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Abstract

Introduction: Visceral leishmaniasis (VL) is caused by Leishmania donovani. The

purine and pyrimidine pathways are essential for L. donovani. Simultaneously

inhibiting multiple targets could be an effective strategy to eliminate the pathogen

and treat VL.

Objective: We aimed to target the essential enzymes of L. donovani and inhibit them

using a multi-target approach.

Materials and methods: A systematic analytical method was followed, in which first

reported inhibitors of two essential enzymes (adenine phosphoribosyl-transferase

[APRT] and dihydroorotate dehydrogenase [DHODH]) were collected and then

ADMET and PASS analyses were conducted using the Lipinski rule and Veber's rule.

Additionally, molecular docking between screened ligands and proteins were per-

formed. The stability of complexes was analyzed using molecular dynamics

(MD) simulations and MMPBSA analysis.

Results: Initially, 6,220 unique molecules were collected from the PubChem data-

base, and then the Lipinski rule and Veber's rule were used for screening. In total,

203 compounds passed the ADMET test; their antileishmanial properties were

tested by PASS analysis. As a result, 15 ligands were identified. Molecular docking

simulations between APRT or DHODH and these 15 ligands were performed.

Four molecules were found to be plant-derived compounds. Lig_2 and Lig_3 had

good docking scores with both proteins. MD simulations were performed to

determine the dynamic behavior and binding patterns of complexes. Both MD

simulations and MMPBSA analysis showed Lig_3 is a promising antileishmanial

inhibitor of both targets.

Conclusion: Promising plant-derived compounds that might be used to combat VL

were obtained through a multi-target approach.

K E YWORD S

adenine phosphoribosyl-transferase, dihydroorotate dehydrogenase, Leishmania donovani, MD
simulation, multi-target, visceral leishmaniasis

Received: 9 November 2022 Revised: 13 January 2023 Accepted: 26 January 2023

DOI: 10.1002/pca.3213

Phytochemical Analysis. 2023;1–13. wileyonlinelibrary.com/journal/pca © 2023 John Wiley & Sons Ltd. 1

https://orcid.org/0000-0003-2304-2468
mailto:anjha@tezu.ernet.in
https://doi.org/10.1002/pca.3213
http://wileyonlinelibrary.com/journal/pca


is a derivative of Mammea A/AA, which is a natural product present in

Mesua racemose; it was reported to act as an antiparasitic polypheno-

lic drug.63 At last, Lig_4 is a flavonoid which is known as

Rubraflavone A.37 Selected compounds bound to the active sites and

showed interactions with specific residues, changing the activity of

APRT and DHODH. Ligands with lower binding affinity in both pro-

teins displayed hydrogen bonding and non-bonded interactions with

amino acid residues.

Docking provides only the binding energy of the protein–ligand

complexes; to know whether the interactions are stable for a longer

period, MD simulations were performed. Biomolecular conformational

dynamics of the protein–ligand complexes were analyzed by computa-

tional MD simulations. Data generated from simulations were later

used to examine the intermolecular forces in protein–ligand

complexes.

The novelty of our work lies in the utilization of a multi-target

approach. We investigated the effects of predicted antileishmanial

molecules on both APRT and DHODH. By using different filters such

as Lipinski's rule of five, Veber's rule, ADMET and PASS analysis, set

of 6220 compounds were processed. After the screening process, a

total of 15 compounds were selected, which were later used to con-

struct complexes with APRT and DHODH, the drug target proteins of

L. donovani, i.e., a total of 30 protein–ligand complexes. Furthermore,

we analyzed the stability and confirmation of ligand–protein com-

plexes. First, a short simulation was performed to reduce the number

of ligands. MD simulations of APRT and DHODH with four com-

pounds for both proteins and one specific inhibitor for each protein

showed that Lig_2 and Lig_3 formed considerably stable complexes

with both proteins. RMSD and Rg analyses of the complexes provided

information regarding proper binding of molecules to the proteins. In

the second phase, validation based on long MD simulations of 100 ns

was performed for the six protein–drug complexes to ensure that

short simulations did not provide biased results. It was observed that

the apo protein of APRT showed fluctuations in RMSD and Rg com-

pared to complex structures, whereas the apo protein of DHODH

showed minor fluctuations. Lig_3 showed a higher number of H-

bonds with APRT and DHODH than Lig_2 and inhibitor until the end

of the simulation, suggesting that these interactions are more stable.

