2rih

2
ri−1

− 2hrih
3
ri−1

+ 2h4ri−1
)

(h2ri + h2ri−1
)

)
.

(4.12)

Here, we note that the above second-order discretization not only attains optimal

fourth-order convergence on uniform grid but also its leading truncation error term
1

12
(hri − hri−1

)2∂rrrrφi,j, as seen in equation (4.12), converges to zero quadratically

as we move from nonuniform to uniform grid. Again, substituting ∂rrrφi,j from

equation (4.4) in equation (4.5), the following second order approximation for the

second-order derivative can be obtained

∂rrφi,j =
h2ri − hrihri−1

+ h2ri−1

hrihri−1

δ2rφi,j −
2(hri − hri−1

)

hrihri−1

(δrφi,j − φri,j )

−
1

12
hrihri−1

∂rrrrφi,j +O
(
(hri−1

− hri)hrihri−1

)
.

(4.13)

It is easy to see that equation (4.13) reverts back to standard central approximation

of order two on uniform grid. Next, eliminating the fourth-order derivative from

equations (4.12) and (4.13), we arrive at the following discretization of the second-

order derivative with third-order truncation term on nonuniform grid as

∂rrφi,j =2

{(
2hrihri−1

h2ri + h2ri−1

+
(hri − hri−1

)2

2hrihri−1

)
δ2rφi,j −

hrihri−1

h2ri + h2ri−1

δrφri,j

−
(hri − hri−1

)

h2ri − hrihri−1
+ h2ri−1

(
hrihri−1

h2ri + h2ri−1

+
(hri − hri−1

)2

hrihri−1

)
(δrφi,j − φri,j)

}

+O

(
(hr−i − hri)hrihri−1

(h2ri + hrihri−1
+ h2ri−1

)

(h2ri + h2ri−1
)

)
.

(4.14)

It is quite evident that on uniform grid the above approximation shall revert back

to compact fourth-order approximation presented in [130]. Compared to discretiza-

tion in equation (4.12), approximation in equation (4.14) possesses a higher-order

truncation term and the order of approximation is optimal on nonuniform compact
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stencil. We shall explore relative convergence characteristics of the schemes from

equations (4.12) and (4.14) in subsequent sections in the context of CDE and N-

S equations. Necessary Padé type third-order approximation on nonuniform grids

shall be discussed in the later part of this section and shall be identically employed

for both equations (4.12) and (4.14).

Again, following a similar course of action in the θ-direction, we get

∂θθφi,j =2

{(
2hθjhθj−1

h2θj + h2θj−1

+
(hθj − hθj−1

)2

2hθjhθj−1

)
δ2θφi,j −

hθjhθj−1

h2θj + h2θj−1

δθφθi,j

−
(hθj − hθj−1

)

h2θj − hθjhθj−1
+ h2θj−1

(
hθjhθj−1

h2θj + h2θj−1

+
(hθj − hθj−1

)2

hθjhθj−1

)
(δθφi,j − φθi,j )

}

+O

(
hθjhθj−1

(h3θj − h3θj−1
)

(h2θj + h2θj−1
)

)
.

(4.15)

Making use of these spatial approximations, the CDE (4.1) around the node (i, j)

can be expressed in the following semidiscrete form,

a
∂φ

∂t

∣∣∣∣
i,j

+ [Dφ]i,j = fi,j. (4.16)

The operator D is defined as

[Dφ]i,j =−

(
2D1δ

2
r +

2D2

r2i
δ2θ +

D3

hri−1

δr +
D4

r2i hθj−1

δθ

)
φi,j

+

(
D3

hri−1

+D5δr + c1

)
φri,j +

(
D4

r2i hθj−1

+
D6

r2i
δθ + c2

)
φθi,j

(4.17)

where the coefficients are given as

D1 =
2αr

1 + α2
r

+
(1− αr)

2

2αr
,

D2 =
2αθ

1 + α2
θ

+
(1− αθ)

2

2αθ
,

D3 =
2(1− αr)

(1− αr + α2
r)

{
αr

(1 + α2
r)

+
(1− αr)

2

αr

}
,

D4 =
2(1− αθ)

(1− αθ + α2
θ)

{
αθ

(1 + α2
θ)

+
(1− αθ)

2

αθ

}
,

D5 =
2

1 + α2
r

D6 =
2

1 + α2
θ

.

The operators δr, δθ, δ
2
r and δ2θ along with Crank-Nicolson approximation yields
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the fully discretized form of equation (4.1) as
(
2a

δt
+ D̂1

)
φn+1
i,j − D̂2φ

n+1
i+1,j − D̂3φ

n+1
i−1,j − D̂4φ

n+1
i,j+1 − D̂5φ

n+1
i,j−1

=

(
2a

δt
− D̂1

)
φni,j + D̂2φ

n
i+1,j + D̂3φ

n
i−1,j + D̂4φ

n
i,j+1 + D̂5φ

n
i,j−1

− D̂6

(
φn+1
ri+1,j

− φn+1
ri−1,j

)
−
(
D̂7 + c1

)
φn+1
ri,j

− D̂8

(
φn+1
θi,j+1

− φn+1
θi,j−1

)
−
(
D̂9 + c2

)
φn+1
θi,j

− D̂6

(
φnri+1,j

− φnri−1,j

)
−
(
D̂7 + c1

)
φnri,j

− D̂8

(
φnθi,j+1

− φnθi,j−1

)
−
(
D̂9 + c2

)
φnθi,j

+
(
fn+1
i,j + fni,j

)

(4.18)

where,

D̂1 =4

(
D1

αrh2ri−1

+
D2

αθh2θj−1
r2i

)
,

D̂2 =
1

(1 + αr)h2ri−1

(
4D1

αr
+D3

)
, D̂3 =

1

(1 + αr)h2ri−1

(4D1 −D3) ,

D̂4 =
1

(1 + αθ)h2θj−1
r2i

(
4D2

αθ
+D4

)
, D̂5 =

1

(1 + αθ)h2θj−1
r2i

(4D2 −D4) ,

D̂6 =
D5

(1 + αr)hri−1

, D̂7 =
D3

hri−1

,

D̂8 =
D6

(1 + αθ)hθj−1
r2i
, D̂9 =

D4

hθj−1
r2i
.

The coefficients Ĉi’s and D̂i’s, i ∈ {1, 2, 3, . . . , 9}, of the algebraic equations (4.11)

and (4.18) depend entirely on the values of grid spacings and they remain unchanged

throughout the computation once the grid is set up. Therefore, similar to the previ-

ous approach, for situations with constant convection and diffusion coefficients the

current scheme also offers the inherent benefit of dealing with resulting system of

equations containing constant coefficients only. Further, one can easily notice that

the discrete operator C and D also contain the radial and tangential derivatives of

the flow variables, which need to be approximated up to the appropriate order of

accuracy. In this aspect, we generalize the Padé scheme [95] to obtain the following

89



approximations of the spatial derivatives on nonuniform polar grids.
(
1 +

hrihri−1

6
δ2r

)
φri,j =

(
δr −

hri − hri−1

2
δ2r

)
φi,j

+O

(
(hri − hri−1

)(3h2ri + hrihri−1
+ 3h2ri−1

)
)
,

(4.19)

and (
1 +

hθjhθj−1

6
δ2θ

)
φθi,j =

(
δθ −

hθj − hθj−1

2
δ2θ

)
φi,j

+O

(
(hθj − hθj−1

)(3h2θj + hθjhθj−1
+ 3h2θj−1

)
)
.

