MODEL DEVELOPMENT

4 Chapter 4

4.1 **Results and Discussions**

4.1.1 Statistical Distribution Analysis (Objective 1)

Normality test was carried out on time series data with KS statistic, Shapiro-wilk test and Jerque-bera test. The normality test results (Table 4-1 to Table 4-3) showed that the nature of the $PM_{2.5}$ dataset is not normal across the different agricultural climate zones of India.

Table 4-1: Jerque bera test

SI.	Station Name	Statistics	p - value
1	Gaya	26352.07	0
2	Howrah	23894.81	0
3	Aurangabad	34571.29	0
4	Shillong	9087.63	0
5	Thiruvananthapuram	30495.83	0
6	Talcher	20338.43	0
7	Delhi	21342.89	0
8	Lucknow	55558.44	0
9	Amritsar	42599.20	0
10	Siliguri	22019.28	0
11	Ahmedabad	36304.95	0
12	Vijaywada	16395.21	0
13	Hyderabad	953.17	0
14	Varanasi	30553.29	0
15	Kanpur	30440.94	0
16	Patna	9077.11	0
17	Guwahati	9501.70	0
18	Agra	52506.72	0
19	Nagpur	26394.50	0
20	Jodhpur	32282.83	0
21	Chennai	110593.70	0
22	Mumbai	8069.81	0
23	Solapur	29087.92	0
24	Bengaluru	202634.40	0
25	Jamshedpur	2535.89	0
26	Mandideep	43518.65	0

Table 4-2: KS statistics

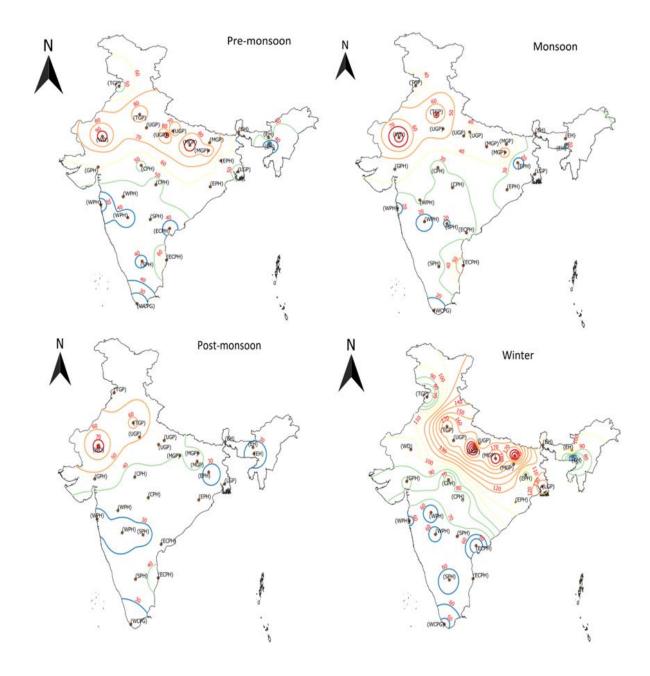
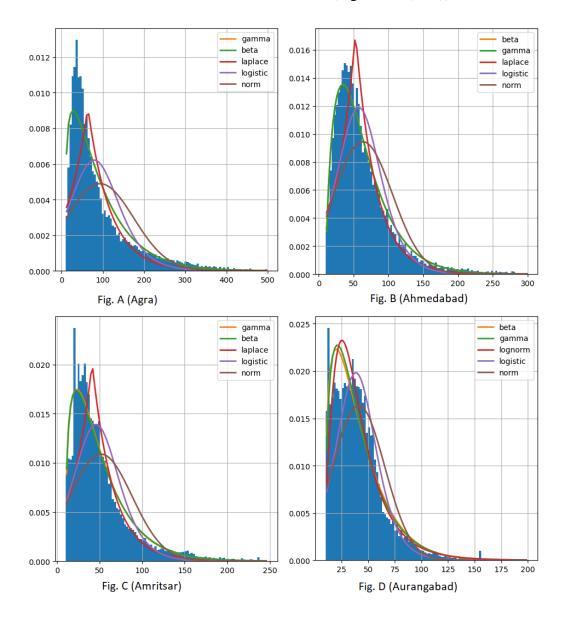
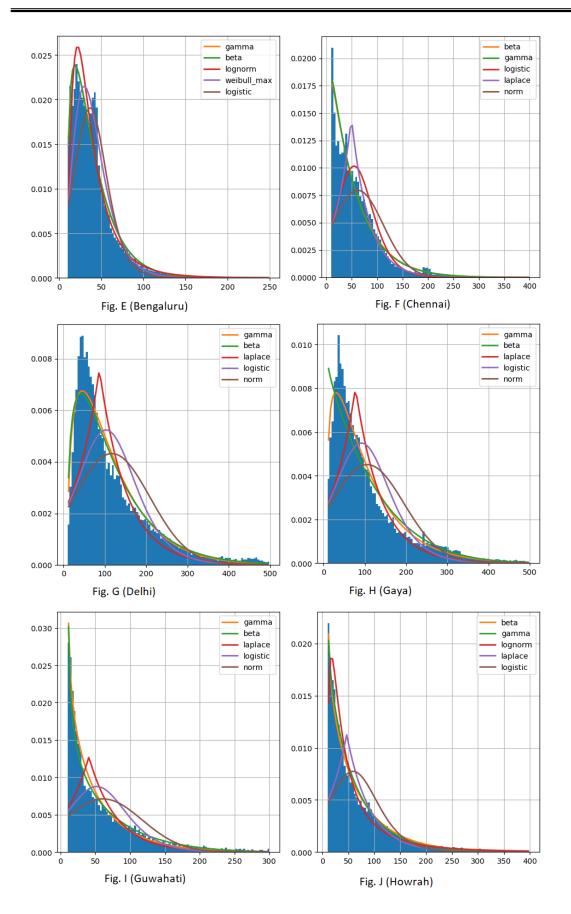
SI.	Station Name	Statistics	p -value
1	Gaya	1	0
2	Howrah	1	0
3	Aurangabad	1	0
4	Shillong	1	0
5	Thiruvananthapuram	1	0
6	Talcher	1	0
7	Delhi	1	0
8	Lucknow	1	0
9	Amritsar	1	0
10	Siliguri	1	0
11	Ahmedabad	1	0
12	Vijaywada	1	0
13	Hyderabad	1	0
14	Varanasi	1	0
15	Kanpur	1	0
16	Patna	1	0
17	Guwahati	1	0
18	Agra	1	0
19	Nagpur	1	0
20	Jodhpur	1	0
21	Chennai	1	0
22	Mumbai	1	0
23	Solapur	1	0
24	Bengaluru	1	0
25	Jamshedpur	1	0
26	Mandideep	1	0

