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 Chapter 2 2

2.1 Methodology 

2.1.1 Site and Data Description 

 

In order to facilitate broad agricultural planning and the creation of long-term 

strategies, India has been divided into fifteen major agro-climatic zones (Figure 2-1) 

based on climate, geological formation, physiography, cropping patterns, etc. 

Therefore, in order to ensure that the data accurately represented the Indian 

subcontinent, every agroclimatic zone in India was tried to cover for our research 

work. As of the time of our research, there were no data available for two regions out 

of the fifteen agroclimatic zones: the Island Region of India (Andaman & Nicobar 

Island, Lakshadweep Island) and the Western Himalayan Division (Union Territories 

of Jammu and Kashmir and Ladakh). As a result, they were excluded from the present 

study. Depending on the availability of data, the data was collected from 1
st
 January 

2015 to 31
st
 May 2020. 
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Figure 2-1 Agro climatic zones of India [Image source: https://vikaspedia.in/agriculture/crop-
production/weather-information/agro-climatic-zones-in-india] 

 

 

 

Central Pollution Control Board (CPCB) of India, a Government agency has provided 

us with data from all over India for this purpose (http://www.cpcb.nic.in/). Data from 

State level Pollution Control Boards of India are also provided by the CPCB.  From 

all over India, 26 monitoring stations were selected for data retrieval. Details of the 

data used are described in Table 2-1. 
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Table 2-1: Data Description 

Sl. 

No. 

Agroclimatic 

Zone 

Zone 

Code 

City and Station Name Data 

Source 

Data Period 

From To 

1.  Eastern 

Himalayan 

Region 

EH 

 

Shillong 

(Lumpyngngad) 

Meghalaya 

PCB 

27August 

2019  

31 May 

2020 

Guwahati (Railway 

Colony) 

Assam 

PCB 

16 February 

2019  

31 May 

2020 

Sliguri (Ward 32, 

Bapupara) 

WBPCB 1 February 

2018  

31 May 

2020 

2.  Lower 

Gangetic Plain 

Region 

LGP Howrah (Padmapukur) WBPCB 19 January 

2018  

31 May 

2020 

3.  Middle 

Gangetic Plain 

Region 

MGP 

 

Gaya (Collectorate) BSPCB 1 January 

2016  

31 May 

2020 

Patna(IGSC 

Planetarium Complex,)

  

BSPCB 21 October 

2017  

10 April 

2020 

Varanasi (Ardhali 

Bazar) 

UPPCB 1 January 

2015  

31 May 

2020 

4.  Upper 

Gangetic 

Plains Region 

UGP 

 

Agra (Sanjay Palace) UPPCB 11 May 

2015  

31 May 

2020 

Kanpur (Nehru Nagar) UPPCB 12 May 

2015  

31 May 

2020 

Lucknow (Central 

School) 

CPCB 28 March 

2015  

31 May 

2020 

5.  Trans-Ganga 

Plains Region 

TGP 

 

Amritsar (Golden 

Temple) 

PPCB 27February 

2017  

31 May 

2020 

Delhi (ITO) CPCB 3 

November 

2016  

31 May 

2020 

6.  Eastern 

Plateau and 

Hills 

EPH 

 

Jamshedpur (Tata 

Stadium, Jorapokhar) 

JSPCB 9 January 

2019  

31 May 

2020 

Talcher (Talcher Coal 

Fields) 

OSPCB 7 February 

2018  

31 May 

2020 

7.  Central 

Plateau and 

CPH Mandideep (Sector D) MPPCB 2 January 

2018  

31 May 

2020 
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Hills  Nagpur (Opposite GPO 

Civil lines) 

MPCB 30 March 

2016  

31 May 

2020 

8.  Western 

Plateau and 

Hills 

 

WPH 

Aurangabad (More 

Chowk Waley) 