(4.20)

Subsequently, we obtain the corresponding algebraic system for equations (4.19)

and (4.20) as

φn+1
ri+1,j

+2 (1 + αr)φ
n+1
ri,j

+αrφ
n+1
ri−1,j

=
3

αrhri−1

(
φn+1
i+1,j − (1− α2

r)φ
n+1
i,j − α2

rφ
n+1
i−1,j

)
,

(4.21)

and

φn+1
θi,j+1

+2 (1 + αθ)φ
n+1
θi,j

+αθφ
n+1
θi,j−1

=
3

αθhθj−1

(
φn+1
i,j+1 − (1− α2

θ)φ
n+1
i,j − α2

θφ
n+1
i,j−1

)

(4.22)

respectively.

As the present scheme carries the flow gradients as variables, it is vital to ap-

proximate them at the boundary points. Moreover, in many situations, due to the

lack of exact values of the flow variables at the boundary, we must resort to the

one-sided approximations of the first-order derivatives. This is done by introducing

the following discretizations:

Along the tangential direction, ∀1 ≤ j ≤ nθ

φr1,j =−
hr1

hr2(hr1 + hr2)
φ3,j +

hr1 + hr2
hr1hr2

φ2,j −
2hr1 + hr2

hr1(hr1 + hr2)
φ1,j

+O (hr2(hr1 + hr2)) ,

φrnr,j
=

hrnr−1

hrnr−2
(hrnr−1

+ hrnr−2
)
φnr−2,j −

hrnr−1
+ hrnr−2

hrnr−1
hrnr−2

φnr−1,j

+
2hrnr−1

+ hrnr−2

hrnr−1
(hrnr−1

+ hrnr−2
)
φnr ,j +O

(
hrnr−1

(hrnr−1
+ hrnr−2

)
)
,

(4.23a)

(4.23b)
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Along the radial direction, ∀1 ≤ i ≤ nr

φθi,1 =−
hθ1

hθ2(hθ1 + hθ2)
φi,3 +

hθ1 + hθ2
hθ1hθ2

φi,2 −
2hθ1 + hθ2

hθ1(hθ1 + hθ2)
φi,1

+O (hθ2(hθ1 + hθ2)) ,

φθi,nθ
=

hθnθ−1

hθnθ−2
(hθnθ−1

+ hθnθ−2
)
φi,nθ−2 −

hθnθ−1
+ hθnθ−2

hθnθ−1
hθnθ−2

φi,nθ−1

+
2hθnθ−1

+ hθnθ−2

hθnθ−1
(hθnθ−1

+ hθnθ−2
)
φi,nθ

+O

(
hθnθ−1

(hθnθ−1
+ hθnθ−2

)
)
.

(4.24a)

(4.24b)

4.3 Solution of algebraic system

The developed FD approximations (4.11) and (4.18) yields a system of equations,

which in matrix form can be written as

M1Φ
(n+1) = F1

(
Φ(n),Φ(n)

r ,Φ
(n)
θ ,Φ(n+1)

r ,Φ
(n+1)
θ

)
, (4.25)

with

Φ = (φ1,1, φ1,2, . . . , φ1,nθ
, φ2,1, φ2,2, . . . , φ2,nθ

, . . . , φnr,nθ
)T ,

Φr =
(
φr1,1, φr1,2 , . . . , φr1,nθ

, φr2,1, φr2,2 , . . . , φr2,nθ
, . . . , φrnr,nθ

)T

and Φθ =
(
φθ1,1 , φθ1,2, . . . , φθ1,nθ

, φθ2,1 , φθ2,2, . . . , φθ2,nθ
, . . . , φθnr,nθ

)T
.

Here, the matrixM1 is a sparse nonsymmetric matrix with five nonzero diagonals. As

stated in section 4.2, algebraic system of equations involves only constant coefficients

once the grid is laid out. Thus on a grid of size nr×nθ, the coefficient matrixM1 only

deals with constant entries. Although the system appears to have a large dimension

3nrnθ × 3nrnθ, one only needs to handle a system of size nr × nθ while employing a

predictor-corrector method [130, 134].

Similarly, matrix representation of equation (4.21) and equation (4.22) are

M2Φ
(n)
r = F2

(
Φ(n)

)
(4.26)

and

M3Φ
(n)
θ = F3

(
Φ(n)

)
(4.27)

respectively. M2 and M3 are tri-diagonal matrices and hence systems (4.26) and
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(4.27) are very amenable to efficient computation. The algorithmic procedure adopted

at this stage is same as delineated in [130, 134].

4.4 Numerical examples

To examine the accuracy and effectiveness of the present scheme on nonuniform

polar grids, it has been employed to five diverse problems of varying complexities.

Verification study is carried out using two problems viz. Navier-Stokes equations

with an analytical solution and convection-diffusion of Gaussian pulse. We study

the efficiency of the scheme in handling complex flow patterns by solving the driven

polar cavity problem. Subsequently, we enter the field of heat transfer by tackling

the problem of heat convection in an annulus. Finally, we carry out a comprehensive

simulation of fluid flow and heat transfer around a circular cylinder. The intention

behind selecting these problems is to highlight the inherent flexibility of nonuni-

form grids whereby certain portions of the solution domain can be better resolved

with grid clustering. Furthermore, the overwhelming number of numerical solutions

present in the literature gives us the leverage to compare the numerical solutions of

the present scheme with the existing ones. All the computations are executed on

an Intel i7-based PC with 3.40 GHz CPU and 32 GB RAM. The tolerance for inner

and outer iterations is set to be 1.0e− 10.

4.4.1 Problem 1: Navier-Stokes equations with analytical

solution

We first apply the second-order accurate formulation given in equation (4.11) and

third-order accurate scheme given in equation (4.18) on 2D steady incompressible

viscous fluid flow in the unit circular domain (0, 1)× [0, 2π]. The flow is governed

by the steady-state N-S equations in the polar coordinate system given as,




ωrr +
1

r
ωr +

1

r2
ωθθ = Re

(
uωr +

v

r
ωθ

)
,

ψrr +
1

r
ψr +

1

r2
ψθθ = −ω,

(4.28a)

(4.28b)
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where u(r, θ) =
1

r
ψθ is the radial velocity component and v(r, θ) = −ψr is the

tangential velocity component. For Re = 0, the exact solution of the equation (4.28)

is obtained to be

ψ(r, θ) =
(
2r2 − r4

)
cos 2θ,

ω(r, θ) = 12r2 cos 2θ.

(4.29a)

(4.29b)

The Dirichlet boundary conditions are derived from the exact solution given in

equation (4.29) and are used along all boundaries.

We solve the problem directly on polar grids of three different sizes 21 × 21,

41×41 and 81×81 generated by x = r cos θ and y = r sin θ. The grid spacing in the

tangential direction has been kept uniform while in the radial direction nonuniform

grids are generated using a trigonometric function analogous to equation (2.28) given

by

ri = Lr

{
i

nr
+
λr
Θr

sin

(
Θri

nr

)}
. (4.30)

Here, Lr = 1.0. The grids are clustered near the centre and boundary of the domain

by using Θr = π while the clustering parameter λr is set to be 0.6.

