
Chapter 5

Compact computation of laminar flow past

an impulsively started circular cylinder: a

comparison with experimental results

5.1 Introduction

Fluid patterns around cylinders of circular and square cross-sections have drawn

a great deal of attention over years due to their theoretical significance and pragmatic

relevance. The historical development and numerical assessment of the flow past a

square cylinder have been well documented in section 3.4.5. However, with the

development of compact FD scheme to tackle circular geometries in the previous

chapter, we are now interested to carry out the investigation of fluid flow past a

circular cylinder. Although the flow past a circular cylinder is quite similar to

that of a square cylinder as far as instabilities are concerned, there are significant

distinctions in the separation process and the resulting dependency of aerodynamic

forces and shedding frequency on the value of Re. Unlike in the case of square

cylinder, the points of separation are not fixed for circular cylinder. Moreover,

the width of the recirculation bubble behind the square cylinder is at least unit

side length, whereas in case of a circular cylinder it is less than half a diameter

which results in shorter and narrower region for the von Kármán vortex formation.

These properties result in a quite different flow around a circular cylinder than the
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flow around a cylinder with square cross-section. Besides, these problem exhibit

all the fluid mechanics characteristics of incompressible viscous flow despite having

the simplest geometry. Because of these engaging nature of the flow, such problems

have been studied intensively by the CFD community over a long period of time. As

a result of this a number of theoretical, numerical and experimental studies related

to such problems can be found in the literature. Please refer to the documents

[5, 177, 178] and the works cited there in.

The pioneering theoretical study related to uniform fluid flow around a circular

cylinder were done by Blasius [8] back in 1908, using the concept of boundary layer

theory. In this work, the investigation focused on the time of first separation, the

time at which the fluid begins to separate from the surface the the cylinder. This

theory was further carried over by various researchers [53, 128, 168, 172] considering

the restricted case of infinite Reynolds number. In later time, many initial flow

characteristics of this idea are described at higher Re values. In this regard the

work of Wang [164], Collins and Dennis [21] deserve special mention. Although

the results of these investigations were only achieved for a brief period of time in

the initial stage of the flow, they accurately indicated the basic structure of the

introductory position.

Since Roshko [125], experimental research on vortex shedding behind a circular

cylinder have been quite popular. In his work, Roshko first divided the behaviour

of the flow past a circular cylinder into four big regimes, sub-critical, critical, super-

critical and trans-critical, depending on the value of the Reynolds number. Over

the course of time several other visualization based experimental studies [10, 23,

24, 44, 112, 161, 169] have been carried out for various Reynolds numbers. It

is important to mention here that in [10] development of primary and secondary

vortices have been studied extensively in both qualitative and quantitative aspects

for Reynolds numbers up to 104. In fact, this work reports the first experimental

existence of secondary vortex phenomena, which rotates in the opposite direction

from the main vortex as a result of the second separation of the flow. Even after the

availability of numerous experimental, studies the detailed experimental knowledge

on the unsteady flow field is rather limited owning to the difficulties involved in
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taking measurements in such flows. Nevertheless, these experimental works have

provided great insight to the formation of the unsteady wake. They also provide us

with abundance of experimental results to be compared with the numerical solutions,

and help in the development of computational methods to investigate the flow for

Reynolds number hitherto unexplored in the experimental studies.

Apart from the theoretical and experimental studies there is another class of

purely numerical schemes to simulate flow around a circular cylinder. Numerical

schemes could potentially avoid some of the limitations associated with theoretical

and experimental investigations and hence provide a vivid understanding into the

physics of the flow. Thom [154] in 1933, for instance, initiated the numerical studies

of the steady flow at Re = 10 and 20. He showed that the numerical solution

deviated significantly from the approximated analytical solution but agreed well

with the observed pattern. Kawaguti [82] then used an iterative numerical scheme

and obtained the solution at Re = 40. Later in 1958, Payne [119] carried out

numerical computations for Re = 40 and 100 to investigate the unsteady flow around

the cylinder. However, the author forced the flow to be symmetrical around the

equator of the cylinder and hence solution at Re = 100 did not exhibit the von

Kármán vortex shedding. It was in the work of Hirota and Miyakoda [59] where first

numerical evidence of Kármán vortex street was ever been reported. The problem

has been studied in [12, 31, 40, 41, 43, 58, 69, 71, 72, 84, 87, 98, 99, 126] for Reynolds

number between 10 and 10000. These investigations are primarily focused on the

time evolution of unsteady separated vortex behind the cylinder.

A plenty of different HOC schemes have been employed to tackle this problem

due to the higher accuracy and smaller working stencil. Although the majority

of the schemes found in the literature are based on the well known discretization

approaches: finite difference, finite volume and finite element [31, 43, 73, 98, 119],

the higher-order compact FD schemes are gaining more popularity because of their

ease of implementation. While the finite difference approach is well suitable for

rectangular geometries, it possesses a great challenge while tackling circular ge-

ometries, where it is challenging to construct a body fitted coordinate system.

