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 Chapter 3 3

3.1 Model Development 

3.1.1 Network Architecture 

 

In this study, multi-step (eight-step) ahead prediction was achieved using a deep 

learning framework. The model design consists of an encoder and decoder, forming a 

hybrid model for Seq2Seq prediction. This model's primary constituents were 

3DCNN, ConvLSTM, and BLSTM. Figure 3-1 illustrates the basic architecture of our 

model. 

 

 

Figure 3-1: Hybrid Model 

 

This architecture is basically built with LSTM and 3D-CNN networks. Because the 

LSTM model can store data in its inherent periodic cells and that could be retrieved at 
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any time steps, it has been used extensively for time series prediction. Although non-

Gaussian noise inherent in the data set cannot be filtered out, LSTM networks 

perform incredibly well in minimizing Gaussian noise of the data [126]. In order to 

mitigate these drawbacks, a BLSTM network was utilized to lessen overfitting of data 

[127]. ConvLSTM also performs better on datasets having a lot of temporal 

information and long-term sequential features. Additionally, 3DCNN models were an 

improvement over 2DCNN models because they were better at processing huge 

amounts of contextual data that were useful for extracting spatiotemporal features. 

3DCNN can extract features from data by segmenting data into different frequency 

domains over time. This property is also useful in minimizing noise present in the 

data.  

In our model, a ConvLSTM encoder layer receives input and creates a feature map. 

The feature map is then transferred to a second ConvLSTM layer. The second 

ConvLSTM layer filters and further refines the feature map generated by previous 

layer. At this stage Batch Normalisation layer was used to improve training of the 

model.  To extract patterns of spatio-temporal nature, the output is passed into a 

3DCNN. After the 3DCNN layer, the output is sent to the decoder layer consisting of 

four BLSTM networks. A sequence of values of 8 hours, will be produced by 

BLSTM. The three fully connected BLSTM layers function as interpretation layers 

for each time step in the output sequence. The model’s output could be obtained by 

fully connected (FC) layer, which gives the eight steps ahead prediction. In order to 

reduce overfitting, a dropout layer was added after the initial BLSTM. In a CNN 

model, each filter layer abstracts a feature. Because the first layers of the network 

receive noisy input, less numbers of filters were applied to capture only the essential 

features of the layers. In order to capture a deeper level of feature abstraction, further 

filters were added in the following levels. More features can be captured by a filter or 

kernel with a smaller size than one with a greater size. In the initial ConvLSTM layer, 

64 filters of size (1,7) were applied. In the second ConvLSTM layer, the kernel size 

was reduced to (1,3) and the number of filters was raised to 128. Odd numbers of 

kernel sizes were selected in order to ensure symmetry around the center.  

The model uses BLSTM layer, which functions as a decoder and produces a sequence 

of values as output. Out of sample testing and cross validation methods were applied 

to judge the model's performance. Earlier, [128] used a similar architecture for time 
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series data to learn smart manufacturing challenges without use of 3DCNN. In the 

current work, the 3DCNN layer received input from the Stacked ConvLSTM layer. 

The time series data for air pollution are the result of a complicated interaction 

between a variety of stochastic and dynamic processes with various characteristic 

frequencies [129]. By using 3DCNN to account for the unique features, the network's 

capacity to make better predictions was subsequently enhanced. 

We used three consecutive sequences of 8-hour length as input (24 hour input)  and 

the next sequence (8-hour data) as target to forecast 8 hour ahead prediction of  PM2.5. 

concentration. Deep learning model demands a large size data set for better 

performance. Therefore in order to create a large data set for training the model, 

overlapping moving window technique was applied [130,131].  

Let's have a look at the time series u(t) = {u1, u2, u3,........ ,ut}. Based on the last value 

and a constant moving window of  size w, the subsequent k values in the series  ŝ = 

(ŝ1, ŝ2, ..., ŝk) comparable to (ut+1, ut+2,………,ut+k) could be described as follows: 

ŝ = (ŝ1, ŝ2,..., ŝk) = f(ut−w ,ut−w+1, ut−w+2,... , ut)  

An input set U ∈ R
n×w 

and an output set S ∈ R
n×k  

is produced with help of applying 

above formula in an univariate time series. The training data size (n) is indicated by 

the formula: n= (N − w − k + 1). 

Model parameters were generalized in order to produce an optimal value for the 

majority of the stations because it was employed in numerous stations distributed 

across various Indian regions. 

 

In order to find best fit model following encoder decoder based architectures (Figure 

3-2 to Figure 3-8) were designed and explored : 

(i) Stacked LSTM, (ii)CNN-LSTM, (iii) ConvLSTM-LSTM,  

(iv) ConvLSTM-BLSTM, (v) BConvLSTM-LSTM, (vi) BConvLSTM-BLSTM 

and (vii) BLSTM-BLSTM 
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Figure 3-2: Stacked LSTM  

Figure 3-3: CNN -LSTM 

 

 

 



Chapter 3 
 

Page 53 of 137 
` 

 

 

 

Figure 3-4: ConvLSTM-LSTM     

     Figure 3-5: ConvLSTM-BLSTM 
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Figure 3-6: BConvLSTM-LSTM     

Figure 3-7: BConvLSTM-BLSTM 
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Figure 3-8: BLSTM-BLSTM 

 

3.1.2 Overlapping Moving Window 

 

This study attempted to predict PM2.5 levels for the next 8 hours based on previous 

data from the last 24 hours. In order to achieve this, entire time series data was 

divided into 8 equal divisions. For training purpose, we have used 3 sequences or 24 

hours data as input and one sequence or 8 hours data as output. However, this amount 

of instances was not enough to train a deep learning model. To create more training 

data, time series data were trained using an overlapping moving window method. 
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Here, moving the entire sequence one step forward, have created more training 

datasets. (Figure 3-9). 