To establish the efficiency of the methods further, quantitative analysis has been

carried out in Tables 4.1 and 4.2. The tables contain L1, L2 and L∞-norm errors

for ψ and ω. In these tables we have also assessed the spatial order of convergence

of the newly developed scheme. To our delight, the present methods carry nearly

fourth-order of convergence in all the three norms. Additionally, to provide a sense

of increase in computational cost with increase in grid size the relative CPU time is

also been presented in Tables 4.1 and 4.2. It is seen that with grid points increasing

by a factor of four from 21×21 to 41×41 the computational time increases twenty

fold for both second and third order schemes. With subsequent refinement of mesh

from 41× 41 to 81×81, we notice approximately 6 fold and 11 fold increase in relative

computational time for second and third order schemes respectively. This increase

might be slower convergence of the associated system of algebraic equations. This

in turn could relate to increased clustering of the grid at specific regions.

Fig. 4.2a and 4.2b depict the contours of exact solution and numerical solu-
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Table 4.1: Problem 1: L1, L2 and L∞-norm errors of ψ and ω at different grids and spatial

rate of convergence computed using the second-order accurate scheme.

21× 21 order 41× 41 order 81× 81

ψ L1 5.288883e-5 3.95 3.425683e-6 3.98 2.170506e-7

L2 7.294481e-5 3.96 4.672874e-6 3.99 2.942073e-7

L∞ 1.838957e-4 3.96 1.178966e-5 3.99 7.412592e-7

ω L1 3.048381e-4 3.95 1.972423e-5 3.98 1.252045e-6

L2 4.125221e-4 3.96 2.645734e-5 3.99 1.666696e-6

L∞ 1.008048e-3 3.97 6.436643e-5 3.99 4.045326e-6

CPU time 1.0 19.98 128.58

Table 4.2: Problem 1: L1, L2 and L∞-norm errors of ψ and ω at different grids and spatial

rate of convergence computed using the third-order accurate scheme.

21× 21 order 41× 41 order 81× 81

ψ L1 5.336185e-5 3.95 3.455915e-6 3.98 2.189649e-7

L2 7.359994e-5 3.96 4.714214e-6 3.99 2.968013e-7

L∞ 1.855857e-4 3.96 1.189500e-5 3.99 7.478539e-7

ω L1 3.048408e-4 3.95 1.972424e-5 3.98 1.252045e-6

L2 4.125248e-4 3.96 2.645734e-5 3.99 1.666696e-6

L∞ 1.008052e-3 3.97 6.436644e-5 3.99 4.045326e-6

CPU time 1.07 21.47 238.26

tions for ψ and ω respectively. For both the flow variables, the exact and numeri-

cally approximated contours are seen to be indistinguishable from each other, which

demonstrates the accuracy of the schemes.

4.4.2 Problem 2: Convection and diffusion of Gaussian pulse

This validation study is intended to capture the unsteady convection and diffu-

sion of a Gaussian pulse in the domain [0, 2]× [0, π
2
]. This flow situation is governed

by equation (4.1) and is equipped with the analytical solution

φ(r, θ, t) = −
1

4t + 1
exp

[
(ar cos θ − c1t− 0.1a)2

a(4t+ 1)
+

(ar sin θ − c2t− 0.1a)2

a(4t+ 1)

]
.
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Fig. 4.2: Problem 1: Exact and numerical contour plots of (a) ψ and (b) ω (black: ex-

act solution; blue: numerical solution obtained using second-order accurate scheme; red:

numerical solution obtained using third-order accurate scheme).

(4.31)

Equation (4.31) directly provides the initial condition and Dirichlet boundary condi-

tions. At t = 0, equation (4.31) represents a pulse of unit height centred at (0.1,0.1)

and as time advances it moves along the line θ =
π

4
.

The convection coefficients have been set at values c1 = c2 = 150 for the current

study. Further, a=100 and δt = 2.5e−5 are kept fixed. A nonuniform grid has been

used in the tangential direction that clusters in the vicinity of θ =
π

4
and uniform

grid spacing has been maintained along the radial direction. The nonuniform grid

is generated using the trigonometric function

θj = Lθ

{
j

nθ
+
λθ
Θθ

sin

(
jΘθ

nθ

)}
. (4.32)

A typical 33 × 33 grid so formed has been displayed in Fig. 4.3a. The degree of

clustering is decided by the clustering parameter λθ = 0.6. Values of the other

constants have been taken as Lθ =
π

2
and Θθ = 2π.

Comparisons between the numerical and exact solutions at two different times

t = 0.25 and t = 0.50 are presented in Fig. 4.3b and 4.3c respectively. The numerical

solutions are seen to be almost indistinguishable from the exact solution conforming

to the efficiency of the present scheme to capture the moving pulse accurately. L1,

L2, and L∞-norm errors at each time step for the entire computation time are
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Fig. 4.3: Problem 2: (a) Typical 33× 33 grids ; exact and numerical contour plots of the

Gaussian pulse at (b) t = 0.25, (c) t = 0.50; (d) time evolution of L1 (square), L2 (circle)

and L∞ (triangle)-norm errors (black: exact solution; blue: numerical solution obtained

using second-order accurate scheme; red: numerical solution obtained using third-order

accurate scheme).

presented in Fig. 4.3d. The similar temporal decaying nature of all three norm

errors justifies the convergence of the present scheme.

A quantitative assessment of the numerical solutions has been carried out in

Tables 4.3 to 4.6. In Tables 4.3 and 4.4, we have calculated the spatial order of

convergence using second-order accurate scheme and third-order accurate scheme

respectively, for the computations done on three grids of different sizes 33 × 33,

65 × 65 and 129 × 129 with δt = 2.5e − 5. For the temporal rate of convergence

computations are carried out with δt = 0.02, δt = 0.01 and δt = 0.005 on a 129×129

grid. The clustering parameter has been kept at λθ = 0.1 to make spatial error much

smaller compared to the temporal error. Computed errors at various times along
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Table 4.3: Problem 2: L1, L2 and L∞-norm errors of φ at different grids and spatial rate

of convergence, computed using second-order accurate scheme.

Time 33× 33 order 65× 65 order 129× 129

0.25 L1 7.337950e-4 4.20 4.000405e-5 4.02 2.458262e-6

L2 2.248532e-3 4.13 1.285689e-4 4.06 7.682233e-6

L∞ 1.353525e-2 3.92 8.922124e-4 4.07 5.329986e-5

CPU time 1.0 6.76 75.34

0.50 L1 3.322361e-4 4.16 1.862575e-5 4.00 1.160263e-6

L2 1.027532e-3 4.10 6.000015e-5 4.04 3.639986e-6

L∞ 6.769672e-3 4.02 4.174938e-4 3.98 2.645134e-5

CPU time 2.31 14.81 157.0

Table 4.4: Problem 2: L1, L2 and L∞-norm errors of φ at different grids and spatial rate

of convergence, computed using third-order accurate scheme.

Time 33× 33 order 65× 65 order 129× 129

0.25 L1 7.337756e-4 4.20 3.990618e-5 4.06 2.390596e-6

L2 2.248623e-3 4.13 1.285848e-4 4.06 7.687400e-6

L∞ 1.353756e-2 3.92 8.920667e-4 4.07 5.328468e-5

CPU time 6.22 98.01 592.28

0.50 L1 3.322961e-4 4.16 1.859497e-5 4.04 1.132402e-6

L2 1.027676e-3 4.10 6.002334e-5 4.04 3.646823e-6

L∞ 6.769691e-3 4.02 4.174422e-4 3.98 2.643113e-5

CPU time 15.22 204.50 1225.30

with the temporal accuracy have been presented in Tables 4.5 and 4.6. Both the

schemes show near fourth-order convergences in space and a temporal accuracy of

order two.