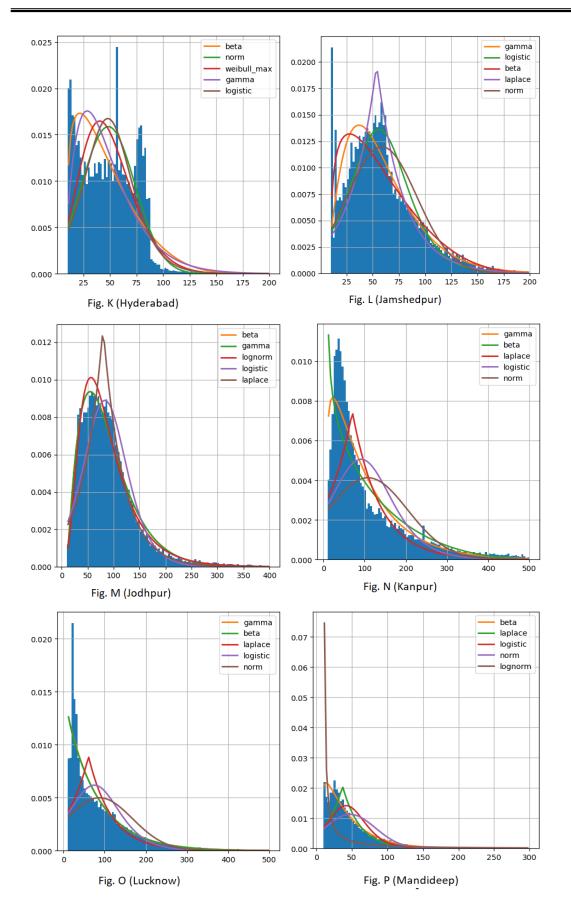
Table 4-3: Shapiro wilk test

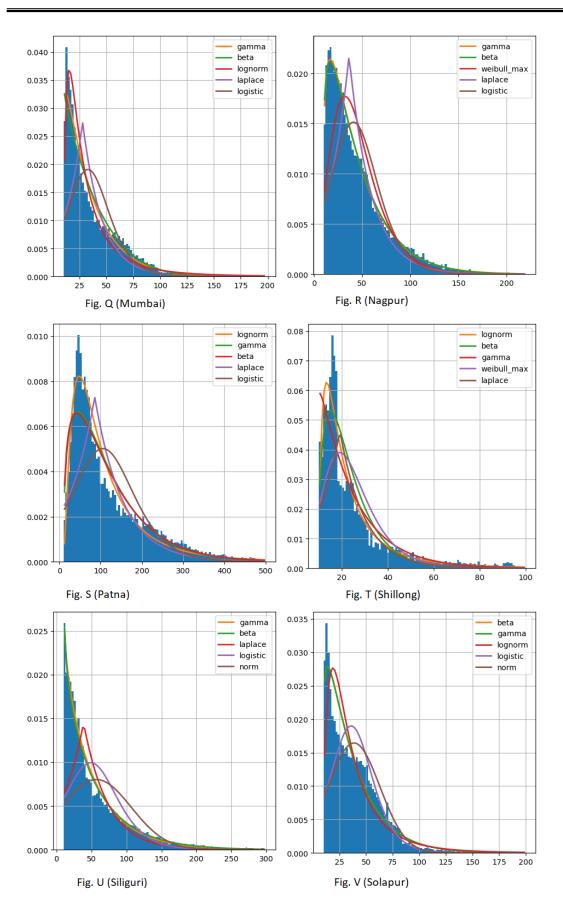
SI.	Station Name	Statistics	p -value
1	Gaya	0.834	. 0
2	Howrah	0.803	0
3	Aurangabad	0.878	0
4	Shillong	0.764	0
5	Thiruvananthapuram	0.810	0
6	Talcher	0.806	0
7	lto	0.843	0
8	Lucknow	0.810	0
9	Amritsar	0.816	0
10	Siliguri	0.807	0
11	Ahmedabad	0.837	0
12	Vijaywada	0.914	0
13	Hyderabad	0.953	0
14	Varanasi	0.840	0
15	Kanpur	0.810	0
16	Patna	0.856	0
17	Guwahati	0.805	0
18	Agra	0.794	0
19	Nagpur	0.859	0
20	Jodhpur	0.872	0
21	Chennai	0.813	0
22	Mumbai	0.865	0
23	Solapur	0.890	0
24	Bengaluru	0.803	0
25	Jamshedpur	0.940	0
26	Mandideep	0.821	0

Data analysis based on seasonality revealed that $PM_{2.5}$ concentrations range from 195.5 µg/m³ during the winter to 113.8 µg/m³ during the monsoon. Many authors reported similar results earlier [134]. During the monsoon season, the lowest mean concentration was observed in the WCPG region and the highest mean concentration in the WD. The MGP has the highest average concentration during the winter, while the EH area has the lowest. Notably, the highest average concentration is found in the MGP region during the pre-monsoon season, and the highest average concentration is found in the TGP region during the post-monsoon season.

Northwestern India has higher PM2.5 concentrations, particularly during the monsoon and post-monsoon seasons, according to the seasonal plots (Figure 4-1). The Indo-Gangetic plain region had the highest concentration during the winter and pre-monsoon season.


Figure 4-1: Seasonal Plots


To find out what kind of distribution is predominated in the PM2.5 data of different agricultural climate zones, we conducted a thorough statistical distribution analysis. Understanding the statistical distribution in data is crucial for effective forecasting. Seven common distributions were applied to each dataset to determine the best fit model for air pollution studies. These distributions include- Gamma, Beta, Log Normal, Weibull, Logistic, Normal, and Laplace. The minimum sum of square error criteria was used to find the best-fit distribution (Figure 4-2 (A-Z)).

`

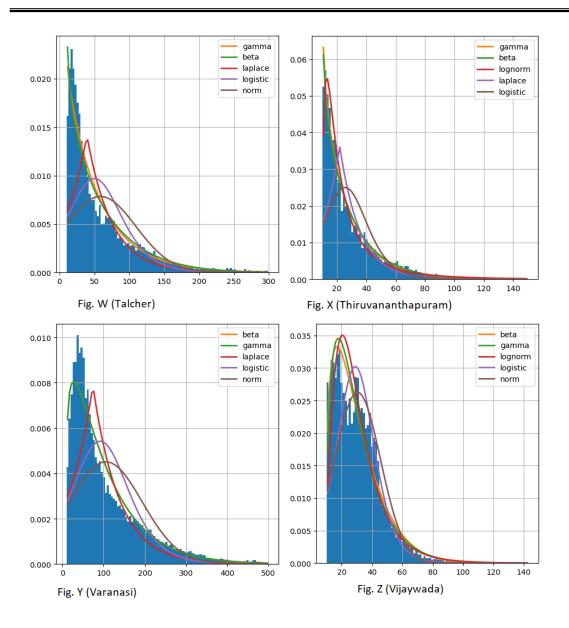


Figure 4-2:(A-Z) Distribution Plot

At 24 out of 26 sites, the gamma and beta distributions were predominant (Table 4-4). At 14 locations, the concentration of $PM_{2.5}$ follows a gamma distribution, at 10 places a beta distribution, and at the rest of the two locations a lognormal distribution. It is important to note that the Gamma distribution is the best fit distribution for the sites at EPH, TGP and UGP. LGP, ECPH, and GPH all solely follow the beta distribution. A log normal distribution was only observed at Patna in the MGP and Shillong in the EH area. Mixed distribution fitting results were found in the remaining regions.