Therefore, in most of the finite difference methods for the problem use the tra-
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ditional transformation technique between physical plane and computational plane

[31, 40, 41, 71, 72, 73, 74, 126]. Limited studies to develop higher order com-

pact finite difference scheme that can work directly on polar grids without any grid

transformation [26, 69, 123]. Nevertheless, few other classes of techniques such as

the vortex method, hybrid vortex method, large eddy simulation (LES) method,

Lattice Boltzmann (LB) method, smoothed-particle hydrodynamics (SPH) method

have also been widely used as a tool for the simulation of such flows [12, 58, 84, 111].

The purpose of this investigation is to study the vortex dynamics behind a cir-

cular cylinder for a wide range of Reynolds numbers and to establish the versatile

nature of the scheme developed in the previous chapter. We have employed the

compact scheme that have been developed in Chapter 4 to solve the streamfunction-

vorticity formulation of the 2D N-S equations in cylindrical polar coordinates. For

low and moderate Re, the simulations are carried out until the flow becomes steady

or it reaches a periodic state. However, the solution at the initial stage of the flow is

computed in case of the higher values of Re. Detailed discussion on the flow struc-

ture for all the Reynolds number are provided. The qualitative and quantitative

comparison reveals close proximity of the current solution with available numerical

and experimental solutions.

5.2 Governing Equations

The problem considered here is incompressible, unsteady viscous flow over an im-

pulsively started circular cylinder with unit radius (R0 = D/2 = 1). At the upstream

boundary (R∞), we have considered an incoming flow with uniform freestream ve-

locity U∞. The flow is governed by the streamfunction-vorticity (ψ̃− ω̃) formulation

of incompressible N-S equations which in polar (r̃, θ) coordinates are given as




∂ω̃

∂t̃
+ ũ
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(5.1a)

(5.1b)
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where tilde sign (∼) denotes the dimensional quantities. The radial velocity ũ = 1
r̃
∂ψ̃
∂θ

and tangential velocity ṽ = −∂ψ̃
∂r̃
.

The nondimensional counterparts of the flow variables in the above-mentioned

equations are obtained from

r =
r̃

R0
, t =

t̃U∞

R0
, ψ =

ψ̃

U∞R0
,

ω =
ω̃R0

U∞

, u =
ũ

U∞

, v =
ṽ

U∞

,

along with the Reynolds number, for this problem, defined as Re = U∞D/ν following

[10, 40]. Therefore, the N-S equations in nondimensional form become

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)
.

(5.2a)

(5.2b)

5.3 Schematic of the problem and numerical is-

sues

U∞

(a) (b)

Fig. 5.1: (a) Flow configuration and (b) typical 61× 81 nonuniform grid with λθ = 0.6.

The 2D flow configuration of the problem is shown in Fig. 5.1a. The cylinder is

placed at the centre of the circular domain. Following [43], we have set the far-field

boundary at a distance R∞ = 45R0. On the solid surface r = R0, the boundary
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conditions for velocity components are those of no-slip conditions, i.e. u = v =

0 =⇒ ψ = 0. In the far stream r = R∞ in front of the cylinder, the potential flow is

prescribed a unit value u = U∞ = 1. For this problem, where the simulation results

in periodic vortex shedding, we have imposed the convective boundary conditions

φt + U∞φr = 0 (where φ represents ψ, u or v) at the downstream boundary, to

capture the shedding process efficiently. In the direction of the flow, the convective

boundary conditions can best facilitate continuous shedding of vortices when they

leave the computational domain [12, 72, 91, 167]. In addition, at the inner boundary,

vorticity may be derived by making use of the fact that ψ = 0, ψr = 0 on r = R0 in

equation (5.2b). The vorticity gradients at all the boundaries are computed using

one-sided approximations already suggested in previous chapters.

The second-order compact scheme for the unsteady, incompressible N-S equa-

tions developed in Chapter 4 can work on nonuniform polar grids without any

domain transformation. The proposed scheme renders equation (5.2a) to fully dis-

cretized form as follows,
(
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Ĉ7 −

1

ri

)
ψn+1
ri,j

− Ĉ8
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respectively.

The values of Ĉi’s are explained in section 4.2. Theoretically the scheme is at least
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second-order accurate in space and has a Crank-Nicolson type second-order temporal

accuracy. A nonuniform polar grid is generated in the domain Ω = [R0, R∞]×[0, 2π].

In the θ-direction the grid points are clustered in Kármán vortex street region making

sufficient changes in equation (4.32) and setting the parameters Lθ = 2π and λθ =

0.4. For this problem, more grid points are accumulated near the cylinder surface

in the r-direction using the function,

ri = exp

(
λi

nr

)
,

where the parameter λ has the same values as the outer radius R∞ of the compu-

tational domain. A nonuniform grid of size 61× 81 thus formed has been shown in

Fig. 5.1b.

Here, we calculate the drag (CD) and lift coefficients (CL) using the equa-

tions (4.45) and (4.46) mentioned in the previous chapter.