Numerical results presented in Problem 1 and Problem 2 reveal that both theoret-

ically second-order and third-order schemes report optimal fourth-order convergence

for the nonuniform grids considered. Indeed, there is little difference between the

results churned out by the numerical schemes. In the context of the two problems,

one can see comparable behaviour of numerical solutions computed using the sec-
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Table 4.5: Problem 2: L1, L2 and L∞-norm errors of φ at different values of δt and

temporal rate of convergence, computed using second-order accurate scheme.

Time δt = 0.02 order δt = 0.01 order δt = 0.005

0.50 L1 1.223078e-3 2.02 3.021393e-4 2.00 7.539567e-5

L2 4.799785e-3 2.01 1.192406e-3 2.00 2.976308e-4

L∞ 4.591702e-2 2.07 1.096137e-2 2.03 2.684967e-3

CPU time 1.61 1.11 1.0

0.80 L1 6.590089e-4 2.10 1.544171e-4 2.03 3.775900e-5

L2 3.082619e-3 2.05 7.453994e-4 2.02 1.837000e-4

L∞ 3.164249e-2 2.06 7.566624e-3 2.03 1.850045e-3

CPU time 3.48 2.37 2.06

Table 4.6: Problem 2: L1, L2 and L∞-norm errors of φ at different values of δt and

temporal rate of convergence, computed using third-order accurate scheme.

Time δt = 0.02 order δt = 0.01 order δt = 0.005

0.50 L1 2.098479e-3 2.01 5.204632e-4 2.00 1.299927e-4

L2 6.556053e-3 2.01 1.632436e-3 2.00 4.077176e-4

L∞ 4.591483e-2 2.07 1.096071e-2 2.03 2.684826e-3

CPU time 12.03 10.17 14.61

0.80 L1 1.202700e-3 2.09 2.823366e-4 2.03 6.907145e-5

L2 4.319963e-3 2.05 1.045744e-3 2.02 2.577760e-4

L∞ 3.164084e-2 2.06 7.566229e-3 2.03 1.849941e-3

CPU time 26.67 22.79 34.23

ond and the third-order accurate schemes. This could be attributed to truncation

error terms associated with both the second and third-order schemes as discussed

earlier especially for grids where spacing varies gradually. Similar to the steady case

discussed in previous problem, here also it is seen that there is six to fifteen fold

increase in relative computational time as the number of grid points increase by a

factor of four for both the schemes. Further, Tables 4.3 and 4.4 reveal third-order

scheme is a bit more computationally expensive and could be attributed to increased

computations associated with the determination of the coefficients. In Tables 4.5

and 4.6 it is interesting to note that even with smaller temporal step size both the
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schemes report comparable CPU time to simulate up to time 0.8. It is felt that with

smaller δt convergence of associated system is faster as smaller δt tends to decrease

the condition number of the system. But the same can only be confirmed after a

detailed study. Thus, keeping relevant to the previous chapters, we compute the

succeeding problems by adopting the second-order accurate scheme only.

4.4.3 Problem 3: Driven polar cavity

Flow inside a polar cavity is also been simulated using the present scheme. This

problem is governed by the transient form of N-S equations (4.28) which can be

given as




ωt =
1

Re

(
ωrr +

1

r
ωr +

1

r2
ωθθ

)
−
(
uωr +

v

r
ωθ

)
,

ω = −

(
ψrr +

1

r
ψr +

1

r2
ψθθ

)
.

(4.33a)

(4.33b)

This particular problem was first studies experimentally and numerically by Fuchs

and Tillmark [45] and it has been considered extensively in various studies ever since

to validate numerical schemes, particularly for physical domains with circular arc

as boundaries [26, 93, 123, 132, 176].

(a) (b)

Fig. 4.4: Problem 3: (a) Schematic diagram and (b) typical 33×33 centrosymmetric polar

grid for flow inside a polar cavity.

The problem is described in the annular cavity [1, 2]×

[
π − 1

2
,
π + 1

2

]
. An illus-

tration of the problem is presented in Fig. 4.4a. The domain of driven polar cavity
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problem is the region ABCD: the length AB = DC is equal to radius R0 = 1 of

the inner circle. The circular arc
>
DA rotates uniformly maintaining a unit velocity

in the clockwise direction. This rotation drives the flow inside the cavity. All the

other boundary walls are stationary throughout the simulation. From this, we can

derive the boundary conditions for the velocity components as: u = 0, v = −1

at the moving boundary and u = 0, v = 0 at all the stationary boundaries. We

set streamfunction values to be zero (ψ = 0) at all the boundaries. The Reynolds

number for this flow is defined as Re =
v0R0

ν
, where v0 is the magnitude of surface

velocity of the side
>
DA. This is imperative to mention here that all the boundary

walls follow no-slip condition with the fluid inside the cavity, which supplies the

following vorticity boundary conditions.

On the right wall AB, ∀1 ≤ i ≤ nr :

ωi,1 = −
2

r2i h
2
θ1

ψi,2. (4.34)

On the top wall BC, ∀1 ≤ j ≤ nθ :

ωnr ,j = −
2

h2rnr−1

ψnr−1,j. (4.35)

On the left wall CD, ∀1 ≤ i ≤ nr :

ωi,nθ
= −

2

r2i h
2
θnθ−1

ψi,nθ−1. (4.36)

On the bottom wall AB, ∀1 ≤ j ≤ nθ :

ω1,j = −
2

h2r1
(ψ2,j − hr1)−

1

r1
. (4.37)

After we compute the values of vorticity, the boundary values for its gradients are

calculated using one-sided approximations those are analogous to equations (3.8)–

(3.11).

On the right wall AB, ∀1 ≤ i ≤ nr:

φθi,1 = −
hθ1

hθ2(hθ1 + hθ2)
φi,3+

hθ1 + hθ2
hθ1hθ2

φi,2−
2hθ1 + hθ2

hθ1(hθ1 + hθ2)
φi,1+O

(
hθ2(hθ1 + hθ2)

2
)
.

(4.38)
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On the top wall BC, ∀1 ≤ j ≤ nθ:

φrnr,j
=

hrnr−1

hrnr−2
(hrnr−1

+ hrnr−2
)
φnr−2,j −

hrnr−1
+ hrnr−2

hrnr−1
hrnr−2

φnr−1,j

+
2hrnr−1

+ hrnr−2

hrnr−1
(hrnr−1

+ hrnr−2
)
φnr,j +O

(
hrnr−1

(hrnr−1
+ hrnr−2

)2
)
.

(4.39)

On the left wall CD, ∀1 ≤ i ≤ nr:

φθi,nθ
=

hθnθ−1

hθnθ−2
(hθnθ−1

+ hθnθ−2
)
φi,nθ−2 −

hθnθ−1
+ hθnθ−2

hθnθ−1
hθnθ−2

φi,nθ−1

+
2hθnθ−1

+ hθnθ−2

hθnθ−1
(hθnθ−1

+ hθnθ−2
)
φi,nθ

+O

(
hθnθ−1

(hθnθ−1
+ hθnθ−2

)2
)
.

(4.40)

On the bottom wall DA, ∀1 ≤ j ≤ nθ:

φr1,j = −
hr1

hr2(hr1 + hr2)
φ3,j+

hr1 + hr2
hr1hr2

φ2,j−
2hr1 + hr2

hr1(hr1 + hr2)
φ1,j+O

(
hr2(hr1 + hr2)

2
)
.

