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Our investigation has embraced a diverse set of computational strategies effectively. In the 

following sections, we delve into each methodology with meticulous detail, supplemented 

by an extensive analysis of outcomes, that are elaborated in the corresponding chapters. 

Through this comprehensive approach, we aim to offer a nuanced understanding of our 

research findings and their implications. 

2.1. Selection of protein targets 

The selection of protein targets is guided by multiple criteria, including the protein's 

indispensability for the pathogen, its mechanism of action, its non-homology with host 

proteins, and its distinctiveness from host proteins in terms of identity and similarity. In 

Chapter 3, we have curated a dataset comprising 3D protein structures of Leishmania 

donovani obtained from the Protein Data Bank (PDB) [1]. From this dataset, we have 

identified 10 proteins that constitute a non-redundant subset characterized by favorable 

attributes such as high resolution and X-ray diffraction structure [2]. The two proteins are 

associated with distinct metabolic pathways in the organism L. donovani, namely the purine 

salvage pathway and the pyrimidine pathway. The availability of a three-dimensional 

structure of a protein provides a foundation for subsequent structural analyses, facilitating 

the exploration of their structural and functional interplay with various candidate inhibitors. 

In Chapter 4, following an extensive examination of the literature pertaining to drug targets 

and essential genes in L. donovani, a comprehensive list of therapeutic targets and essential 

proteins linked to the essential genes of L. donovani was collated. Common proteins from 

both lists were selected, that includes the vitamin B6 pathway and sterol biosynthesis of L. 

donovani. While one target protein from the vitamin B6 pathway has a known three-

dimensional structure, the other protein from the sterol biosynthesis pathway lacks a three-

dimensional structure. 

In Chapter 5, a subtractive genomics approach was applied, utilizing the proteomes of five 

different Leishmania species obtained from the NCBI database. Key selection criteria 

included the identification of orthologous groups, non-homologous sequences, druggability 

analysis, and the prediction of protein active sites, which together facilitated the 

identification of common proteins across the five Leishmania species. Among these, 

Glutamate Dehydrogenase (GDH) emerged as a promising drug target for combating 

Leishmania infections.  
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2.2. Protein structure preparation 

2.2.1. Details of Homology Modeling 

 Homology modeling is an indispensable in structural biology, facilitating the prediction and 

analysis of protein structures, and advancing research in drug discovery, protein 

engineering, and other comprehension of fundamental biological processes [3]. Many 

proteins remain structurally unknown due to challenges in crystallization or the expense of 

experimental methods like crystallography and Nuclear Magnetic Resonance (NMR) 

techniques. The number of experimentally determined structures of protein is notably 

smaller compared to the number of known protein sequences. Homology modeling enables 

the prediction of three-dimensional structure of proteins by utilizing its amino acid sequence 

and the known structures of similar proteins. It aids in extrapolating structural insights from 

characterized proteins to related, uncharacterized ones, substantially enriching our structural 

knowledge base. By employing homology modelling, we can forecast the consequences of 

amino acid mutations or structural alterations on protein structure and function. Along with 

that scientists can engineer proteins for a myriad of purposes, including enzyme catalysis, 

protein-protein interactions, and therapeutic protein design [4]. 

Prior to initiating the homology modeling process, preliminary steps are necessary. These 

steps entail conducting a search for a suitable template protein sequence by utilizing Basic 

Local Alignment Search Tool (BLAST) [5] against the PDB, which houses a repository of 

protein structures. This approach yields dependable outcomes when the query sequence 

closely matches the template sequence, exhibiting both high sequence identity and 

similarity, coupled with substantial query coverage. The homology modeling process 

comprises several key stages: sequence alignment, template selection, model building, 

model refinement, and validation. In the initial step of sequence alignment, the amino acid 

sequence of the target protein is aligned with that of one or more template proteins, leading 

to the identification of similarities and differences between them. Following this, template 

selection involves choosing appropriate template structures based on their sequence 

similarity and overall structural compatibility with the target protein. Models are then built 

in the Model Building stage, wherein the aligned sequences serve as a foundation for 

constructing the structure of the target protein. During this process, atoms from the template 

structure are mapped onto corresponding positions in the target sequence, while regions 

lacking template structures are constructed anew. Subsequently, model refinement involves 
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refining the initial model through energy minimization and molecular dynamics simulations 

to optimize its geometry and eliminate any structural irregularities. Finally, validation 

assesses the quality of the homology model using various criteria, including stereochemical 

quality and structural integrity, often utilizing graphs such as Ramachandran plots [6]. 

AlphaFold, developed by DeepMind, stands at the forefront of structural biology 

advancements. This cutting-edge deep learning system significantly enhances protein 

folding prediction [7]. Employing an intricate neural network architecture, AlphaFold 

achieves remarkable precision in predicting protein 3D structures, often surpassing 

conventional methods. It adopts a pioneering strategy, amalgamating multiple sequence 

alignment with deep learning techniques, to produce highly precise structural predictions. 