MPCB 1 October 

2017  

31 May 

2020 

Mumbai (Bandra) MPCB 6 May 2018  31 May 

2020 

Solapur (Solapur) MPCB 1 January 

2016  

31 May 

2020 

9.  Southern 

Plateau and 

Hills 

SPH 

 

Bengaluru (Peenya) CPCB 23 March 

2015  

31 May 

2020 

Hyderabad (Zoo Park) TSPCB 1 October 

2015  

31 May 

2020 

10.  Eastern 

Coastal Plains 

and Hills 

ECPH 

 

Chennai (Manali) CPCB 23 March 

2015  

31 May 

2020 

Vijayawada (PWD 

Grounds) 

APPCB 26 April 

2017  

27 

October 

2019 

11.  Western 

Coastal Plains 

and Ghats 

WCPG Thiruvananthapuram 

(Plammoodu) 

KPCB 21 June 

2017  

31 May 

2020 

12.  Gujarat Plains 

and Hills 

GPH Ahmedabad 

(Maninagar) 

GPCB 1 January 

2018   

31 May 

2020 

13.  Western Dry 

Region 

WD Jodhpur (Collecorate) RSPCB 21 

September 

2017  

31 May 

2020 

14.  Western 

Himalayan 

Division 

WH No data available during 

the period 

   

15.  Island Region IR No data available during 

the period 

   

Wind Characteristics of the region: 

 

In an area close to a source of air pollution such as industries, heavy vehicular 

transport, mining etc., air movement plays a major role in the increase of air pollution 

in that area. Local air quality typically changes over time due to the influence of 

weather patterns. In stable conditions, or when there is little to no vertical air 
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movement, air pollutants can build up close to the ground and result in severe 

outbreaks of air pollution. The Windrose diagram gives us a picture of the wind 

pattern in a particular area. Windrose diagrams were plotted for each agroclimatic 

zones using the average data (Figure 2.2 to Figure 2.14). 

Eastern Himalayan Region (EH):     Lower Gangetic Plain Region (LGP):  

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Windrose Plot of EH   Figure 2-3 Windrose Plot of LGP 

 

 

Middle Gangetic Plain Region (MGP):  Upper Gangetic Plains Region (UGP): 

 

 

 

 

 

 

 

 

 

Figure 2-4 Windrose Plot of MGP    Figure 2-5 Windrose Plot of UGP 
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Trans-Ganga Plains Region  (TGP):  Eastern Plateau and Hills (EPH): 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6 Windrose Plot of TGP   Figure 2-7 Windrose Plot of EPH 

 

 

Central Plateau and Hills (CPH):  Western Plateau and Hills (WPH): 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Windrose Plot of CPH    Figure 2-9 Windrose Plot of WPH 
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Southern Plateau and Hills (SPH):  Eastern Coastal Plains and Hills (ECPH): 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Windrose Plot of SPH     Figure 2-11 Windrose Plot of ECPH 

 

 

Western Coastal Plains and Ghats (WCPG):  Gujarat Plains and Hills (GPH): 

 

 

 

 

 

 

 

 

 

 

Figure 2-12 Windrose Plot of WCPG    Figure 2-13 Windrose Plot of GPH 
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Western Dry Region (WD): 

 

 

 

 

 

 

 

 

 

 

Figure 2-14 Windrose Plot of WD 

 

2.1.2 Data Pre-processing 

 

Missing values and outliers were found to be common in all secondary data sources. 

Therefore, data pre-processing is essential to minimize and eliminate these errors. In 

the present study, values that were excessively high were classified as outliers. Linear 

interpolation method [114] was used to replace the outliers. Missing values present in 

the dataset were also filled with same technique. 

Figure below demonstrates the box plot of pre-processed data acquired from the monitoring 

stations: 
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Figure 2-15 Box plot of Data 

 

 

The average value of 26 monitoring stations: 

Count    Mean     Standard 
Deviation 

Min      25% 50% 75% Max     

26 65.12 28.97 25.49 42.20 58.70 89.05 119.53 

 

The detail average data distribution is described in Figure 2-16 

 

Figure 2-16 Average distribution of Data 
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North Indian cities have relatively high value of PM2.5 concentration as compared to 

rest of the India data. On the other hand Eastern cities have low concentration of 

PM2.5value. Line plot of processed data  for a typical  monitoring station is depicted in 

Figure 2-17. 