(4.41)
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Fig. 4.5: Problem 3: Contours of streamfunction (left) and vorticity (right) computed with

65× 65 grids: (a) Re = 55, (b) Re = 350, (c) Re = 1000, (d) Re = 2000, (e) Re = 3000.
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While working with this problem, Lee and Tsuei [93] witnessed that large er-

rors in the solution propagate near the rotating boundary. Besides, vortices are

also created at the solid boundaries of the cavity. Therefore it is necessary to in-

troduce maximum number of grids in the vicinity of cavity walls as can be seen in

Fig. 4.4b. This has been achieved using modified versions of the grid generating

equations (4.30) and (4.32) with proper choices of the constants Lr = Lθ = 1.0,

λr = λθ = −0.55 and Θr = Θθ = 2π.

The computations for this problem are carried out for Reynolds numbers 55,

350, 1000, 2000, 3000 and 5000. The post processed steady-state streamfunction

(ψ) and vorticity (ω) contours for 55 ≤ Re ≤ 3000 are plotted in Fig. 4.5. As Re

increases, the primary vortex moves gradually towards the right wall of the cavity.

Similar to the case of lid-driven square cavity, with increase in Reynolds number

the secondary vortices opposite to the moving wall get bigger in size, particularly

the secondary left vortex gains significantly more size as compared to the secondary

right vortex and for higher values of Re the former tends to occupy the entire left

side of the cavity. Further, at Re = 3000 a tertiary vortex is seen to form at the top

left corner of the cavity. It is to be mentioned that all the findings are in accordance

with those available in the literature [26, 93, 123, 132, 176] both experimentally

and numerically. Furthermore, as the Re value increases, the vorticity contours

shift from the cavity’s center towards its walls, creating extremely strong vorticity

gradients close to the walls.

Fig. 4.6 presents the velocity profiles along the radial line θ =
π

2
computed on

grids of four different sizes 17 × 17, 33 × 33, 65 × 65 and 97 × 97 for Re = 55 and

350. We can see from these figures that the computed results are unaffected by the

change in grid points and a 65 × 65 grid is sufficient to achieve grid-independent

solution for both the Re values.

For this problem, we have also computed the perceived rate of convergence [30].

Despite best efforts, we could not trace the estimation of perceived order on nonuni-

form polar grid. The increased flow complexity in case of higher Re value makes

the estimation of rate of convergence computation extensive [30]. Therefore,s the

perceived order of convergence has been computed only for the cases Re = 55 and
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Fig. 4.6: Problem 3: The u and v velocities along the line θ =
π

2
computed on grids of

different sizes: (a) Re = 55, (b) Re = 350.

350. We employ grids of three different sizes viz. 33× 33, 65× 65 and 97× 97 and

compute with δt = 1.0e−4 to minimize temporal error. The perceived order of con-

vergence for streamfunction has been estimated in Table 4.7, whereas convergence

of vorticity is compiled in Table 4.8. From these tables, we can observe that the

order of convergence for vorticity in L2-norm error drops below quadratic because of

increased flow complexity. Moreover, it is amply clear that the mesh 97× 97 should

be ideally suited to compute in conjunction with the present discretization strategy.

Next, we carry out a qualitative comparison of the numerically attained results

for Re = 55 and 350 with those of the experimental findings reported by Fuchs

and Tillmark [45]. In Fig. 4.7 we present the numerically simulated streamlines for

Re = 55 and 350 at the steady state along with those of the experimental ones.

Moreover, the numerically obtained u and v velocities along θ =
π

2
are compared

to those of [45] in Fig. 4.8. Both numerical and experimental solutions show good

agreement with each other for each Re value. The u and v velocity profiles along the

line θ =
π

2
for Re values 1000, 2000 and 3000 are presented in Fig. 4.9, though there

is no quantitative evidence available for the same in the literature. Additionally, the

distribution of the vorticity along
>
DA and θ =

π

2
are depicted in Fig. 4.10. It can be

seen that both the radial and tangential velocities become stronger in the vicinity

of the circular walls of the cavity, whereas the vorticity gradients can be seen to

develop near all the boundary walls at higher values of Reynolds numbers. These
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Table 4.7: Problem 3: L1 and L2-norm difference in streamfunction and perceived order

of convergence in space.

Re
Grid

size
L1−norm order L2−norm order

55 332

‖ψ2 − ψ1‖=4.829202e-5 ‖ψ2 − ψ1‖=7.723404e-5

652 3.17 2.64

‖ψ3 − ψ1‖=6.470839e-5 ‖ψ3 − ψ1‖=1.039171e-4

972

350 332

‖ψ2 − ψ1‖=1.710546e-4 ‖ψ2 − ψ1‖=2.594515e-4

652 2.61 2.41

‖ψ3 − ψ1‖=2.469988e-4 ‖ψ3 − ψ1‖=3.867575e-4

972

Table 4.8: Problem 3: L1 and L2-norm difference in vorticity and perceived order of

convergence in space.

Re
Grid

size
L1−norm order L2−norm order

55 332

‖ω2 − ω1‖=3.057162e-1 ‖ω2 − ω1‖=2.983460e0

352 2.26 1.52

‖ω3 − ω1‖=4.672710e-1 ‖ω3 − ω1‖=5.259851e0

972

350 332

‖ω2 − ω1‖=3.919087e-1 ‖ω2 − ω1‖=3.232429e0

652 2.52 1.66

‖ω3 − ω1‖=5.739092e-1 ‖ω3 − ω1‖=5.534059e0

972

observations are in line with those reported in [176]. In Tables 4.9 and 4.10, we have

compiled all the quantitative data referring to the primary and secondary vortices.

Tables 4.9 and 4.10 also carry out a comparison of strength and location of the
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vortices with those available in the literature for 55 ≤ Re ≤ 3000. It is heartening

to notice that our computation compares well with the firmly established studies

available in the literature.

(a)

(b)

Fig. 4.7: Problem 3: Comparison of experimental [45] (left) and numerical (right) steady-

state streamfunction contours of driven polar cavity problem: (a) Re = 55, (b) Re = 350.
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Fig. 4.8: Problem 3: Comparisons of steady-state u and v velocity profiles along the radial

line θ =
π

2
with [45]: (a) Re = 55, (b) Re = 350.

Subsequently, we carry out our computation for Re = 5000 on a 129 × 129

nonuniform polar grid. To the best of our knowledge, the solution to this problem
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Fig. 4.9: Problem 3: Steady-state (a) u and (b) v velocity profiles along θ =
π

2
for different

Re values.
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Fig. 4.10: Problem 3: Vorticity contours for different Re values along (a) the moving wall

and (b) θ =
π

2
.

for Reynolds numbers as high as 5000 has not been computed using a transient

scheme. Sen and Kalita [132], in their work, used a steady code to arrive at a

converged solution at Re = 5000. Also, authors used a 83×119 grid with exponential

clustering at the inner wall along the radial direction. In this work, we intend to

better capture the physics of the flow and hence use appropriate clustering near

all boundaries. It is interesting to notice that the present discretization of the N-S

equations shows a gradual convergence towards a stable periodic solution rather than

a steady-state solution as reported in [132]. Time evolution of the physical property

of the flow inside the cavity helps to establish the periodic nature of the solution.
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Table 4.9: Problem 3: Strength and position of the centre of primary vortex for different

Reynolds numbers.