Analysis of non-bonded contacts between the two proteins and

ligands revealed that there are contacts other than H-bonds, like van

der Waals bonds and hydrophobic interactions, which contribute to

the interactions. Therefore, we infer that Lig_3 preferably stays inside

the binding pocket of the protein. No significant confirmational

change was observed for APRT and DHODH upon binding with

molecules.

In addition to the MD simulation-based investigation, MMPBSA

analysis was performed to provide additional support to earlier obser-

vations. The total binding energies of the compounds with the pro-

teins were obtained. We observed that APRT–Lig_3 and DHODH–

Lig_3 showed higher binding energy than other complexes. The larger

contribution of electrostatic energy means that H-bonds are higher in

number, thus favoring and influencing the binding complexes, which is

in agreement with the results of the H-bond analysis of MD

simulations. Due to the high number of H-bonds, the binding energy

between the protein and ligand increases, thus supporting the forma-

tion of a stable configuration.

Interestingly, per-residue free energy decomposition analysis

highlighted ligand binding spots, and it revealed that the contributions

of specific residues were quite high, which ultimately provides signifi-

cant input to the binding energy, especially in the case of APRT–Lig_3

and DHODH–Lig_3. Furthermore, the high electrostatic energy pre-

sent in both complexes with Lig_3 indicated that the H-bonds were

present until the end of the simulation and thus played a notable role.

van der Waals bonds and hydrophobic interactions also contributed

to stabilizing the complexes.

This theoretical study highlights that stable interactions between

a compound and different proteins may have the ability to inhibit both

proteins. Moreover, details of proteins, protein–ligand complexes, res-

idues forming the active sites, and different poses of proteins were

obtained, which underlined the behavior of proteins and ligands in the

artificial cell-like environment. Our proposed hit may assist in the

development of new antileishmanial drugs targeting essential proteins,

preventing transmission, and supporting eradication of the disease.
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A B S T R A C T

Leishmania donovani, an obligatory intracellular flagellate pathogen, is the underlying cause of visceral leish-
maniasis (VL), a fatal disease that poses a significant challenge to existing therapeutic approaches and leads
to human mortality. In an endeavor to find an antileishmanial drug to combat VL, we aimed to assess the
approved drug molecules against the specific drug targets of VL. In this study, a theoretical method was used
to select two essential therapeutic targets (pyridoxal kinase [PK] and sterol alpha-14 demethylase [SDM])
which were present in both the data set of essential genes and drug target proteins. The selected PK and
SDM proteins in L. donovani play pivotal roles as essential enzymes in the crucial vitamin B6 salvage and ste-
rol biosynthesis pathways, respectively, leading to pathogenicity in humans. In addition to that drugs were
gathered from the DrugBank and Drug Central databases and 325 (out of 4867) compounds having anti-para-
sitic properties were screened by PASS analysis. Consequently, three ligands (referred to as Lig_1, Lig_2, and
Lig_3) were chosen based on their elevated Pa values, docking scores, and notable medicinal applications.
Moreover, the result obtained from MD simulation suggests Lig_1 [Nitazoxanide (PubChem ID-41684)] does
not affect the structural integrity of both targets. Additionally, evaluation of total binding energies by
MMPBSA analysis showed stronger binding of Lig_1 with PK and SDM is -100.71 and -175.61 kJ/mol, respec-
tively compared to others. As a whole, the methodology employed in this research involves the simultaneous
identification of suitable protein targets and potential inhibitors. Through this investigation, we have demon-
strated that compounds derived from a biocomputing approach exhibit interaction mechanisms as inhibitors
against drug targets, offering a promising avenue for addressing VL.