 

Figure 2-17 Line plot of Delhi data 

 

2.1.3 Sequence to sequence modeling 

 

In machine learning, predicting the next symbol or symbols based on the previously 

observed sequence of symbols is called sequence prediction or sequence to sequence 

modeling (Seq2Seq). These symbols could be an object, product, an event, an 

alphabet, a word, or a number. In contrast to other supervised learning problems, 

sequence prediction requires that the data order be maintained during model training 

and prediction. Here both the input and output sequences can have different lengths. 

Seq2Seq models are trained using a dataset of pairs just like any other supervised 

learning model. Concept of sequence to sequence modeling and encoder-decoder 

architecture was used in this paper (Figure 2-18). Sequence prediction was a 

challenging task and its presence could be found for a long time. [115] for the first 

time mapped the whole input sentence into a vector. [116] proposed seq2seq model 
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for machine translation. [117] used Seq2Seq model for attention-based air quality 

predictor. An encoder decoder model architecture consists of two parts and one 

intermediate phase to construct a context vector. After the input sequence has been 

read and encoded, the decoder decodes it and predicts each element of the output 

sequence. In our model a series of ConvLSTM followed by a 3D CNN acts as an 

encoder and extracts features from the input sequences. A series of BLSTM acts as a 

decoder and generates predicted output sequences. BLSTM model used in the 

decoder, keeps track of prior hour prediction in the sequence and stores the 

information as an internal state for generating output sequence. 

 

 

Figure 2-18 Seq2Seq model 

 

 

 

2.1.4 Recurrent Neural Network (RNN) 

 

RNN is a type of artificial neural network with inherent memory that uses past 

information to predict the next step [118].Three layers make up a basic RNN: input, 

hidden, and output layers. The hidden states provide a prediction at the output layer 

for each timestep based on the input vector. For an RNN, the hidden state is a set of 

values that collectively, regardless of outside factors, contain all the unique data 

needed to reconstruct the network's prior states over multiple time-steps. Accurate 

predictions at the output layer can be made using this integrated information to define 

the network's future behavior. The hidden state of a typical RNN (Figure 2-19) at time 

t can be explained with the following equation: 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏) 
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where ht and ht-1 are hidden states representing current and previous time steps, 

respectively. xt is the input vector, W is the weight and b is the bias that are shared 

among different time steps. 

The following equation yields the final network output: 

𝑓 = 𝑊𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓  

Where f is the final state. 

 

Figure 2-19 RNN 

 

2.1.5 Long Short-Term Memory (LSTM) 

 

The LSTM is a type of recurrent neural network that is specifically designed to handle 

long-term dependencies within time series [119,120]. RNN could store and retrieve 

the past information from their internal cycles. However, LSTM can control the flow 

of information across its internal states and cells by allowing an information to pass, 

store or delete at any moment of time with the help of some self-controlling gates. 

Figure 2-20 demonstrates the basic architecture of a LSTM cell that consists of four 

elements- (i)Input gate (it), (ii)Output gate (ot), (iii) Forget gate (ft) and (iv)Cell status 

(Cellt). New information could be stored in the LSTM cell by activating the input 

gate. Stored information could be deleted from memory by activating the forget gate. 

One could control the flow of current cell information by activating or deactivating 
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the output gate. Error or gradients produced in the LSTM cell were trapped inside the 

cell with the help of controlling gates. Thus, error neither vanishes nor explodes 

rapidly as observed in traditional artificial neural networks. 