5.4 Numerical results and discussions

Investigations of laminar flows across a circular cylinder have established the

fact that the flow stays irrotational everywhere immediately after the fluid motion

is commenced. As fluid motion progresses, vorticity is generated on the cylinder

wall which transports to the rear stagnation point where we see the first separation.

Momentarily after the time of first separation for flows with Re > 5, a recirculating

region develops as a result of flow reversal and it continuous to grow leading to two

symmetrical vortices. No visible flow distortion takes place for flows with Re ≤ 5

which has also been confirmed by the present investigation. Although the boundary

layer separates from the cylinder at Re ≈ 6, the flow remains steady and laminar.

A thorough review of literature reveals that there is a value of the Reynolds number

known as the critical Reynolds number (Rec) and beyond this value the flow turns

unsteady [10, 23, 31, 40, 98, 126]. Numerical studies indicates this Rec to lie between

43 and 50, where the Hopf bifurcation occurs. For Re > Rec, the flow shows

periodic shedding of vortices, characterised by the von Kármán vortex street. The

flow becomes more complicated with further increase in Reynolds number as the
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secondary and tertiary vortices start to appear. Taking all these points into account

and devolving on the attribute observed within each range, our study is divided into

the following parts for 10 ≤ Re ≤ 9500,

A. Flows for 10 ≤ Re ≤ 40, well-known as steady-state region.

B. Flows for 100 ≤ Re ≤ 300, wherein the wake behind the cylinder becomes

unsteady. The wake oscillation grows in amplitude and finally creates sequence

of periodic vortices referred to as the von Kármán vortex street.

For Re > 300, we consider flow close to the cylinder only on the early span of the

simulation.

C. Flows for 300 < Re ≤ 550, where flow properties are unsteady, secondary

eddies develop at the beginning but do not split up further. The flow is char-

acterised by the occurrence of (i) bulge phenomena and (ii) isolated secondary

vortex.

D. Flows for 1000 ≤ Re ≤ 9500, which is characterised by the most complicated

secondary α- and β-phenomena and tertiary sub-α- and sub-β-phenomena.

A. Flows for 10 ≤ Re ≤ 40

It has already been mentioned that for 10 ≤ Re ≤ Rec two symmetrical vortices

are developed behind the cylinder and they grow with time till the flow reaches a

steady state. This regime has been studied extensively by fluid dynamics researchers

over the years using both steady as well as transient codes. Here, two flow separates

from the cylinder wall and two counter rotating symmetric vortices are formed at

the backside of the cylinder, known as the recirculating bubbles. These vortices

grow with time in wake length L, the distance between the points A and B on

the horizontal axis θ = 0 and in angle of separation θs. The pictorial explanations

of L and θs can be found in Fig. 5.2. Finally, as the flow reaches a steady state

these vortices settle down in form of a wake. The physical properties of the wake

finally developed depend on the Re under consideration. For the present study the
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flows are simulated for Re = 10, 20 and 40. In Fig. 5.3, we have shown the steady-

state streamlines and respective vorticity contours for different Re’s. We can see the

evolution of a stationary recirculating bubble behind the cylinder in each case. From

the steamlines presented, it is amply clear that the size of these recirculating regions

increase with the increase in Re values. The time evolution of CD is presented in

Fig. 5.4a which eventually establishes the steady nature of the flow for the Re values

considered here.

Fig. 5.2: Geometrcial parameters.

Table 5.1: Grid-independence of the numerical results on three different grids for steady-

state flows.

Re = 10 Re = 20 Re=40

Grid G1 G2 G3 G1 G2 G3 G1 G2 G3

L 0.498 0.501 0.516 1.830 1.832 1.832 4.450 4.395 4.448

θs 28.821 28.821 28.821 43.176 43.176 43.196 53.027 53.703 53.027

CD 2.694 2.688 5.683 2.056 2.063 2.066 1.530 1.534 1.538

We then carry out the grid-independence study of the numerical results. In

Table 5.1, we compare the parameters L, θs and CD on nonuniform polar grids of

three different sizes G1:65×97, G2:97×129 and G3:129×193 with δt = 0.01 for each

computation. Besides, we have also shown the distribution of vorticities computed

using grids G1, G2 and G3 over the surface of the cylinder for Re = 40 in Fig. 5.4b.
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(a)

(b)

(c)

Fig. 5.3: Steady-state steamline (left) and vorticity (right) contours: (a) Re = 10, (b)

Re = 20, (c) Re = 40.
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Fig. 5.4: (a) Evolution of CD with time for Re = 10, 20 and 40; (b) Distribution of vortcity

at steady state along the entire surface of the cylinder for Re = 40.

These analysis confirms the independency of our numerical solutions on grid size and

indicates that a grid of size 129 × 193 is sufficient for accurate resolution of these

flows. A comparison of the values of the parameters L, θs and CD computed in the

133



Table 5.2: Comparison of L, θs and CD at steady state for different Re.