© 2023 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Leishmaniasis, a disease transmitted by vectors, is caused by pro-
tozoa characterized by a hemoflagellate structure. This ailment poses
a significant global public health challenge as a zoonotic condition. It
is categorized as a neglected tropical disease due to the insufficient
focus on its infection. The impact of the Leishmania pathogen is pre-
dominantly evident in countries such as India, Nepal, Bangladesh,
Ethiopia, Sudan, Kenya, and others. These nations, mostly character-
ized as underdeveloped, experience substantial repercussions,
thereby influencing their progress and development. Furthermore,
these parasites are prevalent in countries situated within tropical
and temperate zones. (Croft and Coombs, 2003). The World Health
Organization (WHO) has documented Leishmania parasite infections
in approximately 12 million individuals. The most severe and lethal
form of leishmaniasis is visceral leishmaniasis (VL), better known as
kala-azar in India (Fernandes et al., 2013). The primary cause of vis-
ceral leishmaniasis (VL) is attributed to Leishmania donovani, a

protozoan organism that exists in two distinct forms: promastigote
and amastigote. L. donovani needs both humans and sand flies as
hosts for the successful completion of life cycle. In this context, when
an infected sandfly bites a human, it transmits the pathogen into the
human body, enabling the completion of the remaining portion of its
life cycle. During this life cycle phase, the parasites start exerting
their impact on humans, ultimately resulting in the demise of the
host (Ready, 2013; Singh et al., 2015). This pathogen’s life cycle gives
information about the infective stage, which aids in prevention and
development of therapies against the pathogen.

The treatment of visceral leishmaniasis relies solely on chemical
compounds as medications. The present therapeutic options for leish-
maniasis encompass miltefosine, paromomycin, and amphotericin B
(eBioMedicine, 2023). To develop new medications, diverse method-
ologies have been introduced over time, including systems biology
approaches (Rajkhowa et al., 2021), kinetic modeling approaches
(Bora and Jha, 2020), multi-target approaches (Saha and Nath Jha,
2023) etc. Various fields within computational biology have emerged,
providing numerous avenues for exploration, in the quest to discover
efficient medications that combat diseases such as cancer, malaria,
COVID-19, and more (Bora and Nath Jha, 2019; Indari et al., 2022).
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resistance developed against existing medications. Within this inves-
tigation, a computational framework was employed to identify two
druggable targets that exhibited stronger binding affinity to three
compounds. Subsequent molecular dynamics (MD) simulations and
MMPBSA analysis uncovered that Lig_1 (Nitazoxanide) not only pre-
serves the structural integrity of both proteins but also enhances the
stability essential for inhibiting PK and SDM targets. In general, the
study underscores the importance of stability, interactions, and bind-
ing energies between the compounds and selected crucial proteins in
altering the functions of both targets and ultimately leading to their
inhibition. In a nutshell, the findings indicate that obtain compound
may exhibit structural mechanism of inhibition against critical PK
and SDM proteins of L. donovani. Additional improvements and
advancements are required to evaluate the molecule’s efficacy in vitro
and in vivo against these particular targets.
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Abstract
Leishmaniasis is a complex vector-borne disease caused by intracellular protozoan parasites of the Leishmania genus. It 
presents a significant public health challenge in tropical and subtropical regions globally. As resistance to treatment increases, 
managing and controlling Leishmaniasis becomes more challenging, necessitating innovative approaches. To address this 
challenge, our study utilized subtractive genomics and structure-based approaches to identify common drug targets and 
combat antimicrobial resistance (AMR) across five Leishmania species strains. The subtractive genomics approach unraveled 
Glutamate Dehydrogenase (GDH) as a promising drug target for treating Leishmania infections. The investigation considered 
established methodologies observed in analogous studies, orthologous group, and druggability tests. Multiple sequence 
alignment revealed conserved sequences in GDH, while phylogenetic tree analysis provided insights into the evolutionary 
origin and close relationships of GDH across Leishmania species. Conserved sequences in GDH along with its function 
in pathogenicity provided insights into the close relationships of GDH across Leishmania species. Using a structure-based 
approach, our study showed the molecular interactions between GDH and three ligands—Bithionol, GW5074, and Hexachlo-
rophene—through molecular docking and 100 ns molecular dynamics (MD) simulations. GW5074 exhibited a significant 
affinity for GDH, as indicated by stable RMSD values, a more compact conformation, and a higher number of hydrogen 
bonds than Bithionol. MMPBSA analysis confirmed the superior binding energy of the GW5074-GDH complex, emphasiz-
ing its potential as a potent ligand for drug development. This comprehensive analysis identified GW5074 as a promising 
candidate for inhibiting GDH activities in Leishmania species, contributing to the development of effective therapeutics 
against Leishmania infections.