Leveraging extensive genomic datasets and insights from experimental protein structures, 

AlphaFold offers invaluable insights into protein folding dynamics, function, and 

interactions [8]. 

UniProt, known as the Universal Protein Resource, serves as an extensive database offering 

comprehensive insights into proteins. It acts as a centralized hub for curated protein 

sequence and functional data, drawn from diverse origins including literature, experimental 

findings, and computational analyses [9]. Covering a wide spectrum of organisms, UniProt 

hosts a vast array of protein sequences, spanning both familiar model organisms and less 

explored species. Each entry in UniProt undergoes detailed annotation, providing key details 

of protein names, gene identifications, functions, subcellular locations, biological processes, 

molecular functions, and associated ailments. Utilizing sequence similarities and functional 

attributes, UniProt categorizes proteins into families, aiding researchers in tracing 

evolutionary connections and inferring protein functions. Moreover, UniProt facilitates 

seamless integration with external databases and resources through cross-references, 

empowering researchers to conduct comprehensive analyses and investigations [10]. 

In this research, we have delineated a holistic strategy that amalgamates a range of 

computational methodologies to pinpoint potential protein drug targets and regions of 

structural importance. This entails utilizing an array of computational techniques, such as 

ab initio structure prediction and molecular dynamics simulation, to identify and analyze 

crucial proteins. In chapter 4, the chosen pdb structure of pyridoxal kinase (PK) forms a 

homodimer having molecular weight of 36.2 kDa. However, the protein structure exhibits 

missing residues, which were addressed through modeling techniques with MODELLER 
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10.1 [11]. A monomeric form of the protein was generated through modeling and 

subsequently subjected to minimization using GROMACS [12]. Likewise, another protein 

target, Sterol 14-alpha demethylase (SDM), lacks a three-dimensional structure. To acquire 

its structure, homology modeling techniques were applied. In this process, the sterol alpha‐

14 demethylase of L. infantum with pdb structure served as the template. Subsequently, the 

monomeric structure was refined and utilized as the definitive structure for conducting MD 

simulations. In Chapter 5, the glutamate dehydrogenase (GDH) protein target was identified 

for five Leishmania species through a subtractive genomics approach. Due to the lack of 

experimental three-dimensional structures for these protein targets, AlphaFold structures of 

GDH proteins from the five Leishmania species were acquired from the UniProt database. 

Subsequently, all five structures underwent minimization using the GROMACS software. 

2.2.2. Binding site prediction of protein structure 

The prediction of binding sites in protein structures is a crucial aspect of structural 

bioinformatics, aiding in the understanding of protein-ligand interactions and facilitating 

drug discovery efforts [13]. These methods leverage the three-dimensional structure of 

proteins to predict binding sites. They often rely on the geometric and physicochemical 

properties of protein structures. Web servers like CASTp [14] and DeepPocket [15] utilize 

algorithms to identify likely binding regions on protein surfaces, including those proteins 

that do not have an experimental three-dimensional structure. These are basically protein 

structures which were developed with the help of homology modelling approach. It is 

necessary to obtain the binding site of these proteins as it will help in binding of the ligands 

into it which will further affect the mechanism of the protein in the organism. In Chapter 5, 

the principal ligand-binding pocket within the GDH protein of all five Leishmania species 

was delineated through CASTp predictions. This crucial identification allows for the precise 

binding of suitable ligands to the GDH protein, facilitating deeper insights into its functional 

mechanisms across different species. 

2.3.  Screening of Ligands 

In the realm of bioinformatics, ligand screening stands as a foundational step within the drug 

discovery pipeline, harnessing computational techniques to navigate extensive libraries of 

chemical compounds in pursuit of potential drug candidates. This pivotal process underpins 

drug discovery and design endeavors, aiming to identify compounds capable of modulating 
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target protein activity to achieve therapeutic objectives. By screening extensive compound 

databases against target proteins, researchers can accelerate the discovery of lead molecules 

for subsequent experimental validation, thereby streamlining the drug discovery trajectory 

[16]. Moreover, these methodologies leverage in-silico models to shift through and prioritize 

compounds within large chemical repositories, based on their projected propensity to bind 

with the target protein. 

2.3.1. Collection of ligands 

The PubChem database, maintained by the National Center for Biotechnology Information 

(NCBI), is a comprehensive resource that catalogs information on substances, chemical 

compounds, including their structures, properties, bioactivities, and biological targets. 

Additionally, PubChem provides access to genes, pathways, cell lines, bioassay data, 

allowing researchers to evaluate the biological effects of compounds and prioritize 

candidates for further investigation [17,18]. The PubChem database encompasses an 

extensive array of chemical information, including data on the periodic table elements 

numbering 118, compounds totalling approximately 118,022,280, and substances 

numbering around 317,731,311, among other valuable datasets. It acts as a primary 

repository for chemical details, gathering data from diverse origins such as literature, 

patents, and chemical vendors. With millions of compounds indexed, PubChem offers 

extensive search and analysis tools, enabling to explore chemical space, identify potential 

drug candidates, and study structure-activity relationships [19]. Moreover, it supports data 

deposition and sharing, fostering collaboration and transparency in chemical research. 