L %-diff. θs %-diff. CD %-diff.

Re=10 [58] 0.474 8.86 26.89 7.18 3.170 15.36

[132] 0.504 2.38 29.732 3.06 2.699 0.59

[87] 0.531 2.82 29.69 2.96 2.690 0.26

Present 0.516 28.821 2.683

Re=20 [24] 1.86 1.51 44.4 2.71

[58] 1.842 0.54 42.96 0.55 2.152 4.00

[111] 1.92 4.58 42.79 0.95 2.111 2.13

[127] 1.77 3.50 41.3277 4.52 2.0597 0.31

[69] 1.8331 0.06 42.9248 0.63 2.0193 2.31

[132] 1.851 1.03 43.141 0.13 1.949 6.00

[87] 1.874 2.24 42.66 1.26 2.160 4.35

Present 1.832 43.196 2.066

Re=40 [24] 4.38 1.56 53.4 1.04

[58] 4.49 0.94 52.84 0.01 1.499 2.60

[111] 4.51 1.37 52.84 0.01 1.574 2.29

[127] 4.21 5.65 51.0249 3.57 1.5308 0.47

[69] 4.4135 0.78 51.3012 3.01 1.5145 1.55

[132] 4.625 3.83 53.226 0.72 1.439 6.88

[87] 4.278 3.97 53.08 0.44 1.576 2.41

Present 4.448 52.844 1.538

present study, with well established numerical and experimental studies [24, 58, 69,

87, 111, 127, 132] is presented in Table 5.2. The table also contains the %-difference

between the present data with the data taken from literature. Furthermore, the

surface distribution of the post processed vorticity of the present simulation with

those of references [31, 40] are shown in Fig. 5.5. It is heartening to see that the

numerical results obtained in the present study are in line with the experimental and

numerical results taken from the literature, both quantitatively and qualitatively.
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Fig. 5.5: Comparison of the surface distribution of vorticity for low Re’s with existing

results [31, 40].

B. Flows for 100 ≤ Re ≤ 300

Earlier researches have confirmed that for Re ≥ Rec the flow around a circular

cylinder eventually becomes periodic in nature and develops vortex shedding behind

the cylinder popularly represented by von Kármán vortex street. In this section,

we have chosen Re = 100, 200 and 300 which typically exhibits this phenomenon.

For the flow patterns of this range of Re, the recirculating zone behind the cylinder

evolves quickly due to the rapid growth of velocities with time and the development

of secondary vortices. The wake gains in size and strength as time progresses. The

evolution of the maximum width lmax and the corresponding abscissa xlmax
of the

recirculating bubble (see Fig. 5.2) for Re = 200 has been compiled in Table 5.3.

We also provide the experimental values of these parameters given by Bouard and

Coutanceau [10] in this table. Very close match can be seen between the numerical

and experimental solutions in all the cases.

As the flow evolves, it passes through different phases to eventually develop

periodic vortex shedding. We have shown these stages for Re = 100 in Fig. 5.6,

which shows the streamlines at different instants of the flow. Shortly after the flow
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Table 5.3: Comparison of numerical values of lmax and xlmax
for various Re and t with

experimental results from [10] (within the parenthesis).

t→ 1.0 1.5 2.0 2.5 3.0

Re = 200 xlmax/D 0.38 0.55 0.71 0.78 0.88

(0.35) (0.51) (0.65) (0.76) (0.86)
lmax/D 0.94 1.01 1.06 1.12 1.16

(0.94) (0.97) (1.02) (1.07) (1.10)

Re = 550 xlmax/D 0.26 0.48 0.64 0.74 0.81

(0.30) (0.50) (0.66) (0.76) (0.85)
lmax/D 0.96 1.00 1.06 1.12 1.18

(0.94) (0.98) (1.03) (1.10) (1.16)

Re = 3000 xlmax/D 0.18 0.31 0.34 0.71 0.78

(0.19) (0.26) (0.40) (0.73) (0.84)
lmax/D 0.99 1.02 1.10 1.16 1.22

(0.93) (0.98) (1.04) (1.11) (1.20)

has started, a pair of symmetric eddies develop behind the cylinder (Fig. 5.6a–5.6c).

As can be seen in Fig. 5.7a, soon after the flow is started impulsively CD attains a

very high value which in the course of the time begins to fall. During this process

the vortices start to grow in size as well (Fig. 5.6a–5.6d). As the flow settles down,

a partially steady state is reached with CL = 0, the span of this state decreasing

as the value of Re increases. From Fig. 5.6d onwards, appearance of some small

fluctuation in the streamline is seen to be set up at the trail of the eddy, which

eventually destroys the symmetry of the flow about θ = 0 line. For Re = 100, this

phenomena can be seen at around t = 55 in Fig. 5.7a. This particular instant is know

as the first bifurcation point, which is lesser for higher values of Reynolds number

(Fig. 5.11). At this stage, the eddies behind the cylinder gradually start to oscillate

(Fig. 5.6e–5.6h) and the flow begins to exert a nonzero lift force on the cylinder.