Re Grid Size ψmax x y

55 [176] 513× 513 0.1155 0.141 1.281

[132] 83× 119 0.1155 0.138 1.285

[26] 81× 81 0.1156 0.142 1.285

Present 65× 65 0.1153 0.143 1.282

350 [176] 513× 513 0.1263 0.167 1.414

[132] 83× 119 0.1263 0.163 1.411

[26] 81× 81 0.1266 0.171 1.414

Present 65× 65 0.1243 0.158 1.411

1000 [176] 513× 513 0.1275 0.169 1.439

[132] 83× 119 0.1275 0.166 1.436

[26] 81× 81 0.1275 0.174 1.444

Present 65× 65 0.1270 0.167 1.448

2000 [176] 513× 513 0.1253 0.188 1.447

Present 97× 97 0.1250 0.194 1.447

3000 [132] 109× 157 0.1240 0.196 1.447

Present 97× 97 0.1237 0.194 1.447

2500 2525 2550 2575 2600
540
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560
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580

590
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Fig. 4.11: Problem 3: (a) Temporal progression and (b) power spectrum of total energy

of the flow inside a polar cavity for Re = 5000.
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Table 4.10: Problem 3: Strength and position of the centre of secondary vortices for

different Reynolds numbers.

Secondary Right Secondary Left

Re ψmin x y ψmin x y

55 [176] -8.690e-6 0.881 1.730 -4.690e-6 -0.880 1.729

[132] -7.964e-6 0.883 1.731 -4.994e-6 -0.876 1.742

[26] -8.102e-6 0.882 1.735 -4.391e-6 -0.882 1.735

Present -9.602e-6 0.879 1.726 -5.140e-6 -0.879 1.726

350 [176] -5.490e-4 0.794 1.697 -3.990e-4 -0.702 1.695

[132] -5.469e-4 0.796 1.690 -4.009e-4 -0.696 1.699

[26] -5.435e-4 0.796 1.689 -4.010e-4 -0.701 1.703

present -5.525e-4 0.790 1.692 -3.388e-4 -0.704 1.697

1000 [176] -2.120e-3 0.757 1.713 -3.460e-3 -0.590 1.552

[132] -2.099e-3 0.755 1.717 -3.480e-3 -0.589 1.549

[26] -2.106e-3 0.762 1.705 -3.488e-3 -0.592 1.559

Present -2.238e-3 0.749 1.729 -3.446e-3 -0.599 1.537

2000 [176] -3.080e-3 0.734 1.743 -4.830e-3 -0.522 1.406

Present -3.151e-3 0.734 1.734 -4.835e-3 -0.519 1.393

3000 [132] -3.325e-3 0.724 1.757 -7.089e-3 -0.459 1.156

Present -3.559e-3 0.714 1.770 -7.062e-3 -0.452 1.149

Temporal progression of the total energy inside the cavity is presented in Fig. 4.11a.

We perform the spectral density analysis for the variation of energy which results

in a single frequency peak as can be seen in Fig. 4.11b. This further ascertains

the periodicity of the flow. Nevertheless, accurate estimation of the frequency and

time-period of the solution leaves further scope of investigation of this problem.

4.4.4 Problem 4: Natural convection in horizontal concen-

tric annulus

We further analyze the efficiency of the newly developed scheme to tackle heat

transfer by implementing it to solve natural heat convection inside a horizontal
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concentric annulus. This problem has gained a considerable amount of attention

from researchers over the years because of its relevance and applicability in various

engineering and physical situations, such as heat exchangers, solar collectors, nuclear

reactors, thermal energy storage systems, etc. [25, 85, 102, 121, 137, 140, 162,

174, 184]. It is governed by the transient Boussinesq equations which in the polar

coordinate system are given as




ωt = Pr

(
ωrr +

1

r
ωr +

1

r2
ωθθ

)
−
(
uωr +

v

r
ωθ

)

+RaPr

(
Tr cos θ −Tθ

sin θ

r

)
,

ω = −

(
ψrr +

1

r
ψr +

1

r2
ψθθ

)
,

Tt =

(
Trr +

1

r
Tr +

1

r2
Tθθ

)
−
(
uTr +

v

r
Tθ

)
.

(4.42a)

(4.42b)

(4.42c)

T = 1

T = 0
(a) (b)

Fig. 4.12: Problem 4: (a) Problem setup and (b) typical noununiiform polar grid for heat

transfer in horizontal annulus.

The problem setup consists of two concentric circular walls of which the inner

circle has a radius Ri and the outer circle has a radius Ro. Two different tempera-

tures are maintained at the circular walls of the annulus as shown in Fig. 4.12a. The

simulation is carried out for Ra values 2.38× 103, 9.50× 103, 4.70× 104, 6.19× 104

and 1.02× 105. The values of the Pr is set as 0.706, 0.717 and 0.718. For each case,

we have considered L/Di = 0.8, where L = Ro − Ri and Di = 2Ri. The inner wall

is heated to a unit nondimensional temperature (T = 1) keeping the outer wall’s

temperature at zero (T = 0). This temperature difference serves as the driving
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force for the flow in this simulation. The values of streamfunction and vorticity at

the inner and outer boundaries of the annulus are obtained respectively from no-slip

criteria between the fluid and the walls of the annulus and one-sided approximations

introduced in equations (4.38)–(4.41). The prior studies help us to identify that the

near boundary region of the inner circle and the radial line θ =
π

2
should be observed

cautiously. This motivates us to work with a mesh where grid points are clustered

in these regions (see Fig. 4.12b). The grid is generated by making adequate changes

in equations (4.30) and (4.32) and choosing the associated parameters as Lr = 0.8,

Lθ = 2π, Θr = π, Θθ = 2π, λr = −0.4 and λθ = 0.25.

(a) (b)

Fig. 4.13: Problem 4: Steady-state isotherms at Ra = 4.7 × 104, Pr = 0.706: (a) experi-

mental solution [85] and (b) numerical solution.

The numerical results obtained from the present simulation have been presented

in Fig. 4.13 and 4.14. We carry out a qualitative comparison in Fig. 4.13 where the

numerically obtained steady-state isotherm contours for Ra = 4.7×104, Pr = 0.706

are depicted alongside that of the experimental study [85]. The figure illustrates

how the fluid near the cold outer wall of the annuli flows down to the bottom

due to buoyancy caused by the temperature difference, while the fluid near the

hot inner wall of the annulus flows up along the inner boundary and a strong plume

emerges above the inner boundary at θ =
π

2
. The temperature field symmetry occurs

as the flow achieves a steady state. Good agreements are obtained between the

experimental and numerical solutions. Fig. 4.14 contains the steady-state isotherms

alongside the streamfunctions for different Ra values. The figure shows that for lower
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Ra values natural convection is dominated by heat conduction. Almost concentric

isotherms can be seen for Ra = 2.38 × 103 while two symmetric vortices can be

seen caused by the weak natural convection. As the value of Ra increases the fluid

motion driven by buoyancy force also increases, leading to a stronger convection.

Accordingly, the isotherms start moving upward and change shape to form a plume.

The plume becomes more prominent with a further increase in the Ra value.

(a) (b) (c) (d)

Fig. 4.14: Problem 4: Steady-state isotherms and streamlines: (a) Ra = 2.38 × 103, (b)

Ra = 9.50× 104, (c) Ra = 6.19× 104, (d) Ra = 1.02 × 105.