DrugBank is a comprehensive online database that provides detailed information about 

drugs, their mechanisms of action, pharmacology, interactions, and therapeutic indications 

[20]. It provides valuable information for scientists, healthcare practitioners, and 

pharmaceutical developers interested in both approved and investigational drugs. DrugBank 

contains extensive data on drug structures, chemical properties, pharmacokinetics, and 

pharmacodynamics, curated from a wide range of literature sources and databases [21]. One 

of the key features of DrugBank is its comprehensive coverage of drug targets and their 

associated pathways. Containing over 500,000 drugs and drug products, this database also 

encompasses a wide array of approved drugs, numbering 13,113, in addition to providing 

data on 19,535 drug targets sourced from diverse organisms. This database helps to explore 

detailed information about the molecular targets of drugs, including proteins, enzymes, 
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receptors, and transporters. Additionally, DrugBank provides insights into the mechanisms 

of drug action, including how drugs interact with their targets to produce therapeutic effects. 

It also includes information on drug metabolism, including details about drug metabolizing 

enzymes and metabolic pathways involved in the biotransformation of drugs in the body 

[22]. This information is crucial for understanding drug metabolism, drug-drug interactions, 

and the potential for drug toxicity. 

The DrugCentral database serves as a comprehensive repository of drug information, 

offering a wealth of data on various aspects related to drug discovery, development, and 

usage. It contains a vast collection of information on approved drugs, investigational drugs, 

and experimental compounds, providing detailed profiles of each drug's pharmacological 

properties, mechanisms of action, indications, adverse effects, and regulatory status [23]. 

Additionally, DrugCentral includes data on drug targets, drug-drug interactions, drug 

metabolism pathways, and drug formulations. This database is a valuable asset for scientists 

and clinicians engaged in drug discovery, development, and clinical practice. [24]. 

In Chapter 3, we accessed the PubChem database to procure the Simplified Molecular Input 

Line Entry System (SMILES) notation of the compounds necessary for our study. 

Subsequently, these compounds were subjected to additional filtration based on various 

parameters. For our second objective, we utilized both DrugBank and DrugCentral databases 

to retrieve approved drugs utilized in diverse treatments. These approved drugs underwent 

additional filtration to isolate the desired ligands. In our final objective, outlined in Chapter 

5, the PubChem database served as the source for obtaining the ligands. 

2.3.2. Ligands filtration 

In chapter 3, the initial molecule selection process, a primary screening was conducted to 

assess the drug-likeness characteristics. Lipinski's rule of five and Veber's rule, each with 

distinct parameters, were taken into consideration for selection of ligands. Lipinski's rule 

encompasses criteria such as molecular weight (≤500 Da), hydrogen bond donors (≤5), 

hydrogen bond acceptors (≤10), and partition coefficient (logP) (≤5) [25]. Conversely, 

Veber's rule incorporates parameters such as the count of rotatable bonds (≤10) and the polar 

surface area (≤140 Å2) [26]. Both these rules serve as valuable filters in the early stages of 

drug discovery, helping to prioritize compounds with optimal drug-like properties for further 

development. These rules are often applied in combination with other screening criteria to 
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identify potential drug candidates with improved pharmacokinetic profiles and reduced risk 

of toxicity. They contribute to the rational design and optimization of new therapeutic 

agents, ultimately enhancing the efficiency and success rate of drug discovery programs. 

The computation of Lipinski's rule of five and Veber's rule properties was conducted 

utilizing SwissADME, an accessible online resource [27]. This screening helps in the 

selection of compounds which can show poor absorption in cells. SwissADME, an open web 

source was used to calculate the properties of Lipinski’s rule of five and Veber’s rule. In 

addition to the aforementioned filtering parameters employed for ligand screening, our study 

also utilized ADMET and PASS analyses for further evaluation. 

ADMET, encompassing Absorption, Distribution, Metabolism, Excretion, and Toxicity, 

stands as a pivotal aspect in the assessment of potential drug candidates throughout the drug 

discovery and development journey [28]. It plays a crucial role in predicting the 

pharmacokinetic and toxicological profiles of these candidates, thereby optimizing their 

efficacy and safety while mitigating the risk of adverse effects in human subjects. Utilizing 

a blend of in vitro assays, animal models, and computational methodologies, ADMET 

studies offer comprehensive insights into the drug's behavior within the body. Specifically, 

drug absorption denotes the process whereby a substance enters the bloodstream from its 

point of administration, which could be oral, intravenous, or topical. Various factors affect 

this process, including the physical and chemical properties of the drug, its formulation, and 

the characteristics of the administration route. Distribution phenomena encompass the 

movement of a drug throughout the body, from the bloodstream to different tissues and 

organs. This transport is influenced by factors such as blood flow dynamics, tissue 

permeability, and the drug's ability to bind to plasma proteins or tissue receptors. 