 

Figure 3-9: Overlapping Moving Window 

 

3.1.3 Hyperparametrs 

 

The performance of a machine learning  model is highly governed by its  

hyperparameters. Hyperparametrs are special types of parameters in machine 

learning. By tuning the hyperparametrs we can obtain different results. The 

hyperparameters used in the hybrid model for all India implementation are listed in 

Table 3-1.  

The most often used activation function for deep learning was the rectified linear unit 

(ReLU), which has the formula f(x)=max (0, x). The "swish" activation function, 

f(x)=x sigmoid(x), was developed by the Google Brain team [132] and works better in 

a deeper network. The 'tanh' activation function was employed for the BLSTM 

component of the study, and the 'swish' activation function for rest of the model 

component. Several kinds of optimizing algorithms are available to lower the loss 

function during model training. Some of the mostly used optimizers are  Adaptive 

Moment Estimation (Adam), Gradient Descent (GD), Momentum Based Gradient 

Descent (MGD), Stochastic Gradient Descent (SGD), Root Mean Square Propagation 

(RMSProp) and Nesterov Accelerated Gradient (NAG). We used the Adaptive 

Moment Estimation (Adam) optimizer in this work because of its efficiency and 

adaptability. 
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Table 3-1: Hyperparamters Value 

 

 

 

 

 

 

 

 

 

 

 

Layer Hyperparameters Values 

ConvLSTM -1 Filter 64 

Kernel Size (1,7) 

Activation Function Swish 

ConvLSTM -2 Filter 128 

Kernel Size (1,3) 

Activation Function NA 

3D CNN Filter 1 

Kernel Size (3,3,3) 

Activation Function Swish 

BLSTM -1 Units, Activation Function 600, tanh 

BLSTM -2 Units, Activation Function 300, tanh 

BLSTM -3 Units, Activation Function 200, tanh 

BLSTM -4 Units, Activation Function 100, tanh 

Dense -1 Units, Activation Function 100, swish 

Dense -2 Units, Activation Function 50, swish 

Dense -3 Units, Activation Function 10, swish 

Dense -4 Units, Activation Function 1, linear 

NA  Dropout  0.3 

NA Learning Rate 10e-4 

NA Optimizer Adam 

NA Batch Size 64 

NA epoch 100 
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We have used Hyperband optimization while finding best fit model among encoder-

decoder based deep learning model. The range of the hyperparameter values are listed 

in Table: 3-2. 

 

 

Table 3-2: Hyperband Parameters 

LAYER HYPERPARAMETER(S) VALUE 

ConvLSTM -1, 

BiConvLSTM -1 

Filter 8, 16, 32, 64, 128, 256, 512, 1024 

Kernel Size 3, 5, 7, 9 

ConvLSTM -2, 

BiConvLSTM -1 

Filter 16, 32, 64, 128, 256, 512 

Kernel Size 3, 5, 7, 9 

LSTM1, BLSTM1 Units 100, 200, 300, 400, 500, 600, 700 

LSTM -2, BLSTM -2 Units 100, 200, 300, 400, 500, 600 

Dense -1 Units 10, 100 

Dense -2 Units 1, linear activation function 

NA Dropout 0 to 0.5 

NA Learning Rate 1e-4, 1e-5, 1e-6 

NA Optimizer Adam, SGD, Adadelta, Nadam,RMSprop 

NA Batch Size 16, 32, 64, 128, 256, 512 

NA Activation Function relu, tanh, sigmoid, swish 
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3.1.4 Model Evaluation 

 

The model's efficacy was evaluated using a Walkforward validation technique. 

Performance evaluation was performed using statistical measures namely root mean 

square error (RMSE), mean absolute error (MAE), and mean absolute percent error 

(MAPE). 

The error metrics equations are as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐴𝑖 − 𝑃𝑖)

2

𝑛

𝑖=1

 

𝑀𝐴𝐸 = ⁡
1

𝑛
∑|𝐴𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝐴𝑖 − 𝑃𝑖|

|𝐴𝑖|

𝑛

𝑖=1

) ∗ 100 

 

Further model performance was also tested through Factor of two of observations 

(FAC2) and Geometric variance (VG) [133].The following are the equations used in 

the error metrics: 

𝐹𝐴𝐶2 =
1

𝑛
∑

𝑃𝑖

𝐴𝑖

𝑛

𝑖=1

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐷𝑎𝑡𝑎⁡⁡𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛⁡⁡𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔⁡⁡0.5 ≤
𝑃𝑖

𝐴𝑖
≤ 2.0 

𝑉𝐺 = 𝑒𝑥𝑝
1
𝑛

∑ (𝑙𝑛𝐴𝑖−𝑙𝑛⁡𝑃𝑖)
2𝑛

𝑖=1  

 

Ai= Observed value, Pi= Model predicted value, n= Total number of samples 
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