Table 4-4: Best fit Statistical distribution parameters values

Agro Climatic Zone	Site	Best fit Distribution	Location parameter	Scale Parameter	Scale/ Location
	Guwahati	gamma	1.00E+01	5.55E+01	5.55E+00
Eastern Himalayan	Shillong	lognorm	9.18E+00	1.05E+01	1.14E+00
Region	Siliguri	gamma	1.00E+01	4.79E+01	4.79E+00
Lower Gangetic Plain Region	Howrah	beta	1.00E+01	5.34E+03	5.34E+02
	Gaya	gamma	9.88E+00	7.62E+01	7.71E+00
Middle Gangetic	Patna	lognorm	4.89E+00	8.32E+01	1.70E+01
Plain Region	Varanasi	beta	9.93E+00	2.85E+13	2.87E+12
	Agra	gamma	9.94E+00	6.55E+01	6.59E+00
Upper Gangetic	Kanpur	gamma	9.97E+00	8.55E+01	8.57E+00
Plain Region	Lucknow	gamma	1.00E+01	7.81E+01	7.81E+00
Trans-Ganga Plain	Amritsar	gamma	9.95E+00	2.84E+01	2.85E+00
Region	Delhi	gamma	9.96E+00	7.18E+01	7.21E+00
Eastern Plateau and	Jamshedpur	gamma	3.94E+00	2.20E+01	5.58E+00
Hills	Talcher	gamma	1.00E+01	5.01E+01	5.01E+00
Central Plateau and	Mandideep	beta	9.95E+00	5.30E+03	5.33E+02
Hills	Nagpur	gamma	1.00E+01	2.88E+01	2.88E+00
	Aurangabad	beta	9.67E+00	4.45E+02	4.60E+01
Western Plateau	Mumbai	gamma	1.00E+01	2.43E+01	2.43E+00
and Hills	Solapur	beta	1.00E+01	4.53E+08	4.54E+07
Southern Plateau	Bengaluru	gamma	9.92E+00	2.19E+01	2.20E+00
and Hills	Hyderabad	beta	9.78E+00	1.91E+02	1.95E+01
Eastern Coastal	Chennai	beta	1.00E+01	2.63E+03	2.63E+02
Plain and Ghats	Vijayawada	beta	9.82E+00	1.73E+02	1.76E+01
Western Coastal Plain and Ghats	Thiruvananth apuram	gamma	1.00E+01	2.03E+01	2.03E+00
Gujrat Plain and Hills	Ahmedabad	beta	9.67E+00	6.43E+13	6.64E+12
Western Dry Region	Jodhpur	beta	8.59E+00	1.62E+12	1.88E+11

An inter station correlation of $PM_{2.5}$ concentrations were done and results are described in Figure 4-3.

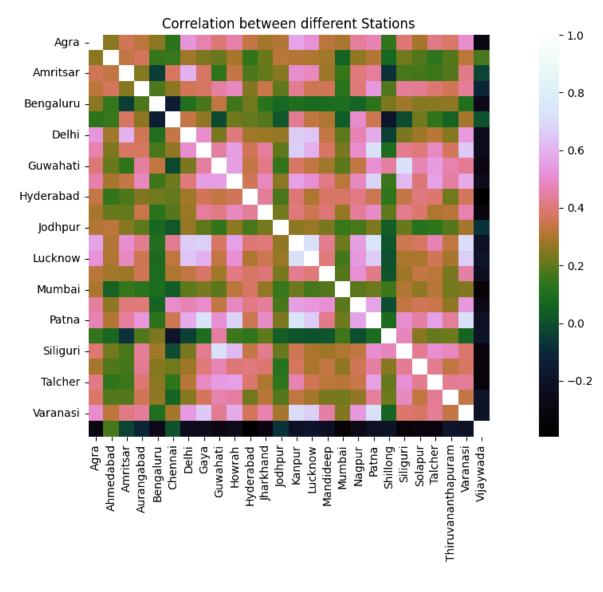


Figure 4-3: Inter Station Correlation

4.1.2 Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX)

We employed the statistical technique known as Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) as a baseline for comparing the results. SARIMAX was performed in selected cities covering all four directions of India. Delhi the national capital of India is one of the highly polluted cities of the world. SARIMAX result (Table 4-5) for Delhi is presented below.

Table 4-5: SARIMAX Model

Dep. Varia	able:			У	No.	Observations:		52608
Model:		SARIMAX	(3, 0	, 1)	Log	Likelihood		-254688.616
Date:		Tue, 10	0ct	2023	AIC			509387.232
Time:			20:2	9:29	BIC			509431.585
Sample:				0	HQIO			509401.092
			- 5	2608				
Covariance	Type:			opg				
	coe	f std	err		Z	P> z	[0.025	0.975]
ar.L1	2.069	9 0	.001	1751	.207	0.000	2.068	2.072
ar.L2	-1.284	2 0	.002	-823	.438	0.000	-1.287	-1.281
ar.L3	0.214	1 0	.001	223	.460	0.000	0.212	0.216
ma.L1	-0.970	3 0	.001	-931	.464	0.000	-0.972	-0.968
sigma2	938.678	2 0	.971	966	.710	0.000	936.775	940.581
Laura Dav	(11) (0).				14	Janaus Pana	(10).	26206755
Ljung-Box	(L1) (Q):				.14	Jarque-Bera	(JB):	36306755.5
Prob(Q):					.14	Prob(JB):		0.0
	lasticity (H):			.66	Skew:		0.2
Prob(H) (t	<pre>wo-sided):</pre>			0	.00	Kurtosis:		131.7

Table 4-6 gives the result of multi-step error for the SARIMAX model. Figure 4-4 and Figure 4-5 shows the Autocorrelation plots of the SARIMAX model. Figure 4-6 is the decomposition plot of the time series data.