Metabolism, also known as biotransformation, refers to the chemical alteration of a drug by 

enzymes in the body, primarily occurring in the liver. This process can lead to the formation 

of active or inactive metabolites with different pharmacological or toxicological properties 

compared to the parent drug. Excretion involves the removal of drugs and their metabolites 

from the body, primarily through the kidneys (via urine) and the liver (via bile), with 

additional routes including sweat, saliva, faeces, and exhaled air. The rate of drug excretion 

affects its plasma concentration and duration of action. Toxicity assessment evaluates 

potential adverse effects of a drug on biological systems, including acute and chronic 

toxicity, as well as organ-specific toxicity. This testing aims to identify safety concerns and 

guide dose selection in clinical trials [29]. 
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PASS (Prediction of Activity Spectra for Substances) analysis is a computational method 

used in drug discovery to predict the biological activity profile of chemical compounds 

based on their chemical structure. This approach aids researchers in prioritizing compounds 

for experimental assessment by offering insights into their potential pharmacological 

impacts [30]. During the analysis, the software assesses the structural attributes of a 

compound and juxtaposes them with a database containing verified compounds with known 

biological activities. Through the utilization of statistical algorithms and machine learning 

methodologies, PASS determines the probability of the compound manifesting specific 

biological activities across diverse targets or pathways. The outcome of the analysis 

typically furnishes a catalog of anticipated biological activities alongside corresponding 

probability scores, indicating the likelihood of the compound interacting with various 

biological targets or eliciting particular pharmacological responses [31]. 

2.4.  Molecular Docking 

Molecular docking, a prevalent computational method in drug discovery and structural 

biology, forecasts the favoured orientation and binding affinity of a small molecule (ligand) 

within the binding site of a large molecule target (receptor), often a protein. It simulates 

ligand-receptor complex formation, assessing their stability and affinity [32]. In drug 

discovery, molecular docking is vital for identifying potential drug candidates by predicting 

their interactions with target proteins, thereby elucidating molecular mechanisms of ligand-

protein recognition and facilitating the design of new therapeutics with enhanced potency 

and specificity [33]. Molecular docking includes diverse methods designed for specific 

research requirements and computational capacities. 

Molecular docking encompasses several distinct methodologies tailored to specific research 

needs and computational capacities. Rigid docking assumes that both the ligand and receptor 

maintain fixed conformations, which enhances computational efficiency but may overlook 

conformational changes that occur upon binding. Conversely, flexible docking permits 

flexibility in either or both ligand and receptor, accommodating conformational changes and 

thereby enhancing accuracy, though this comes at the expense of increased computational 

demands. Induced fit docking combines rigid docking with limited receptor flexibility post-

initial docking, capturing induced fit effects for more precise binding predictions. Ligand-

based docking involves docking ligands into predetermined protein binding sites without 

considering receptor flexibility, serving well in virtual screening and predicting ligand 
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binding modes. Protein-protein docking predicts interactions between protein molecules, 

crucial for comprehending protein complex structures and functions in drug discovery and 

biological research. Blind docking involves docking ligands across the entire protein surface 

without specifying a binding site, useful for uncovering potential binding sites and 

understanding protein-ligand interactions in new systems. Cross-docking docks ligands into 

multiple receptor structures to probe ligand selectivity, assess binding affinities across 

diverse protein conformations or elucidate structure-activity relationships [34,35]. 

The docking process comprises several essential stages. Initially, the ligand and receptor 

structures undergo preparation, involving optimization of their geometry, protonation states, 

and addition of necessary hydrogen atoms [36]. The protein molecule undergoes preparation 

by adding hydrogen atoms and Kollman charges, while the ligand is prepared by adding 

Gasteiger charges. Subsequently, a three-dimensional grid is generated to delineate the 

binding site of the receptor, specifying the region where ligand binding occurs. The docking 

algorithm is then executed, systematically orienting and translating the ligand within the 

search space to explore diverse binding modes. During this phase, docking algorithms assess 

the complementarity between the ligand and receptor, considering factors such as steric 

clashes, hydrogen bonding, and hydrophobic interactions [37]. Following docking, protein-

ligand complex poses are scored based on their predicted binding affinity, with lower energy 

scores indicating more favourable binding modes. Finally, docking results undergo analysis 

and validation to elucidate the molecular interactions between ligand and receptor. Visual 

inspection and comparison with experimental data contribute to validating the reliability of 

the predicted binding modes [38]. 

There are several molecular docking software programs available, each with its own unique 

features and capabilities. Some commonly used ones: AutoDock, AutoDock Vina, GOLD 

(Genetic Optimization for Ligand Docking) and GLIDE [39]. AutoDock 4.2 used 

Lamarckian genetic algorithmic (LGA) to obtain the proper protein-ligand complex along 

with the proper orientation of ligands. AutoDock Vina uses Broyden-Fletcher-Goldfarb-

Shanno algorithm for its operation. CB-Dock is a web server which works on density-peak-

based clustering algorithm and uses blind docking approach to form protein-ligand complex. 
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2.5.  Method of Subtractive genomics 

Subtractive genomics, a bioinformatics methodology, aims to discern distinctive genetic 

components or proteins within a target organism through comparative analysis of its genome 

or proteome against that of a reference organism [40]. This approach enables the 

identification of novel elements crucial for the target organism's biology, potentially offering 

valuable insights for various biomedical applications. 

