

Declaration by the Candidate

The thesis entitled "Biochemical and Functional Characterization of Ethnomedicinal Plants of Manipur for Development of Functional Food Product" is being submitted to School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of bonafide research work accomplished by me under the supervision of Prof. Laxmikant Shivnath Badwaik.

All helps from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for the award of any other degree.

Date: 24/11/2024 Place: Tezpur

Nemmunhoi Haskep (Ms. Nemnunhoi Haokip)

Registration No. TZ16711 of 2016

Certificate of the Supervisor

This is to certify that the thesis entitled "**Biochemical and Functional Characterization of Ethnomedicinal Plants of Manipur for Development of Functional Food Product**" submitted to School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by Ms.Nemnunhoi Haokip (Roll No. FPP16001) under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for award of any other degree.

18Badwaik.

Signature of Supervisor Dr. Laxmikant S. Badwaik Professor Department of Food Engineering and Technology Tezpur University, Napaam-784028, Assam, India

Source

Signature of Co-Supervisor Dr. Raj Kumar Duary Professor Department of Dairy Science and Food Technology Banaras Hindu University, Varanasi

Date: 12/11/2024

Place: Tezpur, Assam

Acknowledgements

I am expressing my sincere thanks to my Supervisor (s), Dr. Laxmikant S. Badwaik, Professor, Department of Food Engineering and Technology, Assam, and Dr. Raj Kumar Duary, Professor, Department of Dairy Science and Food Technology, Banaras Hindu University, Varanasi, for their consistent guidance during my thesis work. I am highly obliged to receive consistent support that helped me in exploring innovative ideas and successfully implemented it in my thesis.

I express my deepest gratitude to Professor Shambu Nath Singh, Vice-Chancellor, Tezpur University, Tezpur, Assam for providing me with the facilities to carry out my thesis work.

I am highly grateful to Prof. Partha Pratim Sahu, Dean, School of Engineering and Prof. S. C. Deka, Controller of Examinations, for their constant support throughout my thesis work.

It is a great pleasure, and gratitude goes to my Doctoral Committee members, Dr. Robin Doley, Professor, Department of Molecular Biology and Biotechnology, Tezpur University, Dr. Sankar Chandra Deka, Professor, Department of Food Engineering and Technology, and External Research Committee, Dr. Dilip Datta, Professor, Department of Mechanical Engineering, Dr. Tarun Kumar Maji, Professor, Department of Chemical Sciences.

I also duly acknowledge to Departmental Research Committee chairperson and Head of Department of Food Engineering and Technology, Tezpur University, Dr. Laxmikant S. Badwaik, Professor for the continuous support.

I am also thankful to all faculty members, Dr. Charu Lata Mahanta, Dr. Manuj Kumar Hazarika, Dr. Brijesh Srivastava, Dr. Poonam Mishra, Professor, Dr.Nishant R.S. Hulle, Dr. Tabli Ghosh, Dr. Nikhil C. and Dr. Soumya Ranjan Purohit, Assistant Professor of Department of Food Engineering and Technology, Tezpur University for their important suggestions that boosted me up at many phases during my research and thesis writing.

My sincere thanks to the technical staff, Dr. Dipankar Kalita, Dr. Arup Jyoti Das, Mr. Labadeep Kalita, and Mrs. Swdwmsri Mashahary and non-technical staff, Mr. Krishna Borah and Mr. Anjan Keot of the Department for giving the essential assistance during my

research work and formal work in the Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam. I also extend my gratitude to the technical staff, Mr. Prakash Kurmi, Mr. Tridib Ranjan Nath and Mr. Nava Kr. Gogoi of Sophisticated Analytical Instrumentation Centre (SAIC).

I am grateful to University Grant Commission (UGC, New Delhi) for providing UGC-JRF Fellowship (UGC-Ref. no.: 1374/(ST) (NET-JUNE 2015) during my research work.

I extend my heartfelt thanks to my former labmates, Lopamudra Sarma, Preeti Sarkar, and Pallab Kumar Borah and as well as my friends Mr. Manas Jyoti Das, Ms. Sangita Muchahary, Ms. Maibam Baby Devi, Mrs. L. Monika Devi, Mrs. Salai and Mrs. S. Khurshida. I am equally grateful to my Labmates Ms. Ruchi Rani, Ms. Indrani Chetia, Mr. Thoithoi Tongbram, and Mr. Akuleti Saikumar—and to all the research scholars and students whose steadfast support and encouragement have been the foundation of my journey throughout my PhD.