Table 4-6: SARIMAX Result

`

ERROR	1-Hr	2-Hr	3-Hr	4-Hr	5-Hr	6-Hr	7-Hr	8-Hr	Cumulative
RMSE	29.66	48.18	55.14	62.44	71.37	77.02	81.78	87.88	66.69
MAE	16.06	27.04	32.48	36.67	42.56	48.64	52.48	56.04	39
MAPE	16.37	27.05	31.94	35.23	42.57	53.36	61.32	60.36	41.02

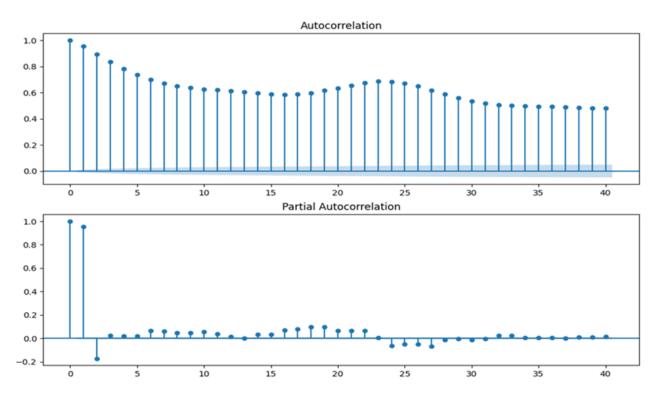


Figure 4-4: Autocorrelation 1

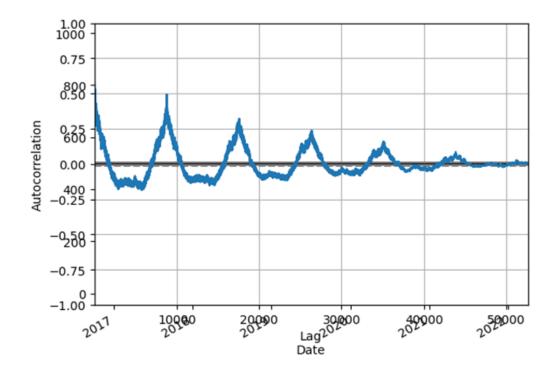


Figure 4-5: Autocorrelation 2

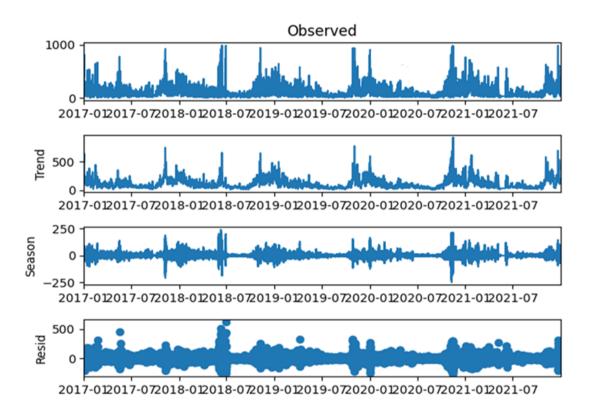


Figure 4-6: Data decomposition

4.1.3 Comparative study of encoder-decoder based deep learning models (Objective 3):

Several Seq2Seq forecasting models based on encoder-decoder architecture have been tested. A total of seven deep learning models were used for the prediction of 8 hour ahead forecasting using previous sequence data of different combinations. Previous sequence of 8 hour, 16 hour, 24 hour, 48 hour and 72 hour were used to forecast future 8 hour values. All models have used the same Guwahati city dataset. The models were namely: stacked LSTM, CNN-LSTM, ConvLSTM-LSTM, stacked BLSTM, ConvLSTM-BLSTM, BLSTM-ConvLSTM, and BConvLSTM-BLSTM.As can be seen from the model architectures, the encoder and decoder parts of each model used the same number of layers. Moreover, it should be noted that all models have used the same hyperparameter configuration. Better results have been found in all models using prior 24- and 72-hour data. Details of the results were presented in Table 4-7 to Table 4-13.

Table 4-7 BConvLSTM-BLSTM

Model Na	me: 1	BConv	vLSTM	I-BL	STM										
Input Sequence		1by8	3		2by8			3by8			6by8	8		9by8	
Hour	RMSE	MAE	MAPE												
1	16.67	9.7	21.76	17.28	9.84	20.83	15.93	9.24	20.39	16.71	9.7	20.76	18.1	10.49	24.17
2	24.84	14.16	31.67	27.07	14.82	30.22	22.97	13	29.26	23.51	13.09	28.64	24.15	13.86	31.81
3	29.95	17.26	39.72	33.14	18.08	38.28	26.73	15.23	34.57	27.06	15.26	35.44	27.5	15.9	36.67
4	32.88	19.49	46.21	36.42	20.01	43.81	28.99	16.69	38.22	29.33	16.78	39.78	29.24	17.09	39.42
5	34.87	21.03	51.01	37.76	21.03	46.71	30.7	17.79	41.13	31.26	17.97	42.75	30.44	17.93	41.06
6	36.3	22.33	55.67	37.79	21.34	48.31	31.65	18.45	43.48	32.86	18.89	45.62	31.12	18.44	42.51
7	37.29	23.29	60.08	36.86	21.14	49.92	32.11	18.9	45.25	33.38	19.39	47.75	31.71	18.89	44.08
8	37.82	23.76	62.43	34.97	20.48	50.77	32.57	19.32	47.44	33.43	19.63	50.25	32.22	19.37	45.61
Cumulative	32.07	18.88	46.07	33.34		41.11	28.23	16.08	37.47	28.97	16.34	38.87	28.42	16.5	38.16

Table 4-8 BConvLSTM-LSTM

Model Na	ame: B	Conv	LSTM	I-LST	М										
Input Sequence		1by8			2by8			3by8			6by8			9by8	
Hour	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE
1	16.38	9.66	23.97	20.26	12.79	33.94	16.05	9.31	21.92	17.38	10.38	23.06	19.75	12.48	39.24
2	24.86	14.51	35.59	26.17	16.17	40.9	22.82	13.09	31.25	23.34	13.52	29.73	23.95	14.69	43.01
3	30.23	17.8	45.41	30.47	18.56	44.66	26.81	15.44	36.43	26.72	15.55	34.36	26.75	16.2	45.34
4	33.94	20.32	52.9	32.47	19.87	48.37	28.96	16.83	40.75	28.91	16.82	37.82	28.9	17.34	47.66
5	36.72	22.16	58.23	33.74	21.08	56.41	30.49	17.85	44.33	30.4	17.69	40.35	30.27	18.19	49.93
6	38.69	23.72	62.91	34.08	21.1	54.39	31.35	18.55	46.93	31.47	18.41	42.5	31.02	18.82	52.13
7	40.15	24.85	66.5	34.01	21.17	55.19	31.72	18.96	48.55	31.89	18.73	43.98	31.63	19.43	54.07
8	40.86	25.34	68.94	33.65	20.92	54.22	32.49	19.47	50.27	31.79	18.83	44.85	31.9	19.68	54.94
Cumulative	33.69	19.8	51.81	30.95	18.96	48.51	28.08	16.19	40.05	28.15	16.24	37.08	28.31	17.1	48.29