2.5.1. Collection of proteomes 

The foundational data required for conducting subtractive genomics analysis includes 

genomes or proteomes of a specific organism, sourced from databases like the National 

Center for Biotechnology Information (NCBI) database [41], Ensembl [42] and others. 

These databases serve as rich repositories of genomic and proteomic information, providing 

researchers with access to comprehensive data sets essential for comparative genomic 

studies and the identification of unique genetic elements or proteins within target organisms. 

Such analyses offer valuable insights into the genetic basis of various biological processes 

and can inform further research in fields such as pathogenesis, drug discovery and 

evolutionary biology. Genome files offer extensive details about an organism, encompassing 

the sequence of nucleotides forming its DNA, crucial for its growth, development, and 

functionality. These files typically incorporate annotations specifying gene locations, 

regulatory elements, and additional genomic attributes. In chapter 5, five proteomes were 

taken for the work. In case of proteome, the files provide comprehensive data about the 

entire set of proteins expressed by an organism. This includes details such as the amino acid 

sequences of proteins, their functions, subcellular localization, etc. Additionally, proteome 

files often contain annotations that describe the biological roles of proteins, their 

involvement in pathways and processes and any relevant experimental evidence. Moreover, 

proteome files include data on hypothetical proteins and paralogous proteins, aiding in the 

identification of functionally relevant proteins within the proteome of a specific organism 

[43]. This information assists in distinguishing between proteins with known functions and 

those that require further characterization, contributing to a more comprehensive 

understanding of the organism's biology. 

 

 



 

   Methodology                                                                                                        Chapter 2 

                         D. Saha, 2025                                                                                                                 43 
 

2.5.2. Data Filtration 

Proteome of five Leishmania species retrieved contains information such as functional 

proteins, hypothetical proteins and paralogous proteins.  Initially, the hypothetical proteins 

are excluded from the proteome. Hypothetical proteins are products of genes anticipated 

from genomic sequences but lack experimental confirmation of their expression or roles. 

These proteins are typically detected through computational means like gene prediction 

algorithms for analyzing DNA sequences. They're labelled as "hypothetical" because their 

presence and functions haven't been experimentally verified using different methods. Their 

existence may result from diverse factors, such as errors in genome annotation, anomalies 

in sequencing, or the presence of genuinely new genes whose functions remain unidentified. 

Later on, removal of paralogous proteins in the proteome was done by CD-HIT software 

[44]. CD-HIT is a widely used bioinformatics program designed for clustering and 

comparing protein or nucleotide sequences. It employs an efficient algorithm to reduce 

redundancy in sequence databases by clustering highly similar sequences into representative 

subsets, thereby accelerating subsequent sequence analysis. CD-HIT operates by calculating 

pairwise sequence similarities and grouping sequences into clusters based on a user-defined 

similarity threshold. The program offers various parameters to control clustering stringency, 

such as sequence identity and alignment coverage. Additionally, CD-HIT provides options 

for generating cluster representatives, which are non-redundant sequences representing each 

cluster, and for removing redundant sequences from input datasets [45]. It is widely utilized 

in genomic and proteomic research for tasks such as sequence database compression, 

sequence annotation, and identifying sequence homologs. After filtering, the proteome 

sequences were subjected to orthology analysis using OrthoFinder software, a 

bioinformatics tool utilized for comparative genomics and orthology inference across 

diverse species [46]. This software identifies clusters of orthologous genes by comparing 

protein sequences from various organisms, leveraging sequence similarity to infer 

evolutionary relationships. OrthoFinder utilizes a sophisticated algorithm incorporating 

sequence similarity, evolutionary divergence, and gene tree reconciliation to precisely detect 

orthologs and deduce gene orthology connections [47]. Furthermore, to identify regions of 

non-homologous proteins in Leishmania species compared to the human proteome, BLAST 

(Basic Local Alignment Search Tool) searches and the Markov Cluster Algorithm were 

employed [48]. This program works by conducting pairwise alignments between the query 

protein sequence and sequences in the target database, searching for regions of local 
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similarity. BLAST utilizes a scoring system to assess the significance of sequence matches, 

taking into account factors such as sequence identity, similarity and alignment length. 

 

2.5.3. Druggability analysis and identification of novel drug targets 

In this segment of the methodology, established drug targets sourced from the DrugBank 

database [49] were considered. DrugBank comprises an extensive repository of FDA-

approved drug targets, encompassing proteins or macromolecules targeted by therapeutics 

endorsed for clinical use by the U.S. Food and Drug Administration (FDA). These targets 

are pivotal in numerous physiological processes and disease pathways, rendering them 

attractive candidates for drug discovery and development endeavors. The utilization of the 

DrugBank database facilitates exploration into the pharmacological characteristics of FDA-

approved drug targets, identification of novel drug-target interactions, and prioritization of 

drug discovery initiatives aimed at specific diseases or therapeutic targets [50]. To ascertain 

the druggability of shared non-homologous proteins from Leishmania species, they 

underwent assessment for their potential to strongly bind with therapeutic ligands [51]. This 

evaluation entailed BLASTp searches against FDA-approved drug targets retrieved from the 

DrugBank database. The objective of this procedure was to determine the suitability of the 

selected proteins as potential drug targets, thereby identifying novel candidates for further 

investigation in drug discovery endeavors. This approach aimed to uncover proteins 

exhibiting characteristics akin to established drug targets, laying the groundwork for 

subsequent in-depth analyses and potential therapeutic interventions. 