Keywords  Leishmaniasis · Subtractive genomics · Glutamate dehydrogenase · Structure-based approach · MD simulations
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A B S T R A C T   

Esculetin is a well-known coumarin derivative found abundantly in nature possessing an extensive array of 
pharmacological and therapeutic properties. Consequently, to comprehend its molecular recognition mechanism, 
our objective is to conduct a complete investigation of its interactions with the nucleic acid, specifically ct-DNA, 
and t-RNA, using spectroscopic and computational techniques. The intrinsic fluorescence of esculetin is quenched 
when it interacts with ct-DNA and t-RNA, and this occurs through a static quenching mechanism. The thermo
dynamic parameters demonstrated that the interaction is influenced by hydrogen bonding and weak van der 
Waals forces. CD and FT-IR results revealed no conformational changes in ct-DNA and t-RNA structure on 
binding with esculetin. Furthermore, competitive displacement assay with ethidium bromide, melting temper
ature, viscosity measurement, and potassium iodide quenching experiments, reflected that esculetin probably 
binds to the minor groove of ct-DNA. The molecular docking results provided further confirmation for the 
spectroscopic findings, including the binding location of esculetin and binding energies of esculetin complexes 
with ct-DNA and t-RNA. Molecular dynamics simulation studies demonstrated the conformational stability and 
flexibility of nucleic acids.   

1. Introduction 

With the ever-growing number of health problems in the world 
today, the significance of exploring and creating novel therapeutic 
substances have become of utmost importance. Natural products 
sequestered from diverse plants are contributing new advances in 
medicine owing to their numerous beneficial properties, natural abun
dance, high stability, low toxicity, relatively low side effects, good 
biocompatibility, and so on [1]. A category of naturally sourced com
pounds, primarily obtained from plants, is coumarins, and they possess 
all the above-mentioned beneficial characteristics. Coumarins are found 
abundantly in nature and fall under the category of 1,2-benzopyrone 
derivatives. Their unique and versatile oxygen-containing heterocyclic 