Shortly thereafter, vortices start shedding periodically resulting in the von Kármán

vortex street. Over time, until a limiting condition is reached, the vortex shedding

frequency increases. The drag coefficient increases once again as vortex shedding

occurs, as the flow fully develops, both the drag and lift coefficients ultimately reach

a periodic state (Fig. 5.7a). The periodicity of vortex shedding is further confirmed
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by the single dominant peak for both CD and CL in the spectral density analysis

presented in Fig. 5.7b. The flows for Re = 200 and 300 undergo the same evolution

process described here although the duration of the phases varies with the value

of Re. It is imperative to mention here that for all the values of Re considered in

this section, the asymmetry of the flow sets in spontaneously without any artificial

perturbation technique being introduced.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5.6: Evolution of steamlines for Re = 100 at (a) t = 2.5, (b) t = 15, (c) t = 40, (d)

t = 60, (e) t = 70, (f) t = 80, (g) t = 90, (h) t = 100, (i) t = 150 and (j) t = 200.

Analyzing the characteristics of the streamlines and sreaklines behind a circular

cylinder during vortex shedding is one of the key objectives of this section. For

proper insight of the flow field characters it is necessary to visualize both streamlines

as well as streaklines. In this regard, we have portrayed the post-processed steady-

state contours of streamfunction, vorticity and streaklines for Re = 100, 200 and 300

in Fig. 5.9. The steamlines and vorticity contours shown in the figure corresponds to
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Fig. 5.7: (a) Temporal evolution of CD and CL; (b) Power spectrum of CD and CL for

Re = 100.
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Fig. 5.8: Temporal evolution of (a) CD and (b) CL for Re = 200 and 300.

a point when CL attains its peak value for temporally periodic solution. As can be

seen in Fig. 5.6a–5.6c, at the beginning of the flow, the wake is in form of a closed

loop. However, this closed structures becomes open as vortex shedding starts and

fluid flows in from the surrounding. Although the streaklines thin down at this stage,

they remain continuous without breakage in Fig. 5.9. In other words, streaklines

work as flexible barriers which can never be traversed by the fluid. The surrounding

fluid enters the wake from both the sides and moves towards the cylinder surface

eventually being driven out of the wake. Once shed, the vortices are carried away

by the flowing fluid. The two sets of vortices entwine each other in the downsrtream
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region which is accurately portrayed in Fig. 5.9a(ii), 5.9b(ii), and 5.9c(ii). Once

vortex shedding starts, the vortices are shed alternatively from the two sides of the

cylinder in a periodic manner. This is also evident from the crests and troughs in

the streamlines shown in Fig. 5.9a(i), 5.9b(i) and 5.9c(i). These figures also depict

the alternative positive and negative values of ω of the eddies present in Fig. 5.9a(ii),

5.9b(ii) and 5.9c(ii) respectively. Moreover, we see that if we increase the Reynolds

number the vortex shedding takes place in a more frequent manner. Additionally,

in incompressible flows, the vorticity is generated only at the solid boundary, in

this case the cylinder surface, and this vorticity remains inside within the fluid. In

Fig. 5.9, the streaklines presented also provide a clear view of the spots in the flow

field where the vorticity is intrinsic. A qualitative comparison of our numerically

computed streakline for Re = 105 with the experimental streakline provided by

Taneda in [153] is carried out in Fig. 5.10. A close resemblance of essential features

in our computed streakline pattern can be seen with the same referred from the

literature.
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(i) (ii) (iii)
(a)

(i) (ii) (iii)
(b)

(i) (ii) (iii)
(c)

Fig. 5.9: Steady-state streamlines (left), vorticity contours [negative values are represented by dotted lines] (middle) and streaklines (right): (a)

Re = 100, (b) Re = 200, (c) Re = 300.
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Table 5.4: Comparison of Strouhal number, drag coefficient and lift coefficient of steady periodic flow for Re = 100, 200 and 300.

Re = 100 Re = 200 Re = 300

St CD CL St CD CL St CD CL

[43] 0.194 1.31 ± 0.65 0.205 1.32 ± 0.84

[170] 0.163 0.185 0.203

[144] 0.160 1.39 0.180 0.200 1.27

[92] 0.160 1.37 ± 0.009 ± 0.323 0.187 1.34 ± 0.030 ± 0.430 0.200

[6] 0.169 1.38 ± 0.010 ± 0.340 0.200 1.37 ± 0.046 ± 0.700

[167] 0.170 1.379 ± 0.357 0.195 1.262 ± 0.708 0.206 1.174

[129] 0.165 1.394 ± 0.007 ± 0.191 0.197 1.357 ± 0.038 ± 0.453 0.209 1.401 ± 0.068 ± 0.607

[87] 0.162 1.325 ± 0.026 ± 0.306 0.200 1.333 ± 0.046 ± 0.351 0.210 1.410 ± 0.0645 ± 0.620

Present 0.171 1.316 ± 0.007 ± 0.219 0.200 1.330 ± 0.042 ± 0.542 0.210 1.380 ± 0.0782 ± 0.745
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Fig. 5.10: Comparison between the instantaneous streaklines for Re = 105 captured in

the (a) experimental study of Taneda [153] and (b) present computation.