2.6. Insights from Molecular Dynamics Simulations 

Biomolecules exhibit inherent dynamism, a characteristic crucial for their proper 

functioning. Their ability to undergo dynamic changes is fundamental to various biological 

processes. The demand for computational methods such as molecular dynamics simulations, 

capable of offering dynamic insights into biomolecular behavior over time, is becoming 

increasingly imperative [52]. This necessity arises from the inadequacy of conventional 

experimental techniques like X-ray crystallography, which are unable to capture dynamic 

information pertaining to molecular motions resulting from changes in atomic or bonded 

interactions [53]. 
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The MD Simulation process involves the time-dependent behavior of three-dimensional 

macromolecular structures, which can be accessed through various databases. Following 

Newtonian laws of motion, MD enables the observation of atomic behavior within biological 

entities, offering detailed insights into macromolecular motion at the atomic level [54]. 

Examples of biological phenomena studied using molecular dynamics simulations include 

protein stability [55], protein-ligand binding [56], protein-nanoparticle interactions [57], 

protein folding [58] and protein-protein interactions [59]. Experimental methods like X-ray 

crystallography and NMR spectroscopy, which elucidate the structures of proteins and other 

macromolecules, offer initial coordinates for utilization in the simulation procedure. The 

primary objective of MD simulation is to mimic life processes. To achieve this, an explicit 

system is constructed, incorporating water, which is essential for life [60]. MD simulations 

allow for the observation of molecular motions at the femtosecond timescale, facilitating the 

examination of subtle changes in the behavior of macromolecules [61]. This capability 

enables researchers to gain more in-depth details into the changing behavior of biomolecules 

in aqueous environments. 

MD simulation process operates at the atomistic level, it initially records the position and 

movement of each atom throughout the entire simulation, providing a comprehensive 

depiction of the molecule's behavior. This level of detail is challenging to achieve with 

experimental techniques, as they cannot observe such changes continuously [62]. A 

significant advantage of MD simulations lies in their ability to operate under diverse 

conditions, facilitated by meticulous control and understanding of simulation parameters. 

These include regulation of initial coordinates of proteins and ligands, characterization of 

molecular composition within the system, imposition of constraints and charges, as well as 

management of temperature and pressure variables [63]. This benefit enables the tailored 

design of simulations to address various inquiries and interpret the resulting simulation 

outcomes effectively. This comprehensive control empowers researchers to explore 

molecular dynamics across a spectrum of scenarios, facilitating nuanced investigations into 

biological systems. 

2.6.1. Understanding force fields in molecular dynamics simulations 

A force field is a mathematical model used in molecular dynamics simulations to calculate 

the forces and energies acting on atoms and molecules within a system. It comprises 

mathematical functions that describe the interactions between atoms, including bonded and 
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non-bonded interactions such as covalent bonds, angles, dihedrals, and van der Waals and 

electrostatic interactions. In molecular dynamics simulations, the force field is applied to the 

initial coordinates of atoms to simulate their movements over time [64]. The equations of 

motion, typically derived from Newton's laws of motion, are integrated numerically to 

predict the trajectory of each atom. By iteratively calculating the forces acting on each atom 

and updating their positions and velocities, the simulation can simulate the behavior of the 

system over time [65]. Various force fields are tailored for specific types of molecules and 

may incorporate parameters calibrated against experimental data. The accuracy of 

simulation results depends on the optimization of force field parameters and simulation 

conditions, such as temperature, pressure and solvent environment. Protein force fields 

utilize the following energy terms: 

   

 

                                                                                                              ---------------- eq. 2.1 

 

 

 

 

 

 

 

Figure 2.1: Diagrammatic representation of force field interactions: covalent bonds are 

shown with bold solid lines, while non-bonded interactions are depicted with light dashed 

lines. 

The development of force fields is a complex process that involves optimization of 

parameters based on different systems and problems. T. Halgren has remarked that this 

process remains as much an art as it is a science, highlighting the intricate nature of force 
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field development [66]. Comparing one force field with another for the same system proves 

challenging due to the significant influence of various parameters inherent to each force 

field. Several force fields commonly employed in molecular dynamics simulations of 

biomolecules include CHARMM [67], AMBER [68] and GROMOS [69], while for 

condensed phase simulations, OPLS and COMPASS are frequently utilized. The utilization 

of these diverse force fields enables researchers to explore a wide range of biological 

problems and phenomena. Each force field possesses unique characteristics that make it a 

valuable option for solving specific problems. However, they also have shortcomings related 

to the data and procedures employed in their parameterization. 