Next, I would like to thank my partner James Sonkholal Mate. Your votes of confidence kept me going when my spirits dipped. I couldn't have done this without you. I also extend my deepest gratitude to my esteemed well-wishers MomonNu, ZakamNu, HeoMong, HeoLienpu, Dikshita Dowerah, Anutee Dolley, Gorishmita Borah, and Mate's family whose steadfast presence and thoughtful words have consistently been a wellspring of strength and encouragement. I am profoundly grateful to my cherished besties Miriami, Mary, Kimi, Chankim, Laxmi, Smita, Bemcy, Shelly, and Rose, whose unwavering support and boundless love have illuminated my life and made every moment infinitely richer. Finally, my sincere gratitude to my parents (Jamkholun and Lhaiboi), Godparents (Neikim and Seithang), Aunty Boisi, nephew (Khaviv Momon) and my siblings (Bebem, Thangmin, Boipi, Naolien and Goupu) for the constant motivation during the entire duration of my PhD. Each of you has played a vital role in my life, and your collective support has made all the difference. I am deeply grateful for your friendship and the incredible strength you have given me. Knowing that I have such amazing people in my corner fills me with hope and gratitude.

Forever grateful to God, the Almighty, who has given me with innumerable blessings, knowledge, and opportunities, so that I have finally been able to complete the thesis.

Nemnunhoi Hasky Nemnunhoi Haokip

xi

LIST OF TABLES

Table No.	Table Title	Page No.
3.1	Demographic profile of the informants.	26
3.2	Ethnomedicinal plants used by the indigenous people with their	28-38
	vernacular name, specimen number, scientific names, family, habitat,	
	parts used, used against diseases/purposes, mode of preparation and	
	application and use value.	
3.3	Informant consensus factor (ICF).	45
3.4	Percentage of Fidelity level.	46-49
4a.1	Details of ethnomedicinal plants and the diseases treated	69
4a.2	The various extraction condition	70
4a.3	Proximate composition of six selected medicinal plants	75
4a.4	Elemental concentrations (weight%) of six different ethnomedicinal	77
	plants determined by SEM-EDX analysis	
4a.5	Phytochemical screening of six medicinal plants extracts	83
4a.6	Antimicrobial analysis of six selected medicinal plants	84-86
4b.1	TPC, TFC, DPPH, ABTS and FRAP in dried extracts of eighteen	96-97
	different extracts of the six plants	
4b.2	List of standards and their retention time	101
4b.3	Content of phenolic acids in 18 plant extracts are determined by RP-	102-103
	HPLC expressed in mg/100g (fresh weight)	
4b.4	ACE inhibitory percentages of six different plants using three	117
F 1	different extraction techniques	126
5.1	Experimental design for the extraction process using Ultrasound assisted extraction	126
5.2	Experimental design for the extraction process using Supercritical	127
	fluid extraction	
5.3	Response surface central composite design (uncoded) and the results	132
	for total phenolic content (TPC), antioxidant inhibitory activity	
	(DPPH) and Angiotensin converting enzyme (ACE) inhibitory	

activity for UAE process.

- 5.4 The regression coefficients and results of ANOVA for response 133 surface quadratic model of total phenolic content using UAE
- 5.5 The regression coefficients and results of ANOVA for response 133-134 surface quadratic model of Antioxidant activity (DPPH) using UAE.
- 5.6 The regression coefficients and results of ANOVA for response 134 surface quadratic model of Angiotensin converting enzyme (ACE) activity using UAE
- 5.7 Response surface central composite design (uncoded) and the results 142 for total phenolic content (TPC), radical scavenging activity (DPPH) and Angiotensin converting enzyme (ACE) inhibitory activity for SFE process.
- 5.8 The regression coefficients and results of ANOVA for response 143-144 surface quadratic model of total phenolic content using SFE.
- 5.9 The regression coefficients and results of ANOVA for response 144 surface quadratic model of Antioxidant activity (DPPH) using SFE.
- 5.10 The regression coefficients and results of ANOVA for response 144-145
 surface quadratic model of Angiotensin converting enzyme (ACE)
 activity using SFE
- 5.11 Validation of optimized results of UAE sample. 155
- 5.12 Validation of optimized results of SFE sample. 156
- 6.1 Different formulations of pasta with raw leaf powder and extract 167 powder
- 6.2 Total phenolic content and Antioxidant activity in uncooked and 173 cooked Pasta
- 6.3 Optimal cooking time, cooking loss, swelling index, water absorption, 175 moisture and texture profile analysis of pasta
- 6.4 L*, a*, b* and ΔE values of the Pasta samples 176
- 6.5 Sensory evaluations of the formulated cooked pasta. 180
- 6.6DSC parameters of Pasta samples181
- 7.1 Dough formulations of fresh pasta with the inclusion of different 193 levels of plant extract beads
- 7.2 Values of Optimal cooking time, Cooking loss, Swelling index, Water 197