We further determine the Strouhal number (St) using the formula St = fD/U∞,

with f being the dominant frequency of CL. The dominant frequencies of CD and

CL are calculated with the help of spectral analysis of temporal evolution of these

coefficients. The power spectrums for Re = 200 and 300 are shown in Fig. 5.11a.

Spectral density analysis clearly establishes that drag coefficient CD oscillates twice

as fast as the lift coefficient CL. To probe further, we display the phase portrait

of CD and CL in Fig. 5.11b. Subsequently, we compare our computed values of

the parameters St, CD and CL with well-established numerical and experimental

results for the Re values under consideration. In all the cases we observe very close

agreement. The table also indicates that the vortex shedding frequency is directly

proportional to Re, which has also been corroborated in Fig. 5.9.

C. Flows for 300 < Re ≤ 550

The numerical simulation of significant features viz. (i) the bulge phenomenon

and (ii) the secondary eddy phenomenon, is the primary objective of the investiga-

tion in this range. These secondary phenomena have been reported in a number of

experimental and numerical studies [10, 58, 98, 126].

In the beginning of the flow, distortions in streamlines arise in the regions be-

tween vortex separation points and the rear stagnation point. Shortly thereafter,

the streamlines near the surface of the cylinder forms a bulge pattern by deviating
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Fig. 5.11: (a) Power spectrum of CD and CL for Re = 200 and 300; (b) Phase portrait of

CL vs CD for different Re’s.

from the cylinder, commonly referred to as the bulging phenomenon. By accurately

computing the instant at which the surface vorticity curve touches the ω = 0 line,

the time of occurrence of this secondary phenomena can be determined. Fig. 5.12a

and 5.12c reveal that the bulge phenomenon for Re = 300 and 550 can be seen

approximately at time t = 2.0 and t = 1.3 respectively (red colored curves). To

visualize the phenomenon further, we have presented the streamlines for Re = 300

and 550 at their respective times in Fig. 5.12b and 5.12d.

In flows with Re > 300, over time, the bulge brings about another flow separa-

tion to form a small secondary eddy which rotates opposite to that of the primary

vortex. This event is called the secondary eddy phenomenon. We can clearly see

the appearance of a pair of secondary vortices for Re = 550 at time t = 1.5 which

is presented in Fig. 5.13a. As can be seen in Fig. 5.13, the secondary vortices gain

strength and size as time advances. Moreover, the existence of secondary eddies

can be confirmed from the surface distribution of vorticities presented in Fig. 5.12a

and 5.12c as well, where two successive changes of sign of a graph implies the exis-

tence of a vortex. Fig. 5.12c evidently proves the presence of the secondary vortex

phenomena for Re = 550 at t = 1.5 which sustains for later part of the simulation

too as the corresponding graphs traverse ω = 0 line twice (black colored curves).

The secondary eddy phenomenon is clearly absent in Fig. 5.12a for Re = 300.
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Fig. 5.12: The bulge phenomenon: (a) Time evolution of surface vorticity and (b) stream-

lines at t = 2.0 for Re = 300; (c) Time evolution of surface vorticity and (d) streamlines

at t = 1.3 for Re = 550.

A qualitative comparison of our numerically computed streamlines with the ex-

perimental results of Bouard and Coutanceau [10] for Re values 300 and 550 at

time t = 2.5 has been presented in Fig. 5.14. These figures exemplify the extreme

closeness between present numerical solutions with the experimental ones, hence

validating the adaptability of the present scheme. The parameters lmax and xlmax
at

the beginning of the flow for Re = 550 along with the experimental results [10] have

been compiled in Table 5.3. Further for Re = 550, values of the radial velocity u

along the line θ = 0 behind the cylinder has been compared with the same reference

in Fig. 5.15a. It is heartening to see very close resemblance between the present

numerical results and well established experimental results.
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(a) (b)

Fig. 5.13: The secondary eddy phenomenon: Streamlines for Re = 550 at (a) t = 1.5 and

(b) t = 3.0.

(a) (b)

Fig. 5.14: Experimental streamlines (top half) from [10] and numerically estimated stream-

lines (bottom half) at nondimensional time t = 2.5: (a) Re = 300, (b) Re = 550 .

D. Flows for 1000 ≤ Re ≤ 9500

For Re values beyond 550, flow around circular cylinder eventually becomes

3D and turbulent. However, experimental studies show that the flow is still laminar

during the early stages of the flow. The primary focus of this range is to simulate the

flow near the cylinder wall for an early time span. In this range of Reynolds number,

the solution experiences interesting flow phenomena viz. α, β, sub-α and sub-β.