Equations in LSTM operations are: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝐶𝑡
~ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
~

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

where it=Input gate, ft=Forget gate, ot=Output gate, Ct=Current Cell state, 𝐶𝑡
~

 =Updated 

Cell State, Ct-1 is the previous cell value, ht= Current state, ht-1 the previous hidden 

state. tanh () is the activation function and σ the logistic sigmoid function.  bi (/f/o/c) 

represents corresponding bias vector; Wi (/f/o/c) represents the input weight. 

 

Figure 2-20 LSTM Network 

2.1.6 Bidirectional-LSTM (BLSTM) 

 

BLSTM is an enhanced version of LSTM that can process the information from both 

directions. Essentially, it can memorize the present and past information 

simultaneously in its structure [121]. Input sequences would be trained by two 

LSTMs from beginning to end (forward direction) and end to beginning (backward 

direction), thus feeding the additional context into the network. At any moment of 

time BLSTM can preserve past and future values by combining two sets of LSTMs. 

This increases the memory and the performance of the network. The outcome of 

BLSTM network can be represented by the following equation: 
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ℎ𝑏𝑖(𝑡) = 𝑓(𝑡)⃗⃗⃗⃗⃗⃗ + 𝑏(𝑡)
⃖⃗ ⃗⃗ ⃗⃗ ⃗ 

 

Where f(t) and b(t) are results obtained from forward and backward LSTM respectively. 

 

 

2.1.7 Three Dimensional Convolutional Neural Network (3D CNN) 

 

 

A typical CNN model is a stack of many convolutional layers with 2D convolutional 

kernels. They were designed for analysis of 2D objects. Most of the real-world 

situations were 3D in nature and traditional CNN could not capture the third 

dimension.  To overcome this issue 3D convolution was proposed by [122] for video 

classification which can extract features in space and time dimension. Partial 

connectedness and weight sharing were the two basic properties of CNN   (Figure 2-

21). Partial connectedness decreases the chance of overfitting in CNN and preserve 

local spatial features. Hence CNN are suitable for short range predictions. The 

weights sharing reduces the number of parameters and enhance network 

generalization capability. In this paper we have used 3DCNN for capturing short 

range features of PM2.5concentration present in the series. By adjusting the number of 

3D kernels and feature maps present in each layer we can extract deep features and 

avoid overall complexity of the model [123]. 

 
Figure 2-21 3D CNN 

2.1.8 Convolutional LSTM (ConvLSTM) 

 

ConvLSTM is a special kind of LSTM where convolutional operators are used in 

place of fully connected layer operators [124]. Here all inputs, cell outputs, hidden 

states and gates were considered as 3D tensors and resembled like vectors inside a 3D 
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grid structure. Last two dimensions of the 3D tensors were considered as spatial (or 

second) dimensions. In the grid, next state of a cell is determined with input values 

and last states of local surroundings with the help of convolution operation in state to 

state and input to state transitions. Equations involved in ConvLSTM operation are 

like LSTM operations but with a convolutional operator.  Figure 2-22 represents the 

internal structure of a ConvLSTM. An input value Xt was used to calculate present 

state ht at time t, with past state ht-1 and next state ht+1.In a similar fashion the next 

present state was calculated. 

 

Figure 2-22 ConvLSTM 

 

 

 

2.1.9 Bi-Convolutional LSTM (BConvLSTM) 

 

The BConvLSTM is an extended version of ConvLSTM where two states of a 

sequence are maintained at a time: one in forward direction and other in backward 

direction. In each LSTM cell two numbers of cell and hidden states are monitored. 

Thereby, BConvLSTM can access more information and yields better performance 

than ConvLSTM [125]. 

Figure 2-23 illustrates the working principle of a BConvLSTM cell. It consists of a 

ConvLSTM cell having two sets of hidden state and cell state. One set (hf , cf ) is used 
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for forward direction and the other set (hb, cb) is used for backward direction. 

Corresponding hidden states from each state in a given time step, are stacked and 

transferred through the convolution layer to obtain final hidden representation of that 

time step. Next layer of the BConvLSTM receives this final hidden representation as 

an input. 

 

Figure 2-23 BConvLSTM 
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