structure has intrigued the interest of many organic and medicinal 
chemists [2]. They also have anti-oxidative, anti-cancer, anti-diabetic, 
anti-coagulant, anti-inflammatory, and anti-viral properties [3–5]. 
Esculetin (6,7-dihydroxy coumarin), is one of the simplest coumarin 
derivatives containing two hydroxyl groups at positions C6 and C7 
(Fig. 1). It can be extracted from, Plantago major, Aesculus hippo
castanum, Salvia officinalis, Radicula armoracia, Ocimum basilicum, and 
Foeniculum vulgare [6,7]. It is the primary bioactive component of the 
Chinese herbal medicine Fraxinus rhynchophylla [8]. Esculetin has been 
recognized for its ability to reduce inflammation by obstructing the 
expression of cytokines related to inflammation [9]. Studies have also 
shown that esculetin can impede the cell cycle progression and growth 
of human leukemia HL-60 cells, by causing them to remain in the G1 
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absorbance measurements and Stern-Volmer analysis, indicating a static 
quenching mechanism. The binding affinity (Kb) for esculetin–ct-DNA/t- 
RNA complexes was found to be moderate, with a value in the order of 
103 M− 1. The thermodynamic analysis of the binding process showed 
that it occurred spontaneously involving hydrogen bonding as well as 
van der Waals interaction. CD and FT-IR results conclude that DNA and 
RNA remain in their original B and A conformational state after binding 
with esculetin. Competitive displacement assay with EB and KI 
quenching studies revealed that esculetin binds with DNA via groove 
mode of binding. The DNA melting study and viscosity measurement 
provided further evidence to support the groove binding mode of 
interaction. The impact of ionic strength on the binding process vali
dated the participation of electrostatic interaction in the interaction 
between esculetin and ct-DNA/t-RNA. Molecular docking was also 
performed in accordance with our experimental studies, which show 
that esculetin binds at the guanine, thymine, and adenine base pairs of 
ct-DNA and the guanine, uracil, and cytosine base pairs of t-RNA. The 
MD simulation studies revealed that the stability remains same on 
esculetin binding to ct-DNA and t-RNA. Additionally, it also revealed the 
type of forces that are involved in the complexation processes between 
esculetin-ct-DNA/t-RNA. The experimental results were found to be 
correlating well with the outcomes of the molecular docking and MD 
simulation studies. Fig. 13 illustrates the several significant findings 
from the investigation of the interaction between esculetin and ct-DNA/ 
t-RNA. However, our findings provide an important insight into the 
complexation of esculetin, a compound with great pharmacological 
properties, with nucleic acids that will assist in the development of a 
rational drug with improved selectivity and greater clinical efficacy. 
This study may also contribute to gain insight into the pharmacody
namics of analogous compounds and their derivatives when they 
interact with nucleic acids. 
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A B S T R A C T   

Pseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, 
interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to 
the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to 
intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme se
lective pressure and develop resistance against them thereby emphasizing the development of alternative 
therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of 
virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, 
morbidity, and mortality many-folds. In this regard, QS could be a potential druggable target and the discovery of 
QS inhibiting agents as an anti-virulent measure could serve as an alternative therapeutic approach to con
ventional antibiotics. Quorum quenching (QQ) is a preferred strategy to combat microbial infections since it 
attenuates the pathogenicity of microbes and enhances the microbial biofilm susceptibility to antibiotics, thus 
qualifying as a suitable target for drug discovery. This review discusses the QS-induced pathogenicity of 
P. aeruginosa, the hierarchical QS systems, and QS inhibition as a drug discovery approach to complement 
classical antibiotic strategy.   

1. Introduction 

Pseudomonas aeruginosa, a Gram-negative, opportunistic human 
pathogen, flourishes in diverse environmental niches and nosocomial 
conditions due to its extraordinary metabolic versatility, genome plas
ticity, resistance to environmental stresses, intrinsic resistance to anti
biotics, strong biofilm-forming potential, and expression of quorum 
sensing regulated virulence factors (Laborda et al., 2021). P. aeruginosa 
has been reported as one of the major causes of nosocomial infections 
and a leading pathogen among immunocompromised patients of cystic 
fibrosis (CT), chronic obstructive pulmonary disease, diffused pan
bronchiolitis, HIV patients and cancer patients undergoing chemo
therapy (Soukarieh et al., 2018; Rather et al., 2021a). P. aeruginosa has 
been regarded as an emerging global public health threat due to its 
resistance and survival to many available antibiotics and enhanced 

adaptability and persistence to stressed environmental conditions. It has 
a high potential of causing life-threatening acute and chronic infections 
and is the leading cause of morbidity and motility among CT patients 
(Moradali et al., 2017). P. aeruginosa is the most treated infectious 
pathogen in intensive care units (ICUs) and is persistent in the form of 
hospital-acquired pneumonia (HAP), urinary tract infections (UTIs), 
bloodstream infections (BSIs), surgical site infections, central nervous 
system infections, wound infections, skin and soft tissue infections, bone 
and joint infections, decubitus ulcers, ocular infections, etc. Interna
tional Nosocomial Infection Control Consortium (INICC) has described 
P. aeruginosa nosocomial infections as a worldwide healthcare issue and 
it has been documented that 20% mortality among the patients with 
P. aeruginosa infections has been reported globally while it is 30% and 
50% in ventilator-associated pneumonia (VAP) and bacteremia, 
respectively (Litwin et al., 2021). According to the reports published by 

