	Page No.
Abstract	i
Declaration	
Certificate of the supervisor	v
Certificate of the co-supervisor	
Acknowledgement	
Contents	
List of Tables	
List of Figures	xvii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1 Need for novel thermal technologies	6
2.2 Ohmic heating	7
2.2.1 Fundamental principle and processing parameters	7
2.2.2 Factors affecting ohmic heating	9
2.2.2.1 Electrical conductivity	10
2.2.2.2 Electric field strength	10
2.2.2.3 Ionic concentration	10
2.2.2.4 Particle size and concentration	11
2.3 Equipment for ohmic heating system	
2.4 Applications of ohmic heating in food processing	
2.5 Effect of ohmic heating on enzyme inactivation	14
2.6 Effect of ohmic heating on microbial inactivation	18
2.7 Advantages and limitations	20
2.7.1 Advantages	20
2.7.2 Limitations	21
3. MATERIALS AND METHODS	22
3.1 Materials	22
3.1.1 Chemicals and reagents	22
3.1.2 Machines and equipments	22

3.1.3 Food samples	22
3.1.4 Softwares	
3.2 Methodologies	23
3.2.1 Objective wise methodologies and flow chart	24
3.2.1.1 Objective 1: To develop a lab-scale continuous ohmic	24
heating system and its performance evaluation with	
different fruit juices	
3.2.1.2 Objective 2: To standardize pineapple juice	25
(°Brix/Acid) for continuous ohmic heating performance	
3.2.1.3 Objective 3: To standardize the process parameters for	26
thermal processing of pineapple juice by continuous	
ohmic heating	
3.2.1.4 Objective 4: To model inactivation kinetics of enzymes,	27
microbes, and quality attributes during continuous	
ohmic heating of pineapple juice	
3.2.1.5 Objective 5: To study the shelf-life of continuous ohmic	28
heat-treated pineapple juice under different storage	
conditions	
3.2.2 Design and development of continuous ohmic heating	29
(COH) system	
3.2.2.1 Design requirements	29
3.2.2.2 Conceptual design	30
3.2.2.3 Design and fabrication of COH set-up	32
3.2.2.3.1 Heating chamber	32
3.2.2.3.2 Holding chamber	33
3.2.2.3.3 Electrodes	34
3.2.2.3.4 T-shaped jointer port	34
3.2.2.3.5 Power supply and temperature controller	35
3.2.2.3.6 Other accessories	35
3.2.3 Sample preparation	38
3.2.4 Physico-chemical properties	38
3.2.4.1 Moisture content	38
3.2.4.2 pH	38

3.2.4.3 Total soluble solids (TSS)	38
3.2.4.4 Titratable acidity	39
3.2.4.5 Colour parameters	39
3.2.4.6 Vitamin C	39
3.2.5 Preparation of different °Brix/Acid of pineapple juice	40
3.2.6 Heating performance	40
3.2.7 Enzymes and microbial inactivation	41
3.2.7.1 Polyphenol oxidase (PPO)	41
3.2.7.2 Peroxidase (POD)	42
3.2.7.3 Bromelain activity	42
3.2.7.4 Total microbial load	42
3.2.8 Inactivation kinetic modelling	43
3.2.8.1 Enzyme inactivation kinetic modelling	43
3.2.8.2 Microbial inactivation kinetic modelling	45
3.2.8.3 Vitamin C degradation kinetic modelling	45
3.2.8.4 Decimal reduction time and activation energy	45
3.2.8.5 Kinetic modelling during storage study	46
3.2.8.6 Goodness of fit parameters	46
3.2.8.7 Model validation and performance	46
3.2.8.8 Akaike information criteria for model selection	47
3.2.9 Statistical analysis	47
4. RESULTS AND DISCUSSION	48
4.1 Design and development of continuous ohmic heating (COH) set-	48
up and its performance evaluation	
4.1.1 COH set-up and its operation	48
4.1.2 Physico-chemical properties of fresh fruit juice	50
4.1.3 Ohmic heating behaviour of fresh fruit juice	51
4.1.3.1 Effect of electric field strength on ohmic heating	51
behaviour	
4.1.3.2 Effect of flow rate on ohmic heating behaviour	54
4.1.3.3 Performance evaluation of continuous ohmic heating	55
4.1.3.4 Electrical conductivity behaviour during continuous	57
ohmic heating of fruit juices	

