
Chapter 3

Page 48 of 137
`

MODEL DEVELOPMENT

Chapter 3

Page 49 of 137
`

 Chapter 3 3

3.1 Model Development

3.1.1 Network Architecture

In this study, multi-step (eight-step) ahead prediction was achieved using a deep

learning framework. The model design consists of an encoder and decoder, forming a

hybrid model for Seq2Seq prediction. This model's primary constituents were

3DCNN, ConvLSTM, and BLSTM. Figure 3-1 illustrates the basic architecture of our

model.

Figure 3-1: Hybrid Model

This architecture is basically built with LSTM and 3D-CNN networks. Because the

LSTM model can store data in its inherent periodic cells and that could be retrieved at

Chapter 3

Page 50 of 137
`

any time steps, it has been used extensively for time series prediction. Although non-

Gaussian noise inherent in the data set cannot be filtered out, LSTM networks

perform incredibly well in minimizing Gaussian noise of the data [126]. In order to

mitigate these drawbacks, a BLSTM network was utilized to lessen overfitting of data

[127]. ConvLSTM also performs better on datasets having a lot of temporal

information and long-term sequential features. Additionally, 3DCNN models were an

improvement over 2DCNN models because they were better at processing huge

amounts of contextual data that were useful for extracting spatiotemporal features.

3DCNN can extract features from data by segmenting data into different frequency

domains over time. This property is also useful in minimizing noise present in the

data.

In our model, a ConvLSTM encoder layer receives input and creates a feature map.

The feature map is then transferred to a second ConvLSTM layer. The second

ConvLSTM layer filters and further refines the feature map generated by previous

layer. At this stage Batch Normalisation layer was used to improve training of the

model. To extract patterns of spatio-temporal nature, the output is passed into a

3DCNN. After the 3DCNN layer, the output is sent to the decoder layer consisting of

four BLSTM networks. A sequence of values of 8 hours, will be produced by

BLSTM. The three fully connected BLSTM layers function as interpretation layers

for each time step in the output sequence. The model’s output could be obtained by

fully connected (FC) layer, which gives the eight steps ahead prediction. In order to

reduce overfitting, a dropout layer was added after the initial BLSTM. In a CNN

model, each filter layer abstracts a feature. Because the first layers of the network

receive noisy input, less numbers of filters were applied to capture only the essential

features of the layers. In order to capture a deeper level of feature abstraction, further

filters were added in the following levels. More features can be captured by a filter or

kernel with a smaller size than one with a greater size. In the initial ConvLSTM layer,

64 filters of size (1,7) were applied. In the second ConvLSTM layer, the kernel size

was reduced to (1,3) and the number of filters was raised to 128. Odd numbers of

kernel sizes were selected in order to ensure symmetry around the center.

The model uses BLSTM layer, which functions as a decoder and produces a sequence

of values as output. Out of sample testing and cross validation methods were applied

to judge the model's performance. Earlier, [128] used a similar architecture for time

Chapter 3

Page 51 of 137
`

series data to learn smart manufacturing challenges without use of 3DCNN. In the

current work, the 3DCNN layer received input from the Stacked ConvLSTM layer.

The time series data for air pollution are the result of a complicated interaction

between a variety of stochastic and dynamic processes with various characteristic

frequencies [129]. By using 3DCNN to account for the unique features, the network's

capacity to make better predictions was subsequently enhanced.

We used three consecutive sequences of 8-hour length as input (24 hour input) and

the next sequence (8-hour data) as target to forecast 8 hour ahead prediction of PM2.5.

concentration. Deep learning model demands a large size data set for better

performance. Therefore in order to create a large data set for training the model,

overlapping moving window technique was applied [130,131].

Let's have a look at the time series u(t) = {u1, u2, u3,........ ,ut}. Based on the last value

and a constant moving window of size w, the subsequent k values in the series ŝ =

(ŝ1, ŝ2, ..., ŝk) comparable to (ut+1, ut+2,………,ut+k) could be described as follows:

ŝ = (ŝ1, ŝ2,..., ŝk) = f(ut−w ,ut−w+1, ut−w+2,... , ut)

An input set U ∈ R
n×w

and an output set S ∈ R
n×k

is produced with help of applying

above formula in an univariate time series. The training data size (n) is indicated by

the formula: n= (N − w − k + 1).

Model parameters were generalized in order to produce an optimal value for the

majority of the stations because it was employed in numerous stations distributed

across various Indian regions.

In order to find best fit model following encoder decoder based architectures (Figure

3-2 to Figure 3-8) were designed and explored :

(i) Stacked LSTM, (ii)CNN-LSTM, (iii) ConvLSTM-LSTM,

(iv) ConvLSTM-BLSTM, (v) BConvLSTM-LSTM, (vi) BConvLSTM-BLSTM

and (vii) BLSTM-BLSTM

Chapter 3

Page 52 of 137
`

Figure 3-2: Stacked LSTM

Figure 3-3: CNN -LSTM

Chapter 3

Page 53 of 137
`

Figure 3-4: ConvLSTM-LSTM

 Figure 3-5: ConvLSTM-BLSTM

Chapter 3

Page 54 of 137
`

Figure 3-6: BConvLSTM-LSTM

Figure 3-7: BConvLSTM-BLSTM

Chapter 3

Page 55 of 137
`

Figure 3-8: BLSTM-BLSTM

3.1.2 Overlapping Moving Window

This study attempted to predict PM2.5 levels for the next 8 hours based on previous

data from the last 24 hours. In order to achieve this, entire time series data was

divided into 8 equal divisions. For training purpose, we have used 3 sequences or 24

hours data as input and one sequence or 8 hours data as output. However, this amount

of instances was not enough to train a deep learning model. To create more training

data, time series data were trained using an overlapping moving window method.