Additionally, for this problem we have also evaluated the average Nusselt number

(Nu), which is the arithmetic mean of the surface-averaged Nusselt numbers of the

annulus walls that are defined as

Nui = −
1

π
Ri

∫ π
2

−
π
2

Tr|r=Ri
dθ (4.43)

and

Nuo = −
1

π
Ro

∫ π
2

−
π
2

Tr|r=Ro
dθ. (4.44)

The average Nusselt number thus obtained is compared to the existing studies in

Table 4.11. Our computed values agree well with those available in the literature at

Ra = 2.38×103, Pr=0.716. But it is seen to differ by about 10% as Ra is increased.
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Table 4.11: Problem 4: Comparison of average nusselt number (Nu) computed using

different schemes for different Rayleigh numbers.

Ra Pr [85](expt.) [137] [140] Present

2.38× 103 0.716 1.38 1.320 1.3882

9.50× 103 0.717 2.01 1.9901 1.999 1.6909

6.19× 104 0.718 3.32 3.3092 3.361 2.9176

1.02× 105 0.718 3.66 3.6475 3.531 3.2994

4.4.5 Problem 5: Forced convection over a stationary heated

circular cylinder

Finally, we carry out numerical simulation for the classical problem of heat

transfer in the fluid flow over the stationary heated circular cylinder. The sta-

tionary heated circular cylinder is presumed to be of unit radius (R0 = 1) and

immersed in a fluid of infinite domain maintained at unit nondimensional tempera-

ture [7, 17, 34, 58, 69, 87, 90, 110, 127, 132, 145, 147, 171]. The cylinder is kept in

a cross-flow having uniform velocity u = U∞ = 1. The 2D flow configuration of the

problem is shown in Fig. 4.15. The cylinder is placed at the center of the circular

domain. Following [43], we have set the far-field boundary at a distance R∞ = 45R0.

On the solid surface r = R0, the velocity components follow the no-slip boundary

conditions, i.e. u = v = 0 and hence ψ = 0. At the far stream r = R∞ in front

of the cylinder, the potential flow is prescribed a unit value u = U∞ = 1. For this

problem, where the simulation results in periodic vortex shedding, we have imposed

the convective boundary conditions φt+U∞φr = 0 (where φ represents ψ, u or v) at

the downstream boundary, to capture the shedding process efficiently. In the direc-

tion of the flow, the convective boundary conditions can best facilitate continuous

shedding of vortices when they leave the computational domain [12, 72, 91, 167].

In addition, at the far field vorticity value decays and becomes ω = 0. However,

it possesses nonzero value at the inner boundary, which may be derived by making

use of the fact that ψ = 0, ψr = 0 on r = R0 in equation (4.42b). The vorticity

gradients at all the boundaries are computed using one-sided approximations.
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Fig. 4.15: Problem 4: (a) Configuration of the problem and (b) typical 65×97 nonuniform

grid.

The Reynolds number (Re) and the Prandtl number (Pr) are the essential nondi-

mensional parameters for this problem. In this present investigation, we fix the

Prandtl number at Pr = 0.7 for all the values of Re under consideration. As shown

in Fig. 4.15, the computational domain is discretized using a nonuniform grid of size

129× 193 for all the combinations of Pr and Re. With the circular cylinder placed

at the center of the domain, grid is clustered around the cylinder wall.

In this problem, we calculate the drag (CD) and lift coefficients (CL) using the

following formulas [69, 84, 143],

CD =
1

Re

∫ 2π

0

{(
∂ω

∂r

)

R0

− ωR0

}
sin θdθ, (4.45)

CL =
1

Re

∫ 2π

0

{(
∂ω

∂r

)

R0

− ωR0

}
cos θdθ. (4.46)

We start by verifying the grid-independence of the present numerical solution.

Here, we compute for Re = 10 and present the distribution of surface vorticity and

local Nusselt number (Nu0) for three grids of different sizes viz. 65×97, 97×129 and

129× 193 in Fig. 4.16. Here, angle θ is measured in the counterclockwise direction

starting from the rear stagnation point of the cylinder. The figures show that the

numerical results are nonresponsive to the change in grid points and a grid of size

129× 193 is sufficient for accurate simulation of the flow.
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Fig. 4.16: Problem 4: Distribution of (a) vortcity and (b) local Nusselt number at steady

state along the cylinder surface for Re = 10.

(a)

(b)

(c)

Fig. 4.17: Problem 4: Steady-state vorticity contours (left) and isotherms (right): (a)

Re = 10, (b) Re = 20, (c) Re = 40.

A validation study is first performed for low Reynolds number flows. At the low

Reynolds number range (Re ≤ 50), the vortex structure in the wake remains steady

and symmetric, thus the temperature field shows similar steady and symmetric

characteristics as well. Here, we select to work with Re = 10, 20, 40 and 45.

Fig. 4.17 depicts the symmetric vorticity and isotherm contours at steady state for

various Reynolds numbers. Similar vorticity and isotherm patterns can be found in
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Fig. 4.18: Problem 4: Comparison of (a) surface vorticity distribution for Re = 10, 20

and 40 and (b) local Nusselt number distribution for Re = 10, 20 and 45 with existing

numerical results [7, 31].

various studies available in the literature.

Present results of surface distribution of vorticity for Re = 10, 20 and 40 and

local Nusselt number for Re = 10, 20 and 45 are portrayed in Fig. 4.18a and 4.18b

respectively; these values are compared with the previous numerical results from

Dennis and Chang [31] and Bharti et al. [7]. It can be seen that the two sets of

data show excellent agreement with each other. The largest value of the local Nus-

selt number is obtained at the front stagnation point of the cylinder; the value of

the Nusselt number then reduces gradually towards the rear stagnation point and

attains its lowest value thereat (see Fig. 4.18b). In Table 4.12, we have compiled

our computed values of L/D, where L is the length of the recirculation bubble

formed behind the cylinder, the drag coefficient CD and the average Nusselt num-

ber Nu for Re = 10, 20 and 40. As can be seen from the figures and table, the

recirculation length and the average Nusselt number depend directly on Re, while

the drag coefficient varies inversely. Table 4.12 presents a quantitative comparison

of the present solution. Computational results are compared with reference data

[7, 17, 34, 58, 69, 87, 90, 110, 127, 132, 145, 147, 171]. Once again, the adaptability

of the present scheme is evident from the proximity of our results with the results

reported in prior well-established studies.

Next, we are interested in studying the flow for Re = 100, 140 and 200. The
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Table 4.12: Problem 4: Comparison of steady-state wake length, drag coefficient and

average Nusselt number for different Re.

Re = 10 %-diff. Re = 20 %-diff. Re = 40 %-diff.