Table 4-9 Stacked BLSTM

、

Model Na	ame: S	tacke	d BLS	ТМ											
Input Sequence		1by8			2by8			3by8			6by8			9by8	
Hour	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE
1	16.93	9.88	26.87	20.58	11.78	26.63	17.63	11.49	38.03	19.5	12.19	36.76	18.46	10.97	28
2	25.27	14.76	37.12	28.87	16.41	37.69	25.27	15.28	46.78	24.06	15	44.29	23.56	13.86	35.76
3	31.13	18.11	45.74	34.25	19.46	46.13	29.74	17.63	52.5	27.38	16.98	50.22	26.25	15.61	40.88
4	34.88	20.7	52.77	37.64	21.37	51.84	31.56	18.9	56.25	29.62	18.31	55.48	27.81	16.77	44.27
5	37.39	22.62	58.54	38.82	22.14	54.21	32.07	19.58	58.25	30.97	19.09	58.95	28.83	17.49	46.19
6	39.2	24.23	64.23	38.38	22.12	54.54	32.43	20.14	59.4	31.68	19.6	61.2	29.35	17.97	47.52
7	40.3	25.26	67.91	37.1	21.58	53.08	32.93	20.5	59.25	32.16	19.89	62.16	29.61	18.25	48.18
8	40.9	25.9	70.96	35.52	20.93	53.55	33.15	20.44	55.93	32.59	20.29	63.9	29.89	18.52	49.76
Cumulative	34.17	20.18	53.02	34.4	19.47	47.21	29.78	18	53.3	28.82	17.67	54.12	26.97	16.18	42.57

Table 4-10 CNN-LSTM

Model Na	ame: C	NN-I	LSTM												
Input Sequence		1by8			2by8			3by8			6by8			9by8	
Hour	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE
1	14.67	9.23	22.43	17.04	11.22	35.53	15.29	11.35	50.14	16.72	10.9	35.51	17.1	11.18	33.26
2	19.7	12.18	29.58	20.93	13.89	45.15	18.33	13.78	57.87	19.65	12.78	40.4	19	12.31	34.71
3	23.14	15.08	39.06	25.45	17.3	56.96	20.68	15.45	61.18	22.4	15.08	48.33	20.83	13.85	39.87
4	27.71	17.49	45.68	28.36	19.06	59.09	23.32	16.79	61.98	26.22	16.84	50.68	23.9	15.37	41.08
5	31.26	19.59	52.29	31.16	21	64.01	27.17	18.26	63.44	30.61	18.72	53.88	26.96	16.69	43.14
6	31.35	20.32	54.19	31.64	21.77	63.71	28.48	19.48	62.6	33.65	21.06	54.08	28.62	18.13	44.27
7	31.89	20.92	56.79	31.29	21.16	64.5	30.82	20.53	64.15	35.43	21.74	54.88	31.22	19.62	46.95
8	32.14	20.13	58.39	31.67	20.5	65.11	32.15	20.39	63.63	35.2	21.11	53.9	30.13	18.49	46.94
Cumulative	27.19	16.87	44.8	27.69	18.24	56.76	25.18	17	60.62	28.32	17.28	48.96	25.22	15.7	41.28

Table 4-11 ConvLSTM-BLSTM

Model Na	me: Co	onvLS	TM-B	LSTM											
Input Sequence		1by8			2by8			3by8			6by8			9by8	
Hour	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE
1	17.6	10.15	26.78	16.9	10.37	31.54	16.19	9.52	22.52	16.86	10.23	28.59	21.11	13.05	41.67
2	25.43	14.69	36.2	23.98	14.25	40.07	23.13	13.3	30.1	23.05	13.7	37.44	25.86	15.04	38.44
3	30.18	17.62	43.58	28.42	16.95	47.61	27.65	15.63	35.25	26.9	16.18	46.02	28.29	16.64	41.25
4	33.75	20	49.74	31.22	18.88	53.04	30.35	17.15	39.75	29.52	17.93	53.88	29.29	17.53	43.76
5	36.34	21.8	54.26	33.47	20.55	57.69	31.34	17.97	42.44	30.75	18.89	56.85	29.83	18.11	45.47
6	38.31	23.32	58.5	35.18	21.53	60.61	31.72	18.47	44.23	31.39	19.29	55.93	30.37	18.57	46.67
7	39.78	24.4	62.02	35.07	21.41	59.71	31.77	18.7	45.24	31.16	19.26	54.39	31.14	19.17	47.9
8	40.53	25.01	65.12	33.1	20.16	55.02	32.2	19.05	46.82	31.33	19.4	55.06	32.25	19.61	48.48
Cumulative	33.58	19.63	49.52	30.26	18.01	50.66	28.54	16.22	38.29	28.05	16.86	48.52	28.71	17.21	44.21

Table 4-12 ConvLSTM-LSTM

Model Na	me: Co	onvLS	TM-LS	STM											
Input Sequence		1by8	-		2by8			3by8	-		6by8			9by8	
Hour	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE
1	16.15	11.25	46.1	16.64	10.2	30.8	30.65	22.63	82.21	17.06	10.64	31.95	17.96	10.79	24.82
2	24.01	15.62	52.49	25.68	15.18	40.99	31.62	20.26	51.45	22.1	13.55	38.24	22.84	13.52	30.39
3	29.21	18.68	58.27	31.33	18.51	48.04	32.08	20.15	44.05	24.99	15.38	43.37	25.57	15.16	34.39
4	32.58	20.71	62.07	35.07	20.6	52.74	32.06	20.38	46.57	26.74	16.58	47.57	27.05	16.12	37.46
5	34.57	21.96	64.31	36.96	21.85	55.46	32.71	21	48.36	28.27	17.41	50.27	28.23	16.94	39.86
6	35.78	22.93	66.61	37.24	22.14	56.54	33.16	20.74	50.27	28.96	17.99	52	29.26	17.58	41.68
7	36.65	23.58	68.71	36.41	21.61	56.16	34.95	21.69	52.63	29.61	18.4	52.81	30.08	18.12	43.27
8	37.56	24.2	70.94	34.78	20.81	54.96	36.91	22.79	61.02	30.6	18.84	53.05	30.58	18.49	44.4
Cumulative	31.59	19.87	61.19	32.47	18.86	49.46	33.07	21.2	54.57	26.39	16.1	46.16	26.75	15.84	37.03

Model Na	Model Name: Stacked LSTM														
Input Sequence		1by8			2by8			3by8			6by8			9by8	
Hour	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE
1	16.06	9.41	23.18	16.1	9.13	20.5	15.41	9.7	29.24	16.45	9.97	22.24	18.05	10.6	25.37
2	24.65	14.36	34.48	26.24	14.51	33.96	23	14.22	43.96	22.41	13.15	29.01	23.27	13.42	30.59
3	30.54	17.95	43.9	33.36	18.32	43.2	27.59	16.44	47.87	25.56	15.18	36.38	26.38	15.36	34.99
4	34.56	20.5	50.88	37.77	20.87	50.12	30.08	17.77	50.37	27.96	16.65	41.09	28.42	16.73	38.61
5	37.08	22.13	55.23	40.11	22.21	53.75	31.73	18.73	51.81	29.57	17.65	44.14	29.6	17.71	41.6
6	38.65	23.51	58.89	41.39	22.91	56.26	32.48	19.31	52.73	30.61	18.29	46.45	30.24	18.3	44.04
7	39.52	24.41	61.63	40.58	22.95	57.25	32.43	19.41	53.2	30.96	18.65	48.36	30.81	18.81	46.11
8	40.26	24.99	63.83	39.58	22.53	57.39	32.7	19.6	53.92	31.11	18.85	49.88	31.45	19.21	47.5
Cumulative	33.62	19.66	49	35.39	19.18	46.55	28.76	16.9	47.89	27.26	16.05	39.7	27.61	16.27	38.6

Table 4-13 Stacked LSTM

In comparison to other models, BConvLSTM-LSTM and BConvLSTM-BLSTM combination model performs better (Figure 4-7).