2.6.1.1. Additive Force Fields used in MD Simulations 

• CHARMM Force Field: The CHARMM (Chemistry at HARvard Molecular 

Mechanics) additive all-atom force field is one of the most widely used force fields 

in molecular dynamics simulations. Its development and parameterization have been 

ongoing since the early 1980s, leading to its broad applicability in studying 

biomolecular systems. It encompasses a broad spectrum of systems, including 

proteins with extensive amino acid support, nucleic acids covering both DNA and 

RNA, lipids for membrane simulations and carbohydrates [70]. CHARMM is also 

widely applied to inorganic materials, making it a valuable tool in materials design. 

Its adaptability allows for the simulation of complex systems, enabling 

advancements in areas such as nanotechnology and material science. For instance, 

the CHARMM force field boasts various versions such as CHARMM19, 

CHARMM22, and CHARMM27. CHARMM36 force field is the latest and widely 

used all-atom force field that has been adapted for use in GROMACS, a popular 

molecular dynamics simulation package used for different systems [71]. 

• AMBER Force Field: AMBER (Assisted Model Building with Energy Refinement) 

force field is a family of molecular mechanics force fields widely used for 

biomolecular simulations. The initial development of AMBER force field began in 

the 1980s as part of the AMBER software package. The AMBER force field was 

designed to work seamlessly for proteins and nucleic acids, enabling the simulation 

of a diverse array of molecules [72]. It includes various versions (e.g., ff94, ff99, 

ff03, ff14SB, ff19SB), each improving parameterization and accuracy. AMBER 
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force fields are not limited to the AMBER software package and are also compatible 

to GROMACS and other platforms [73]. 

• GROMOS Force Field: The GROMOS (GROningen MOlecular Simulation) force 

field is a family of molecular mechanics force fields primarily designed for the study 

of biomolecules, such as proteins, lipids, and carbohydrates, in molecular dynamics 

simulations. In the realm of biomolecular molecular dynamics simulations, force 

fields are in a constant state of evolution, while the GROMOS force field is 

represented by versions like GROMOS96, GROMOS45a3, GROMOS53a5, 

GROMOS53a6 and GROMOS54a7 [69]. GROMOS54a7 is specifically 

parameterized for simulating proteins, nucleic acids, and small organic molecules, 

ensuring accurate modeling of biomolecular systems. It provides stability to protein 

backbones and is also compatible with SPC and SPC/E water models. GROMOS 

force field parameters include bond lengths, angles, backbone flexibility and 

stability, water models, and other parameters [73]. 

2.6.2. Ensemble 

Ensembles play a crucial role in representing how atoms or molecules interact within a 

system and respond to external factors like temperature, pressure, and chemical potential. 

Simulating molecular systems across diverse ensemble conditions enables the exploration 

of numerous phenomena in thermodynamics and kinetics, encompassing phase changes, 

interactions between proteins and ligands, and the folding of biomolecules. Commonly used 

ensembles in MD simulations are Microcanonical Ensemble (NVE), Canonical Ensemble 

(NVT), Isothermal-Isobaric Ensemble (NPT) and Grand Canonical Ensemble (μVT) [74]. 

In the microcanonical ensemble, the system is isolated and conserves its total energy (E), 

volume (V), and number of particles (N). NVE simulations are useful for studying the 

dynamics of isolated systems and energy conservation. In the canonical ensemble, the 

system exchanges energy with a heat bath at a constant temperature (T) while maintaining 

a fixed volume (V) and number of particles (N). NVT simulations are suitable for studying 

the equilibrium properties of systems at a given temperature, such as phase transitions and 

thermodynamic properties. The isothermal-isobaric ensemble maintains a constant 

temperature (T), pressure (P) and number of particles (N) while allowing for volume 

fluctuations. NPT simulations are essential for studying systems under constant external 

pressure, such as liquids and gases. The grand canonical ensemble enables the exchange of 
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particles between the system and a particle reservoir at constant chemical potential (μ), 

temperature (T) and volume (V). μVT simulations are valuable for studying systems with 

variable particle numbers, such as adsorption processes and chemical reactions. 

2.6.3. Understanding Periodic Boundary Conditions 

Periodic boundary conditions (PBC) are a computational technique used in molecular 

dynamics simulations to simulate an infinite system within a finite simulation box. In this 

method, molecules interact not only with neighboring molecules within the simulation box 

but also with periodic images of these molecules, which are positioned at regular intervals 

in all three dimensions. This approach effectively eliminates edge effects and simulates bulk 

behavior, making it suitable for studying systems with periodicity, such as crystals, liquids, 

and other extended structures. Under periodic boundary conditions, when a molecule 

traverses the border of the simulation box, it appears again on the opposite side as a periodic 

image [75]. The interactions between molecules and their periodic images are computed 

using minimum image convention, ensuring that only the nearest periodic image is 

considered for each molecule. This allows for accurate calculation of intermolecular forces 

while avoiding duplication of interactions. Periodic boundary conditions are essential for 

studying large systems and systems with long-range interactions, as they enable efficient 

computation of interactions while preserving the periodicity of the system [76]. They are 

widely used in molecular dynamics simulations of biological molecules, materials, and 

complex fluids to study equilibrium properties, transport phenomena, and phase transitions. 