L/D [58] 0.237 4.22 0.921 0.54 2.245 0.36

[110] 0.945 3.07 2.26 0.31

[127] 0.885 3.50 2.105 7.03

[171] 0.93 1.51 2.31 2.47

[69] 0.917 0.11 2.207 2.08

[132] 0.252 1.98 0.926 1.08 2.323 3.01

[17] 0.95 3.58 2.39 5.73

[87] 0.266 7.14 0.937 2.24 2.139 5.33

Present 0.247 0.916 2.253

CD [58] 3.170 10.50 2.152 4.23 1.499 2.33

[110] 2.144 3.68 1.589 3.46

[127] 2.0597 0.06 1.5308 0.21

[171] 2.091 1.43 1.565 1.98

[69] 2.0193 2.07 1.5145 1.29

[132] 2.699 5.11 1.949 5.75 1.439 6.60

[17] 2.119 2.74 1.582 3.03

[87] 2.690 5.46 2.160 4.58 1.576 2.66

Present 2.837 2.061 1.534

Nu [34] 1.8673 0.37 2.5216 2.32 3.4317 4.48

[90] 1.8101 2.57 2.4087 2.26 3.2805 0.08

[147] 1.6026 15.86 2.2051 11.70 3.0821 6.35

[145] 1.8600 0.18 2.4300 1.36 3.2000 2.43

[7] 1.8623 0.30 2.4653 0.09 3.2825 0.14

[17] 1.8671 0.56 2.4718 0.35 3.2912 0.41

Present 1.8567 2.4631 3.2778

transition of the vorticity and isotherm contours from steady to periodic state for

Re=100 is depicted in Fig. 4.19. This may be considered as the representation of

the flow for the other Re values considered, although each requires a different time

to attain periodicity. As can be seen in Fig. 4.19a, there is no formation of a vortex
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Fig. 4.19: Problem 4: Evolution of vorticity (left) and isotherms (right) for Re = 100 at

(a) t = 0.5, (b) t = 25, (c) t = 50, (d) t = 75, (e) t = 90, (f) t = 100, (g) t = 250.

structure in the flow field initially. Nevertheless, at the beginning, a thermal bound-

ary layer is seen to be generated near the surface of the heated cylinder. As time

marches, two opposite symmetrical vortices are formed simultaneously which grow

in size with time, and remain symmetrically stable for a particular period as shown

in Fig. 4.19b and 4.19c. During this period, the thickness of the thermal bound-

ary layer increases; the temperature distribution also remains symmetric about the
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Fig. 4.20: Problem 4: Temporal evolution of (a) CD, (b) CL, (c) (Nu) at the cylinder

surface, (d) power spectra of CD and CL for Re = 100, 140 and 200.

line θ = 0. After a certain point of time, a fluctuation develops in the flow which

destroys the symmetry in the vortices and temperature distribution and they start

to oscillate downstream which can be noticed in Fig. 4.19d. As the flow develops

further, the length and breadth of vortices at the rear of the cylinder continue to

grow and eventually are shed from the cylinder towards downstream while heat is

transported. It is heartening to see that the present scheme could capture the char-

acteristic feature of the periodic flow, the so-called von Kármán vortex street very

efficiently. With the vortex shedding taking place, confined hot fluid clusters are

observed in the flow (see Fig. 4.19e). Subsequently, Fig. 4.19f and 4.19g indicate

the synchronized variation of flow and temperature fields, where vortex shedding

phenomena plays a decisive role in the heat transfer at the downstream.

The time history of the drag coefficient (CD), lift coefficient (CL) and aver-
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age Nusselt number (Nu) displayed in Fig. 4.20a–4.20c pertinently implies that

the newly developed scheme has accurately captured the periodic state for all the

Reynolds numbers considered for the study. The periodicity is further justified by

the single dominating peak for CD and CL in the spectral density analysis (see

Fig. 4.20d). The distribution of local Nusselt number (Nu0) over the cylinder sur-

face for different Re values are represented in Fig. 4.21a. In Fig. 4.21b we carry out

a qualitative comparison between the surface distribution of Nu0 for Re = 200 com-

puted in the present study with those of [109, 183]; which reveals close agreement

of the present results with those taken from the literature. We then compare the

numerical values of the flow parameters CD, CL, St and Nu with existing studies

in Table 4.13. The numerical streaklines for Re = 140 computed using the present

scheme is presented in Fig. 4.22, along with the streakline reported in the experi-

mental work of Taneda [153]. From the comparison we note that vortex creation

and dissipation as captured in the experimental work is effectively computed by the

current formulation. Exceptional similarity between the present numerical results

and the existing numerical and experimental results indeed verify and validate the

scheme.
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Fig. 4.21: Problem 4: (a) Distribution of local Nusselt number on the cylinder surface

for Re = 100, 140, 200 and (b) comparison of local Nusselt number distribution over the

cylinder surface for Re = 200 with results from [109, 183].

120



Table 4.13: Problem 4: Comparison flow parameters CD, CL, St and Nu for different Re.

Re = 100 Re = 140 Re = 200

CD [92] 1.37 ± 0.009 1.34 ± 0.030

[6] 1.38 ± 0.010 1.37 ± 0.046

[129] 1.394 ± 0.007 1.357 ± 0.038

[86] 1.325 ± 0.026 1.333 ± 0.046

Present 1.317 ± 0.008 1.308 ± 0.020 1.329 ± 0.043

CL [92] ± 0.323 ± 0.430

[6] ± 0.340 ± 0.700

[129] ± 0.191 ± 0.453

[86] ± 0.306 ± 0.351

Present ± 0.22 ± 0.361 ± 0.543

St [92] 0.160 0.187

[6] 0.169 0.200

[129] 0.165 0.197

[86] 0.162 0.200

Present 0.172 0.183 0.195

Nu [19] 5.12 5.87 7.15

[18] 5.26 7.67

[183] 7.23

[15] 5.07 6.08

Present 5.02 6.20 7.55

(a) (b)

Fig. 4.22: Problem 4: Comparison between the instantaneous streaklines for Re = 140

captured in the (a) experimental study of Taneda [153] and (b) present computation.
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4.5 Conclusion

In this chapter, we extend the philosophy of previous chapter for 2D transient

convection and diffusion equation on Cartesian coordinates to polar coordinates to

tackle nonrectangular geometries. The transformation-free HOC finite difference

scheme proposed here can be applied directly on polar grids, unlike most of the

schemes from the literature on polar grids which use transformation between physi-

cal and computational domain. We have also combined the virtue of nonuniformity

with the present scheme. This levitates the efficiency and robustness of the scheme

as it acquires the advantage of accumulating and scattering grid points as neces-

sary. The formulation has theoretical accuracy of order two in both space and

time. Subsequently, a novel HOC scheme with third-order spatial convergence and

second-order temporal convergence has also been developed in this chapter. Exten-

sive comparison revealed negligible difference in numerical solutions computed using

these two methods. It is worthwhile to mention that for linear problems with ana-

lytical solution both the schemes exhibit a spatial convergence of order four which

is higher than the theoretical values. Although, the third-order accurate scheme

bears the same efficiency as the second-order accurate scheme, it turned out to be

more expensive in regard to computational time. This encouraged us to employ the

second-order accurate scheme on the rest of the test problems. The robustness of

this scheme is examined by applying it to as many as three benchmark problems of

fluid flow and heat flow, viz. driven polar cavity, natural convection in horizontal

concentric annulus and forced convection around a heated stationary cylinder. In

order to resolve the Neumann type boundary conditions, we have also introduced

one-sided approximation for first-order derivatives. For the problem of forced con-

vection around heated stationary cylinder, both the steady and periodic solutions

are being accurately captured by the present scheme. Additionally, important as-

pects such as the von Kármán vortex phenomena and influence of vortex shedding

on the heat transfer are also studied comprehensively for this fluid body interac-

tion problem. The accuracy of the computed solutions is estimated from the results

obtained in the test problems, which are very close to the existing results both qual-
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itatively and quantitatively. We have reported the perceived order of convergence

for all the variables in flow problems which are not supplemented with analytical

solutions. It is heartening to see that our solutions could attain the theoretical order

of convergence both spatially and temporarily in all the cases.
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