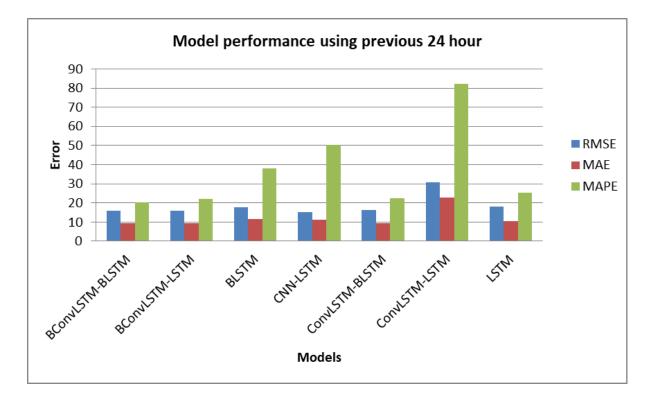


Figure 4-7 Model Comparison

4.1.4 Proposed Model and performance evaluation (Objective 2):

Statistical error functions RMSE, MAE, and MAPE were utilized to evaluate the model performance. Other error functions FAC2 and VG are also applied for further evaluation of the model performance. When mean differences are greater between data sets, scale dependent error functions such as RMSE and MAE are not the best choice to use for comparison. MAPE is a unit less function that is scale-independent and ideal for model comparison. In MAPE data with significant variances can influence the extreme values. Detail result of the model is presented in Table 4-14. The RMSE performances of the model varies from the lowest performance of 7.09 in Shillong, in the EH region, to the highest performance of 53.81 in Patna, in the MGP in 8 hour consecutive forecast. Likewise, Shillong and Patna yielded a minimum of 5.41 and a maximum of 34.09 in terms of MAE, respectively. In case of MAPE, Hyderabad recorded the lowest value of 18.6 percent and Chennai recorded the highest value of 52.7 percent. Nine cities had less than 10 µg/m3 of RMSE value in first step prediction, while, Howrah in LGP, Shillong in EH, and Nagpur and Mandideep in CPH had value between 10 and 15 µg/m3. As for MAE, the values of less than 10 μ g/m3 are found in 15 of the 26 cities, and the total of 24 cities has MAE values that are less than or equal to 15 μ g/m3. Patna and Talcher are the only two places with MAE values higher than 15 g/m3., Patna in MGP has MAE of 20.52 μ g/m3 and Talcher in the EPH has an MAE value of 20.29 μ g/m3. Similar to this, 20 sites have more than 35% MAPE values, and 11 sites have values lower than 30% MAPE values. All other sites have MAPE values under 40%, with the exception of Chennai in the ECPH and Jodhpur in the WD zone. Overall, it was found that the western, southern, and central regions had relatively better model performance than the northern and eastern regions for predicting concentrations up to 8 hours in advance. The results of PM_{2.5} concentrations for one hour advance and eight hours average demonstrate the robustness of the suggested model framework's prediction ability. Since the majority of reports on regulatory air quality occurred within this temporal range, it is crucial to evaluate the performance of prior 1-hour and 8-hour average prediction. RMSE, MAE, and MAPE values for 1-hour ahead prediction were found to be lowest at 5.81 (at Shillong), 3.92 (at Aurangabad), and 10.8 (at Howrah), respectively. At Patna and Talcher, the maximum RMSE was 41.384 and 29.04, respectively, for 1-hour and 8-hour average periods. For the 1-hour ahead and 8-hour

average forecasting horizons, 18 sites and 13 sites, respectively, recorded less than 20 RMSE values overall. Once more, the 1-hour and 8-hour average MAE values were found to be at their lowest and maximum in Shillong and Patna, respectively. MAE values of three sites - Delhi, Talcher, and Patna found to be greater than 20 μ g/m3, suggesting that the results were more consistent throughout India.

Model results were further analyzed in terms of various agroclimatic zones (Table 4-15, Figure 4-12). Regarding one-hour ahead prediction across agroclimatic zones, SPH (7.6) had the best model performance in terms of RMSE, followed by CPH (8.4) and WPH (9.4). Three zones have RMSE values between 20 and 30 and another three have between 30 and 40 μ g/m3, respectively, and seven zones have RMSE values less than 20 μ g/m3. A comparable error trend was seen for MAE, with the maximum value (16.3) at MGP and the lowest value (5.4) at SPH. Following 8 hours of advance prediction, the same pattern was found at SPH as minimum RMSE and MAE values of 11.1 and 8.0, respectively, and at MGP maximum RMSE (40.4) and MAE (25.8) were found. The results for MAPE values, however, showed a slight variation, with the minimum error value for 1-hour ahead prediction being observed at LGP (10.8%) and cumulative 8-consecutive-hour ahead prediction at EH (21.3 %).

Spatial variability in model performance is evident in the observed forecasting results. The Heatmap of the result (Figure 4-11) makes this clear. The regions primarily along the central, south, southeast, and southwest coasts of India exhibit superior model result for multi-step hourly forecasts. A relatively low model performance was noted in most of North India, with the exception of Shillong, Agra, Jamshedpur, and Amritsar. It is important to note that, with the exception of Patna and Talcher, model performance is best in India for the first step. Although many researchers attempted to use machine learning with deep learning architecture for a few of India's pollution hotspots, cross-country study of model efficiency has not yet been thoroughly studied in India. We then performed a statistical distribution analysis on the results at different sites with the corresponding observed values. Each location in India revealed that the best fit distribution matched the original training data exactly.

Table 4-14: Result of	8 step ahead prediction
-----------------------	-------------------------