Chapter 3

Page 56 of 137
`

Here, moving the entire sequence one step forward, have created more training

datasets. (Figure 3-9).

Figure 3-9: Overlapping Moving Window

3.1.3 Hyperparametrs

The performance of a machine learning model is highly governed by its

hyperparameters. Hyperparametrs are special types of parameters in machine

learning. By tuning the hyperparametrs we can obtain different results. The

hyperparameters used in the hybrid model for all India implementation are listed in

Table 3-1.

The most often used activation function for deep learning was the rectified linear unit

(ReLU), which has the formula f(x)=max (0, x). The "swish" activation function,

f(x)=x sigmoid(x), was developed by the Google Brain team [132] and works better in

a deeper network. The 'tanh' activation function was employed for the BLSTM

component of the study, and the 'swish' activation function for rest of the model

component. Several kinds of optimizing algorithms are available to lower the loss

function during model training. Some of the mostly used optimizers are Adaptive

Moment Estimation (Adam), Gradient Descent (GD), Momentum Based Gradient

Descent (MGD), Stochastic Gradient Descent (SGD), Root Mean Square Propagation

(RMSProp) and Nesterov Accelerated Gradient (NAG). We used the Adaptive

Moment Estimation (Adam) optimizer in this work because of its efficiency and

adaptability.

Chapter 3

Page 57 of 137
`

Table 3-1: Hyperparamters Value

Layer Hyperparameters Values

ConvLSTM -1 Filter 64

Kernel Size (1,7)

Activation Function Swish

ConvLSTM -2 Filter 128

Kernel Size (1,3)

Activation Function NA

3D CNN Filter 1

Kernel Size (3,3,3)

Activation Function Swish

BLSTM -1 Units, Activation Function 600, tanh

BLSTM -2 Units, Activation Function 300, tanh

BLSTM -3 Units, Activation Function 200, tanh

BLSTM -4 Units, Activation Function 100, tanh

Dense -1 Units, Activation Function 100, swish

Dense -2 Units, Activation Function 50, swish

Dense -3 Units, Activation Function 10, swish

Dense -4 Units, Activation Function 1, linear

NA Dropout 0.3

NA Learning Rate 10e-4

NA Optimizer Adam

NA Batch Size 64

NA epoch 100

Chapter 3

Page 58 of 137
`

We have used Hyperband optimization while finding best fit model among encoder-

decoder based deep learning model. The range of the hyperparameter values are listed

in Table: 3-2.

Table 3-2: Hyperband Parameters

LAYER HYPERPARAMETER(S) VALUE

ConvLSTM -1,

BiConvLSTM -1

Filter 8, 16, 32, 64, 128, 256, 512, 1024

Kernel Size 3, 5, 7, 9

ConvLSTM -2,

BiConvLSTM -1

Filter 16, 32, 64, 128, 256, 512

Kernel Size 3, 5, 7, 9

LSTM1, BLSTM1 Units 100, 200, 300, 400, 500, 600, 700

LSTM -2, BLSTM -2 Units 100, 200, 300, 400, 500, 600

Dense -1 Units 10, 100

Dense -2 Units 1, linear activation function

NA Dropout 0 to 0.5

NA Learning Rate 1e-4, 1e-5, 1e-6

NA Optimizer Adam, SGD, Adadelta, Nadam,RMSprop

NA Batch Size 16, 32, 64, 128, 256, 512

NA Activation Function relu, tanh, sigmoid, swish

Chapter 3

Page 59 of 137
`

3.1.4 Model Evaluation

The model's efficacy was evaluated using a Walkforward validation technique.

Performance evaluation was performed using statistical measures namely root mean

square error (RMSE), mean absolute error (MAE), and mean absolute percent error

(MAPE).

The error metrics equations are as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐴𝑖 − 𝑃𝑖)

2

𝑛

𝑖=1

𝑀𝐴𝐸 = ⁡
1

𝑛
∑|𝐴𝑖 − 𝑃𝑖|

𝑛

𝑖=1

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝐴𝑖 − 𝑃𝑖|

|𝐴𝑖|

𝑛

𝑖=1

) ∗ 100

Further model performance was also tested through Factor of two of observations

(FAC2) and Geometric variance (VG) [133].The following are the equations used in

the error metrics:

𝐹𝐴𝐶2 =
1

𝑛
∑

𝑃𝑖

𝐴𝑖

𝑛

𝑖=1

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐷𝑎𝑡𝑎⁡⁡𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛⁡⁡𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔⁡⁡0.5 ≤
𝑃𝑖

𝐴𝑖
≤ 2.0

𝑉𝐺 = 𝑒𝑥𝑝
1
𝑛

∑ (𝑙𝑛𝐴𝑖−𝑙𝑛⁡𝑃𝑖)
2𝑛

𝑖=1

Ai= Observed value, Pi= Model predicted value, n= Total number of samples

	07_chapter 3