absorption and moisture of encapsulated beads pasta

7.3 Total phenolic content and Antioxidant activity in uncooked and 200 cooked Pasta with the addition of *Clerodendrum glandulosum* Lindl. extract beads

202

7.4 L*, a*, b* and ΔE values of the pasta samples

LIST OF FIGURES

Figure	Figure Title	Page
No.		No.
3.1	Map of Manipur showing the present study area	22
3.2	Number of species present in the families and distributions of plant parts	39-40
3.3	Mode of preparation (a) and route of application (b)	43
4a.1	SEM-EDX spectra for elemental analysis of six ethnomedicinal plants	78
	of Manipur	
4a.2	SEM-EDX images of six ethnomedicinal plants of Manipur	79
4a.3	Qualitative phytochemicals screening of different extracted samples	84
4b.1	FTIR spectra of solvent, ultrasound assisted, and supercritical fluid	99-100
	extraction extracted sample	
4b.2	HPLC chromatograms of standards	105-106
4b.3	RP-HPLC chromatograms of consisting of solvent extracted samples	107-115
	(SES1-SES6), ultrasound assisted extracted samples (UAE1-UAE6)	
	and supercritical fluid extracted samples (SFE1-SFE6).	
4b.4	HPLC chromatographs showing ACE inhibitory percentages of six	118-120
	different plants showing ACE inhibitory percentages using solvent,	
	ultrasound assisted and supercritical fluid extraction techniques	
5.1	Response surface plots of Clerodendrum glandulosum Lindl. showing	136
	the effect of (a) extraction time and power, (b) extraction time and	
	solvent concentration, and (c) power and solvent concentration on total	
	phenolic content using UAE.	
5.2	Response surface plots of Clerodendrum glandulosum Lindl. showing	138
	the effect of (a) extraction time and power, (b) extraction time and	
	solvent concentration, and (c) power and solvent concentration on	
	DPPH radical scavenging activity using UAE.	
5.3	Response surface plots of Clerodendrum glandulosum Lindl. showing	140
	the effect of (a) extraction time and power, (b) extraction time and	
	solvent concentration, and (c) power and solvent concentration on ACE	
	activity using UAE.	

5.4	Response surface plots of Clerodendrum glandulosum Lindl. showing	147
	the effect of (a) extraction time and power, (b) extraction time and	
	solvent concentration, and (c) power and solvent concentration on total	
	phenolic content using SFE.	
5.5	Response surface plots of Clerodendrum glandulosum Lindl. showing	149
	the effect of (a) extraction time and power, (b) extraction time and	
	solvent concentration, and (c) power and solvent concentration on	
	DPPH radical scavenging activity using SFE.	
5.6	Response surface plots of Clerodendrum glandulosum Lindl. showing	152
	the effect of (a) extraction time and power, (b) extraction time and	
	solvent concentration, and (c) power and solvent concentration on ACE	
	activity using SFE.	
5.7	(a) FT-IR spectra of UAE samples; (b) FT-IR spectra of SFE samples	154
5.8	(a) Cytotoxicitystudy of Clerodendrum glandulosum Lindl.	
	extract for UAE; (b) Cytotoxicity studyof Clerodendrum	156
	glandulosum Lindl. extract SFE by MTT analysis	
5.9 (a)	Gel images for gene expression study	157
5.9 (b-d)	Gene expression studies for various pro-inflammatory markers	158-159
5.10 (a-	Scanning electron microscopic images of Clerodendrum glandulosum	162
c)	Lindl. Leaves	
6.1	Images of uncooked and cooked pasta	178-179
6.2	FTIR spectra of the uncooked and cooked pasta samples	184
6.3	X-ray diffraction pattern of uncooked and cooked Pasta samples	185
6.4	SEM micrographs of cooked pasta with different levels of raw plant	186-187
	powder (RS) and plant extracted powder (ES).	
7.1	FT-IR spectra of the uncooked and cooked encapsulated beads pasta	201
	samples	
7.2	Images of Uncooked and cooked pasta samples	203
7.3	SEM micrographs of uncooked and cooked encapsulated beads with	204-205
	different levels of Clerodendrum glandulosum Lindl. leaves extarcts.	