Agro Cli	Agro Climatic Zone: 1 Eastern Himalayan Region									
Station N	Station Name: Shillong									
ERROR	1 hour	2 hour	3 hour	4 hour	5 hour	6 hour	7 hour	8 hour	Cumulative	
RMSE	5.81	6.38	6.87	7.14	7.32	7.48	7.68	7.82	7.09	
MAE	4.42	4.83	5.17	5.46	5.57	5.73	5.97	6.14	5.41	
MAPE	20.97	22.96	23.69	24.57	25.1	25.75	26.57	27.18	24.6	
FAC2	1.05	1.04	1.03	1.03	1.03	1.03	1.03	1.03	1.03	
VG	1.07	1.08	1.09	1.09	1.1	1.1	1.11	1.11	1.09	
Station N	lame: G	uwahat	i	1	1	1	I	1		
RMSE	20.7	28.99	32.73	34.07	34.41	35.23	35.58	36.33	32.62	
MAE	12.43	17.28	20.12	21.49	21.9	22.39	22.69	23.64	20.24	
MAPE	21.34	29.08	34.79	38.83	40.89	42.38	43.6	46.5	37.18	
FAC2	1.06	1.1	1.14	1.18	1.2	1.21	1.22	1.25	1.17	
VG	1.08	1.15	1.2	1.23	1.25	1.27	1.28	1.3	1.22	
Station N	lame: S	iliguri		1	1	1		1	-	
RMSE	12.21	17.79	22.32	25.68	28.18	29.92	30.94	31.69	25.68	
MAE	8.03	11.68	14.78	17.11	18.87	20.07	20.77	21.37	16.58	
MAPE	11.43	16.4	20.52	23.86	26.42	28.25	29.75	31.43	23.51	
FAC2	1	1.02	1.04	1.05	1.06	1.07	1.08	1.1	1.06	
VG	1.02	1.05	1.07	1.09	1.11	1.12	1.14	1.15	1.09	
Agro Cli	matic Zo	one: 2 Lo	ower Ga	ngetic P	lain Reg	ion				
Station N	lame: H	lowrah								
RMSE	9.57	15.4	20.18	23.88	26.75	29.17	31.28	32.96	24.84	
MAE	6.37	9.82	12.89	15.37	17.29	18.89	20.32	21.56	15.31	
MAPE	10.8	15.16	19.25	22.68	25.6	28.15	30.6	33.01	23.15	
FAC2	1.01	1.03	1.05	1.07	1.09	1.1	1.12	1.13	1.08	
VG	1.02	1.04	1.06	1.08	1.1	1.12	1.14	1.16	1.09	
Agro Cli	matic Zo	one: 3 M	iddle Ga	angetic F	Plain Reg	gion				
Station N	lame: G	laya								

RMSE	23.62	28.06	30.3	31.29	31.96	32.48	32.99	34.31	30.79		
MAE	15.2	18.65	20.53	21.42	21.93	22.28	22.55	23.21	20.72		
MAPE	27.86	34.45	38.4	40.47	41.41	42.1	43.13	44.94	39.1		
FAC2	1.15	1.21	1.24	1.26	1.26	1.27	1.28	1.3	1.25		
VG	1.12	1.16	1.19	1.21	1.21	1.22	1.23	1.24	1.2		
Station N	Station Name: Patna										
RMSE	41.38	47.59	51.88	54.37	56.17	57.89	58.86	59.77	53.81		
MAE	20.52	27.58	32.36	35.37	37.26	38.92	39.92	40.81	34.09		
MAPE	14.57	20.56	25.11	28.15	30.08	31.51	32.39	33.05	26.93		
FAC2	1.04	1.07	1.09	1.11	1.12	1.13	1.13	1.12	1.1		
VG	1.04	1.07	1.1	1.13	1.14	1.15	1.16	1.17	1.12		
Station N	Vame: V	'aranasi									
RMSE	25.78	30.97	34.11	36.42	38.8	39.96	41.21	42.46	36.6		
MAE	13.27	18.19	21.26	23.36	25.04	26	26.79	27.65	22.7		
MAPE	18.97	25.54	30.47	34.37	37.51	39.66	41.5	43.9	33.99		
FAC2	1.06	1.08	1.11	1.14	1.17	1.19	1.2	1.23	1.15		
VG	1.07	1.11	1.15	1.18	1.2	1.22	1.23	1.25	1.18		
Agro Cli	matic Zo	one: 4 U	pper Ga	ngetic P	lains Reg	gion					
Station N	Name: A	gra									
RMSE	15.61	21.68	24.96	26.7	28	28.62	28.95	29.02	25.82		
MAE	9.19	13.23	15.59	16.95	17.71	18.17	18.51	18.82	16.02		
MAPE	16.47	23.15	27.67	30.79	32.69	33.88	34.72	35.58	29.37		
FAC2	1.05	1.08	1.11	1.14	1.16	1.17	1.18	1.19	1.13		
VG	1.05	1.09	1.12	1.14	1.15	1.16	1.17	1.17	1.13		
Station N	lame: K	anpur									
RMSE	24.95	33.07	37.35	39.82	41.27	42.29	43.25	45.19	38.89		
MAE	14.16	19.92	23.36	25.4	26.59	27.45	28.29	29.54	24.34		
MAPE	21.02	28.31	33.8	37.85	40.44	42.14	43.65	45.99	36.65		
FAC2	1.1	1.15	1.19	1.23	1.25	1.26	1.27	1.29	1.22		
VG	1.08	1.12	1.16	1.19	1.21	1.22	1.24	1.25	1.18		
Station N	lame: L	ucknow									
L											

	1	1	1	1	1	1	1	1	 1		
RMSE	18.73	25.74	29.37	32.13	34.05	35.04	35.89	36.89	31.51		
MAE	11.17	15.67	18.46	20.38	21.65	22.44	23.24	24.04	19.63		
MAPE	20.38	26.5	31.43	34.7	37.09	38.62	40.29	42.96	34		
FAC2	1.05	1.08	1.12	1.14	1.16	1.18	1.19	1.22	1.14		
VG	1.08	1.12	1.15	1.18	1.2	1.21	1.23	1.25	1.18		
Agro Climatic Zone: 5 Trans-Ganga Plains Region											
Station Name: Amritsar											
RMSE	10.04	14.84	18.32	20.51	21.64	22.24	22.85	23.52	19.73		
MAE	6.72	10.14	12.6	14.18	14.92	15.25	15.55	16.01	13.17		
MAPE	16.4	24.19	30.26	34.39	36.35	37.19	38.1	40.31	32.15		
FAC2	1.05	1.08	1.12	1.15	1.16	1.16	1.17	1.2	1.14		
VG	1.05	1.09	1.14	1.17	1.18	1.19	1.2	1.22	1.15		
Station N	Name: D	elhi	1	1		1		•			
RMSE	18.73	28.27	34.62	38.89	41.94	43.95	45.36	46.86	38.41		
MAE	11.8	18.24	22.71	25.69	27.87	29.39	30.54	31.66	24.74		
MAPE	15.37	23.07	29.3	33.71	36.69	38.66	40.21	42.33	32.42		
FAC2	1.05	1.09	1.14	1.17	1.19	1.2	1.21	1.23	1.16		
VG	1.04	1.08	1.12	1.15	1.18	1.19	1.21	1.22	1.15		
Agro Cli	matic Ze	one: 6 Ea	astern P	lateau ai	nd Hills	•	•	•			
Station N	Name: J	harkhar	nd								
RMSE	11.68	15.76	18.09	19.46	20.16	20.59	20.82	21.3	18.74		
MAE	7.69	11.06	13.01	14.04	14.79	15.35	15.64	16.1	13.46		
MAPE	17.01	24.19	28.35	31.18	33.36	34.86	36.04	37.99	30.37		
FAC2	1.06	1.09	1.12	1.14	1.16	1.17	1.18	1.21	1.14		
VG	1.06	1.1	1.12	1.14	1.16	1.17	1.18	1.19	1.14		
Station N	Name: T	alcher							·		
RMSE	29.04	38.41	41.76	42.9	42.58	42.2	41.9	42.58	40.41		
MAE	20.29	27.47	30.35	31.16	30.85	30.91	30.84	31.36	29.15		
MAPE	25.07	36.09	40.65	41.94	42.14	42.23	41.87	42.88	39.11		
FAC2	1.08	1.14	1.16	1.16	1.16	1.16	1.15	1.15	1.15		
VG	1.1	1.2	1.24	1.26	1.26	1.26	1.26	1.27	1.23		
1	L	L	I	I	I	I	I	1	ı		