 

 

 

 

 

 

 

Figure 2.2: Visualization of periodic boundary conditions in two dimensions. 
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2.6.4. Particle mesh Ewald Summation 

Particle mesh Ewald (PME) summation is a computational technique used to efficiently 

compute long-range electrostatic interactions in molecular dynamics simulations. PME 

works by representing the charge distribution on a three-dimensional grid, known as the 

charge grid. This grid is typically much coarser than the molecular system itself, allowing 

for significant computational savings. The charge grid is used to calculate the electrostatic 

potential at each grid point using Fast Fourier transform (FFT) techniques [77]. The resulting 

potential is then interpolated back onto the molecular system to compute the forces acting 

on each particle. One of the key advantages of PME is its ability to efficiently handle 

periodic boundary conditions, allowing accurate treatment of long-range electrostatic 

interactions in periodic systems. Additionally, PME is highly parallelizable, making it 

suitable for large-scale simulations on modern computing architectures [78]. Overall, PME 

summation is a potent method for precisely simulating electrostatic interactions in molecular 

dynamics simulations, allowing researchers to investigate various biological, chemical, and 

materials systems with exceptional accuracy. 

 

                                                                                                 ----------------------- eq. 2.2 

Where, i and j = atoms,    𝑞𝑖 and 𝑞𝑗 = charges on the atom,      𝑟𝑖 and 𝑟𝑗 = coordinates and 𝑛𝐿 

= displacement vector  

Further the calculation of energy (UEwald)equation can be termed: 

                         UEwald = Ur + Um + Uself    ------------------------ eq. 2.3 

Where, Ur
= summation in real space, Um

= Fourier term and Uself
= constant term 

2.6.5.  Structure preparation 

Proteins with available three-dimensional structures from the Protein Data Bank (PDB) were 

selected for the molecular dynamics (MD) simulation process. For proteins with missing 

residues or atoms in their structures, or those lacking a structure entirely, modeling was 

performed using MODELLER software. The resulting modeled structure underwent 



 

   Methodology                                                                                                        Chapter 2 

                         D. Saha, 2025                                                                                                                 51 
 

minimization using GROMACS 2020.1 [79]. Following minimization, the modeled 

structure was subjected to docking with the ligand to form the protein-ligand complex. The 

GROMOS54a7 force field was utilized for the simulation setup of the system. To prepare 

the ligand, the Automated Topology Builder (ATB) [80] was employed to generate the 

topological parameters compatible with the GROMOS54a7 force field, facilitating the 

simulation process. All of the atom types, their partial charges, bond, angle, dihedral angle, 

and torsional angle information are all included in the ligand's parameter file. 

2.6.6. System preparation 

All simulations were conducted under periodic boundary conditions in all dimensions. The 

LINCS algorithm was applied to maintain bond constraints throughout the simulation 

process [81]. The systems were solvated using the SPC (simple point charge) water model, 

specifically employing the three-site SPC water model for MD simulations [82]. The protein 

or protein-ligand complex was positioned at a distance of 1.0 nm from the box edge. Prior 

to simulation initiation, counterions were introduced into the system to neutralize any 

charges that might be present. We enforce PBC across all spatial dimensions and employ 

the LINCS algorithm to uphold bond constraints. Additionally, we utilized the Steepest 

Descent method to minimize the energy of the systems. Equilibration involves two stages: 

initially, the NVT canonical ensemble is applied for 2 ns, maintaining constant volume, 

temperature, and number of atoms. Subsequently, the system is equilibrated for 5 ns under 

the NPT isobaric–isothermal ensemble to balance the pressure and achieve equilibrium [83]. 

2.6.7. Binding energy calculations 

After performing simulations, binding energy calculations are necessary to measure the 

contribution of the residues in forming interaction between protein and ligand. This 

approach helps to decode the biomolecular interactions and components. MMPBSA 

(Molecular Mechanics Poisson–Boltzmann Surface Area) technique was used with the help 

of g_mmpbsa tool [84]. This tool helps to compute the Gibbs free energy of binding. Gibbs 

free energy equation is as follows: 

       ΔGbind= Gcomplex – (Gprotein+ Gligand) ---------------------------- eq. 2.4 

Where total binding free energy of the protein-ligand, protein and ligand are represented by 

Gcomplex, Gprotein and Gmolecule in the solvent, respectively.  
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                  Gx = EMM + (TS)+ Gsolvation --------------------------- eq. 2.5 

Where x represents complex, protein and ligand, EMM represents both bonded and non-

bonded interactions energy in vacuum, Gsolvation represents electrostatic & non-electrostatic 

contributions to solvation energy and TS represents temperature and entropy. All the 

parameters of energy were calculated by MMPBSA technique and finally gives total free 

binding energy.  
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