4.2 Standardization of pineapple juice and ohmic heating behaviour	
4.2.1 Standardization of pineapple juice and its characterization	60
4.2.2 Ohmic heating behaviour of standardized pineapple juice	61
4.2.2.1 Effect of °Brix/Acid	61
4.2.2.2 Effect of electric field strength	63
4.2.2.3 Effect of flow rate	65
4.2.2.4 Performance evaluation	66
4.2.2.5 Electrical conductivity behaviour of standardized	68
pineapple juice during continuous ohmic heating	
4.3 Design and development of an isothermal holding chamber for	70
COH system	
4.4 Effect of continuous ohmic heating on pH, TSS, and colour	75
4.5 Effect of COH on enzyme inactivation and their kinetic modelling	77
4.5.1 Polyphenol oxidase (PPO)	77
4.5.1.1 Effect of COH on PPO inactivation	77
4.5.1.2 Inactivation kinetic modelling of PPO enzyme	78
4.5.1.3 Validation of PPO inactivation kinetic models	84
4.5.1.4 Model selection for PPO inactivation kinetic using	85
Akaike information criteria (AIC) and statistical	
parameters	
4.5.2 Peroxidase (POD)	86
4.5.2.1 Effect of COH on POD inactivation	86
4.5.2.2 Inactivation kinetic modelling of POD enzyme	88
4.5.2.3 Validation of POD inactivation kinetic models	93
4.5.2.4 Model selection for POD inactivation kinetic using AIC	94
and statistical parameters	
4.5.3 Bromelain	96
4.5.3.1 Effect of COH on bromelain inactivation	96
4.5.3.2 Inactivation kinetic modelling of bromelain enzyme	98
4.5.3.3 Validation of bromelain inactivation kinetic models	102
4.5.3.4 Model selection for bromelain inactivation kinetic using	102
AIC and statistical parameters	

I

4.6 Effect	of COH on total microbial load reduction and kinetic	103
model	ling	
4.6.1	Effect of COH on total microbial load reduction	103
4.6.2	Inactivation kinetic modelling of microorganisms	106
4.6.3	Validation of microbial inactivation kinetic model	110
4.6.4	Model selection for microbial inactivation kinetic using	111
	AIC and statistical parameters	
4.7 Effect	of COH on vitamin C content and degradation kinetic	112
model	ling	
4.7.1	Effect of COH on vitamin C content	112
4.7.2	Degradation kinetic modelling of vitamin C	114
4.7.3	Validation of vitamin C kinetic model	117
4.7.4	Model selection for vitamin C degradation kinetic	118
4.8 Decim	al reduction time of enzyme and microbial inactivation	119
4.9 Activa	tion energy of enzyme inactivation	120
4.10 Op	timization COH process parameters	122
4.10.1	Full factorial modelling	122
4.10.2	Performance of the full factorial model	125
4.10.3	Optimization of the COH process parameters and validation	128
4.11 Sto	orage study of COH and hot water bath (HWB) treated	129
pineap	ple juice	
4.11.1	Changes in pH, TSS, electrical conductivity, and titratable	129
	acidity	
4.11.2	Changes in vitamin C content	132
4.11.3	Changes in total microbial load	133
4.11.4	Changes in enzyme activity	135
4.11.5	Changes in colour parameters	139
5. SUMMAI	RY AND CONCLUSION	142
REFERENCES		148
APPENDIX		