List of Abbreviations

μg	Microgram
µm µmol	Micrometer
3D	Three dimensional
a*	Redness
ABTS	2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid
Acontrol	Absorbance of control
Al	Aluminum
ANOVA	Analysis of variance
A _{sample}	Absorbance of sample
ATCC	American type culture collection
Av	Average
b*	Yellowness
Ca	Calcium
CCD	Central composite design
cm	Centimeter
Co	Cobalt
CO_2	Carbon dioxide
Cu	Copper
CV	Coefficient of variation
df	Degree of freedom
DPPH	2,2-diphenyl-1-picrylhydrazyl
DPP-IV	Dipeptidyl pepdidase-IV
EDTA	Ethylenediamine tetraacetic acid
EE	Encapsulation efficiency
FCR	Folin-Ciocalteau reagent
Fe	Iron
FeCl ₃	Iron (III) chloride
FeSO ₄	Iron sulfate or ferrous sulfate
FRAP	Ferric reducing ability of plasma

FTIR	Fourier transform infrared spectroscopy
g	Gram
GAE	Gallic acid equivalent
GC	Gas chromatography
h	Hour
Н	Hydrogen atom
H_2SO_4	Sulfuric acid
HCl	Hydrochloric acid
IC ₅₀	Half maximal inhibitory concentration
IR	Infrared
Κ	Potassium
kHz	Kilohertz
kJ	Kilo joule
L*	Lightness
LC	Liquid chromatography
LPS	Lipopolysaccharide
М	Molarity
m/z	Mass by charge
MAE	Microwave assisted extraction
mg	Milligram
mm	Millimeter
Mn	Manganese
MSE	Mean square error
MTT	3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)
MUFA	Monounsaturated fatty acid
n	Number
Ν	Normality
Na	Sodium

Na ₂ CO ₃	Sodium carbonate
Na ₂ WO ₄	Sodium tungstate
ND	Not detected
NH4OH	Ammonium hydroxide
Ni	Nickel
nm	Nanometer
0	Oxygen atom
OA	Overall acceptability
ОН	Hydroxide
р	p-value
ppm	Parts per million
Q	Quercetin
QE	Quercetin equivalent
\mathbb{R}^2	Correlation coefficient
RE	Release efficiency
RMSE	Root mean square error
RP-HPLC	Reversed phase-high performance liquid chromatography
rpm	Rotation per minute
rpm RSM	Rotation per minute Response surface methodology
-	-
RSM	Response surface methodology
RSM RT	Response surface methodology Retention time
RSM RT s	Response surface methodology Retention time Second
RSM RT s SCFE	Response surface methodology Retention time Second Supercritical fluid extraction
RSM RT s SCFE	Response surface methodology Retention time Second Supercritical fluid extraction
RSM RT s SCFE SD	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation
RSM RT s SCFE SD SEM	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation Scanning electron microscopy
RSM RT s SCFE SD SEM t	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation Scanning electron microscopy Time
RSM RT s SCFE SD SEM t TFC	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation Scanning electron microscopy Time Total flavonoid content
RSM RT s SCFE SD sEM t TFC TPC	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation Scanning electron microscopy Time Total flavonoid content Total phenolic content
RSM RT s SCFE SD SEM t TFC TPC UAE	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation Scanning electron microscopy Time Total flavonoid content Total phenolic content Ultrasound assisted extraction
RSM RT s SCFE SD SEM t TFC TPC UAE UV	Response surface methodology Retention time Second Supercritical fluid extraction Standard deviation Scanning electron microscopy Time Total flavonoid content Total flavonoid content Ultrasound assisted extraction Ultraviolet

w/w	Weight by weight
wb	Wet basis
XRD	X-ray diffraction
α	Alpha
θ	Theta