Abbreviations: AIPs, autoinducing peptides; AHLs, acyl-homoserine lactones; AIs, autoinducers; QSSM, quorum sensing signal molecule; QQ, quorum quenching; 
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bank. 
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P. aeruginosa as a model organism that holds promise for the develop
ment of potent therapeutic drugs. The anti-QS drugs attenuate the 
pathogenicity of biofilm-forming bacteria and potentiate biofilm sensi
tivity to antibiotics, therefore, enhancing antibiotic-mediated biofilm 
disruption as well. The discovery of QSIs could be an arsenal against 
biofilm-forming pathogenic microorganisms provided problems associ
ated with them at the cellular and sub-cellular levels are resolved viz. 
target identification, pathogen specificity, drug deliverability, cellular 
toxicity, etc. 
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1. Introduction
Nutraceuticals are an increasingly researched area in the pharmaceutical and food

industries, and their functions have piqued people’s attention. Public awareness

about general health has spawned a thriving sector focusing on food-derived bioac-

tive substances with disease-preventing properties, known as nutraceuticals. Con-

sumers are becoming increasingly concerned about food’s nutritional elements,

and the latest advances in the field of study of functional food reflect this reality.

In the development of unique goods, a better balance between nutrients, the addition

of indigestible fractions, and the complementation of trace elements, vitamins, or

specific components appear to be necessary. Furthermore, the growing recognition

of the role of nutraceuticals like probiotics in enhancing human health has sparked a

fascination in developing novel forms of administration methods that encapsulate

and protect probiotics so that they can be delivered successfully to the target area [1].

Nutraceuticals have garnered substantial attention recently due to their health

benefits and disease-prevention properties. The growing number of commercially

available nutraceuticals and their diverse range of applications reflect the global pre-

dominance of nutraceuticals. As a result, a unique opportunity to generate next-

generation nutraceuticals using novel, dependable, low-cost methodologies has

emerged [2]. Several nutraceuticals have been identified as promising agents for

the prevention and treatment of a variety of diseases, including allergies, cancer, car-

diovascular and ocular disorders, and Parkinson’s disease, including the regulation

of immune system functionality and inflammation, according to recent research. As a

result, nutraceuticals have gained much attention, which opens up new possibilities

for development of unique products intended in satisfying customer demand for

health-enhancing meals [3].

Nutraceuticals or functional foods are divided into at least two groups. The first

category comprises foods that are naturally high in nutraceutical components. In con-

trast, the second category includes foods that have been produced with effective
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the source of bioactive compounds, material used to be encapsulated, and the specific

target where it is going to be delivered. Research is carried out to improve and boost

the techniques to make the encapsulation scientifically more stable along with being

economically feasible for all types of consumers.

Regardless of its application in the field of the food industry, encapsulation of

nutraceuticals does not avail to attract the consumers. This drawback is mainly

because of the effectiveness, cost, and lack of awareness. Moreover, people are more

used to taking chemically synthesized medicines than nutraceuticals as therapeutic

drugs. To maximize the potential of nutraceuticals, better encapsulation techniques

that can scale up the process and cost-effectivity and can attract the consumers are

needed. In addition, suitable materials, odorless food, fewer side effects, high shelf-

life, and safety and trade regulations can uplift the valuation. In the future, advanced

encapsulation technological techniques will come up, which will revolutionize the

therapeutic scenario.
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