The α-phenomena, although was first witnessed in the numerical and experimental

investigations of Thoman and Szewczyk [155] and Honji and Taneda [62] in 1969,
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Fig. 5.15: The radial velocity distribution on θ = 0 line behind the cylinder at different

instants of the flow and comparison with experimental results from [10]: (a) Re = 550,

(b) Re = 3000.

was coined by Bouard and Coutanceau [10] later in 1980. Over the few years, the

presence of α- and β-phenomena in the secondary level was documented in several

works [69, 72, 74, 98, 99, 126]. Of late, the existence of α- and β-phenomena at

tertiary level has been reported by Kalita and Sen in [73, 74], where they have

termed these as sub-α- and sub-β-phenomena. In the present study, we restrict our

discussion to secondary α- and β-phenomenon only.

For Re = 1000, we have portrayed the evolution of streamlines in Fig. 5.16.

The secondary eddy phenomenon for this value of Reynolds number takes place

shortly after time t = 1.0 and it becomes distinct at t = 1.25 in Fig. 5.16c. This

secondary eddy gradually gets bigger to an extent for its exterior boundary to touch

the boundary of the primary vortex and splits the primary vortex into two parts.

We can see the separation of the primary vortex at t = 1.5 in Fig. 5.16d. As

time progresses, these two secondary vortices become equivalent in strength and

size and constitute a pair. This phenomenon is known as the α-phenomenon. Flow

for Re = 1000 exhibits the α-phenomenon at t = 2.0 as can be seen in Fig. 5.16e.

These observations are also substantiated by Fig. 5.18a where we have depicted the

distribution of surface vorticity at the same time instants as those of the streamlines

shown in Fig. 5.16. Fig. 5.18a shows that the curve of surface vorticity changes its
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.16: Evolution of steamlines for Re = 1000 at (a) t = 0.5, (b) t = 1.0, (c) t = 1.25,

(d) t = 1.5, (e) t = 2.0 and (f) t = 2.5.

sign thrice at time t = 1.25 indicating formation of two secondary vortices inside

the region θ ∈(36◦, 77◦) (black colored curves). These secondary eddies ultimately

become equal in size and strength approximately at t = 2.0 (red colored curve).
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Flow field for Reynolds number more than 1000 is found to be immensely complex

and as such, we concentrate on the flow behaviour near the cylinder’s wall only. Here,

we fixed the outer boundary at R∞ = 8R0 and employed a grid of size 193× 361 on

the computational domain for the simulations of Re = 3000, 5000 and 9500. The

effect of this change in far-field boundary on the computed solution is presented

in Table 5.5. In the table, we have compiled the value of the parameters L and

θs at three different times t = 1.0, 1.5 and 2.0 when R∞ is at 8R0 and 45R0 for

Re = 5000. Note that the simulation with R∞ = 45R0 uses a grid of size 193× 321.

The table suggests that the effect of grid size and computational domain brings an

insignificant variation on the flow structure. The %-difference in both L and θs are

seen to be much less than 10 as we change R∞ from 45R0 to 8R0, which drops even

further in the later part of the flow.

Table 5.5: Effect of domain modification on wake length an separation angle at different

times for Re = 5000.

t = 1.0 t = 1.5 t = 2.0

L θs L θs L θs

R∞ = 8R0 0.229 81.767 0.615 87.330 1.103 88.097

R∞ = 45R0 0.219 77.563 0.634 84.944 1.107 88.748

%-diff. 4.566 5.420 2.997 2.809 0.361 0.733

Now, we advance our investigation by computing the flow for Re = 3000. The

value of flow parameters lmax and xlmax
for Re = 3000 at the early span of the

flow are compared with the existing results [10] in Table 5.3. In Fig. 5.15, we have

compared the distribution of radial velocity u along θ = 0 line behind the cylinder

at different times with those reported in the same experimental study. Similar to

the cases for Re = 200 and 550, yet again the numerical solutions appear to be

strikingly similar to the experimental ones for Re = 3000. Fig. 5.17 presents the

streamlines of the flow at different instants. From the streamlines one can clearly

witness the presence of the α-phenomenon for Re = 3000. Fig. 5.17a and 5.17b

captures the formation of secondary eddy and the α-phenomenon for Re = 3000 at

much earlier time than that of Re = 1000. This analysis is further supported by the

surface vorticity contours portrayed in Fig. 5.18b.
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(a) (b)

(c) (d)

Fig. 5.17: Experimental streamlines (top half) from [99] and numerically estimated stream-

lines (bottom half) for Re = 3000 at (a) t = 1.0, (b) t = 1.5, (c) t = 2.0 and (d) t = 2.5.
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Fig. 5.18: Time history of surface vorticity: (a) Re = 1000, (b) Re = 3000.
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(a) (b)

(c) (d)

Fig. 5.19: Evolution of streamlines for Re = 5000 at (a) t = 1.0, (b) t = 1.15, (c) t = 1.5

and (d) t = 2.0 with experimental snapshots from [10] wherever available.

(a) (b) (c)

Fig. 5.20: Evolution of streamlines for Re = 9500 at (a) t = 1.0, (b) t = 1.5 and (c) t = 2.0

with experimental snapshots from [10].

Next, we extend our numerical scheme to study the flow past a circular cylinder

for Re = 5000 and 9500. In Fig. 5.19 and 5.20, we have arranged the streamlines

150



(a) (b)

(c) (d)

Fig. 5.21: Streamlines for Re = 5000 at time t = 2.5: comparison with (a) experimental

study [10] and numerical studies (b) Kalita and Sen [72], (c) Kalita and ray [69] and (d)

Sanyashiraju and Manjula[126].

at different time instants for Re = 5000 and 9500 respectively. This flow range is

characterised by the important feature known as the β-phenomenon. For these Re

values, a very narrow recirculating wake attached to the surface of the cylinder is

created at a very early stage due to back flow near the cylinder. As the flow develops

further in the downstream region, the core of this recirculating zone rotates at a

faster speed than the alternative part of the separated zone, developing a secondary

vortex which gains strength and size quickly. Soon afterwards, this secondary vortex

separates the primary vortex into two parts, one of which is the core. Although

separated, the smaller part maintains a connection with its core. Soon afterwards,
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Fig. 5.22: (a) Distribution of surface vorticity for Re = 5000 at different instants and (b)

the radial velocity distribution on θ = 0 line behind the cylinder and comparison with

numerical and experimental results from [10, 73, 87] for Re = 5000 at nondimensional

time t = 3.0.

the channel connecting the two parts of the primary vortex becomes confined due

to the strengthening of the secondary vortex. As the flow develops further, the

primary vortex gains strength and both of its parts overpower the secondary vortex.

This so called β-phenomenon is clearly visible at around time t = 1.15 in Fig. 5.19b

for Re = 5000 and t = 1.0 for Re = 9500 in Fig. 5.20a. Despite portraying the

same visualization in the vicinity of the separation point, the α- and β-phenomena

are treated as two distinct features owning to their different fundamentals. For

the flow evolution depicted in Fig. 5.19, we can conclude that for Re = 5000 the β-

phenomenon swiftly transforms to the α-phenomenon detailed earlier in this section,

which can be seen in Fig. 5.19b and 5.21a. However, due to the higher instability of

the flow, no evidence of the α-phenomenon has been established for Re = 9500 (see

Fig. 5.20b and 5.20c).

In Fig. 5.19 and 5.20, we have also carried out a qualitative comparison of the

present numerical solutions with the experimental results reported in [10], where

the upper half of the figure contains the experimental snapshots, and the lower

half shows the numerically simulated ones. Yet again, it is heartening to see that

our computations could capture the flow as accurately as the experimental study

in all the cases. Further, a comparison is carried out between present numerical
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Fig. 5.23: The radial velocity distribution on θ = 0 line behind the cylinder and comparison

with experimental results from [10] for Re = 9500 at different instants of the flow.

results and numerical results obtained in the works [69, 72, 126] in addition to the

experimental results from [10] in Fig. 5.21. Our simulation was able to apprehend

the shape and location of the vortices with the highest accuracy even for secondary

level. The presence of α- and β-phenomena for Re = 5000 becomes evident from

the surface distribution of vorticities shown in Fig. 5.22a. Further, we present the

velocity distribution for Re = 5000 at nondimensional time t = 0.3 in Fig. 5.22b. In

the figure, we also present a comparison of the present data with the existing results

reported in the studies [10, 73, 87]. It’s heartening to notice that the accuracy of the

present numerical result is comparable of that of the other numerical results taken

from [73, 87] in contempt of utilizing a relatively smaller stencil. This attributes

to the adaptability of nouniform discretization, which allows the clustering of grids

along the line θ = 0. Fig. 5.23 shows excellent proximity between numerical and

experimental results for the velocity distribution on θ = 0 behind the cylinder for

Re = 9500.

5.5 Conclusion

The classical problem of transient viscous incompressible flow past an impul-

sively started circular cylinder has been studied comprehensively over the years.

153



The availability of finite difference based HOC schemes to tackle nonrectangular

geometries, particularly in polar coordinates, without involving any grid transfor-

mation is limited in the literature. In the present study, we perform an extensive

investigation of the flow around an impulsively started circular cylinder using a

compact scheme which is well capable of handling nonuniform polar grids without

any transformation. It is to mention that the scheme is second-order accurate both

spatially and temporally. Simulations are carried out for different values of Reynolds

numbers ranging from 10 to 9500. This includes simulation until steady state for

low Reynolds numbers and simulation during the initial stages in case of moderate

and high Reynolds numbers. Detailed discussion is given to the typical flow charac-

teristics for certain subranges of the investigated Re values. The computed results

are compared and found to be in excellent agreement with the already established

experimental and numerical results. The present investigation not only captured

the stable periodic flows for 100 ≤ Re ≤ 300, but also the critical secondary events

termed as α- and β-phenomena for higher Re’s to an satisfactory extent, thereby

claiming the robustness of the present scheme.
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