Agro Cli	matic Zo	one: 7 C	entral P	ateau ai	nd Hills				
Station I	Name: N	Iandide	ep						
RMSE	8.81	11.6	12.86	13.57	14.09	14.39	14.63	14.9	13.25
MAE	5.86	8.03	9.11	9.76	10.19	10.44	10.58	10.8	9.35
MAPE	19.31	23.54	26.38	28.52	29.91	30.8	31.34	32.78	27.82
FAC2	1.05	1.08	1.11	1.14	1.15	1.16	1.16	1.16	1.13
VG	1.04	1.08	1.11	1.12	1.13	1.14	1.14	1.15	1.11
Station I	Name: N	lagpur							
RMSE	7.9	9.83	11.34	12.32	12.87	13.17	13.36	13.62	11.95
MAE	5.76	7.24	8.18	8.82	9.2	9.38	9.48	9.69	8.47
MAPE	19.31	23.54	26.38	28.52	29.91	30.8	31.34	32.78	27.82
FAC2	1.07	1.08	1.1	1.12	1.13	1.14	1.15	1.16	1.12
VG	1.06	1.08	1.1	1.12	1.13	1.13	1.14	1.14	1.11
Agro Cli	matic Z	one: 8 W	estern F	lateau a	nd Hills	1			1
Station I	Name: A	urangal	bad						
RMSE	5.93	8.53	9.76	10.32	10.67	10.92	11.06	11.25	9.95
MAE	3.92	5.67	6.65	7.18	7.53	7.78	7.9	8.09	6.84
MAPE	11.49	16.04	19.36	21.74	23.38	24.44	25.13	26.25	20.98
FAC2	1.04	1.06	1.09	1.11	1.12	1.13	1.14	1.15	1.11
VG	1.02	1.04	1.06	1.07	1.08	1.08	1.08	1.09	1.07
Station I	Name: N	Iumbai	1	1	1	1	1	I	
RMSE	13.47	17.69	19.77	20.4	19.42	18.22	17.45	17.29	18.08
MAE	10.19	13.59	15.25	15.85	15.35	14.54	13.91	13.64	14.04
MAPE	24.6	33.34	37.41	38.77	37.92	35.8	34.71	35.05	34.7
FAC2	1.07	1.1	1.11	1.12	1.12	1.12	1.12	1.13	1.11
VG	1.09	1.16	1.2	1.22	1.2	1.18	1.16	1.17	1.17
Station I	Name: S	olapur	r		1		1	r	
RMSE	8.74	10.97	11.75	12.14	12.47	12.61	12.71	12.85	11.85
MAE	5.93	7.54	8.19	8.6	8.85	8.98	9.06	9.2	8.29
MAPE	18.14	22.48	24.63	25.88	26.54	26.9	27.26	28.36	25.02
FAC2	1.05	1.08	1.09	1.1	1.1	1.1	1.1	1.12	1.09

VG	1.06	1.08	1.09	1.1	1.11	1.11	1.11	1.12	1.1
Agro Cli	matic Zo	one: 9 So	outhern	Plateau	and Hill	S			
Station N	Name: Bo	engaluru	l						
RMSE	8.97	11.42	12.26	12.42	12.53	12.58	12.58	12.97	12.03
MAE	6.23	7.97	8.6	8.91	9.08	9.17	9.19	9.27	8.55
MAPE	20.4	26.85	29.67	31.26	32.31	32.9	33.27	33.75	30.05
FAC2	1.07	1.11	1.14	1.16	1.17	1.18	1.19	1.2	1.15
VG	1.07	1.1	1.12	1.13	1.14	1.14	1.14	1.15	1.12
Station N	Name: H	yderaba	d	I		1		I	
RMSE	6.25	8.7	9.86	10.56	11	11.23	11.37	11.49	10.2
MAE	4.6	6.43	7.31	7.89	8.25	8.46	8.61	8.79	7.54
MAPE	11.27	15.75	17.99	19.45	20.34	20.9	21.41	22.03	18.64
FAC2	1.02	1.03	1.04	1.05	1.05	1.06	1.06	1.07	1.05
VG	1.02	1.05	1.06	1.07	1.07	1.07	1.08	1.08	1.06
Agro Cli	matic Zo	one: 10 H	Eastern (Coastal I	Plains ar	nd Hills			
Station N	Name: C	hennai							
RMSE	23.05	27.73	29.8	30.49	30.63	30.7	31.1	31.12	29.44
MAE	12.96	16.15	17.59	18.17	18.42	18.63	18.99	19.26	17.52
MAPE	35.74	47.36	52.64	54.49	55.48	56.36	58.52	60.94	52.69
FAC2	1.21	1.3	1.35	1.37	1.38	1.39	1.41	1.44	1.36
VG	1.2	1.29	1.33	1.35	1.35	1.36	1.38	1.4	1.33
Station N	Name: V	'ijaywad	a	1	I	1	I		1
RMSE	7.01	8.22	8.8	9.14	9.34	9.64	9.78	9.88	9.02
MAE	4.93	6.05	6.6	6.84	6.94	7.21	7.42	7.52	6.69
MAPE	21.07	25.4	27.23	28.28	28.83	30.16	31.19	31.94	28.01
FAC2	1.06	1.08	1.08	1.09	1.1	1.11	1.11	1.13	1.09
VG	1.07	1.1	1.11	1.12	1.13	1.14	1.14	1.14	1.12
Agro Cli	matic Zo	one: 11V	Vestern	Coastal I	Plains ar	nd Ghats	5		1
Station N	Name: T	hiruvan	anthapu	ram					
RMSE	12.35	15.27	15.99	16.31	16.83	16.9	17.05	17.55	16.11
MAE	8.6	10.87	11.58	11.83	12.24	12.54	12.63	12.87	11.64

27.21	33.6	35.27	35.15	36.8	37.79	39.51	41.22	35.82	
1.04	1.06	1.06	1.05	1.05	1.06	1.08	1.11	1.06	
1.14	1.19	1.2	1.21	1.22	1.23	1.25	1.26	1.21	
Agro Climatic Zone: 12 Gujarat Plains and Hills									
Name: A	hmedab	ad							
10.6	15.43	18.28	19.76	20.64	21.36	21.77	22.09	19.1	
7.33	10.53	12.5	13.58	14.35	14.92	15.27	15.57	13	
18.65	26.02	31.16	34.68	37.21	38.9	39.95	41.46	33.5	
1.08	1.12	1.17	1.2	1.22	1.24	1.25	1.28	1.2	
1.05	1.1	1.13	1.16	1.17	1.19	1.19	1.2	1.15	
matic Zo	one: 13V	Vestern	Dry Reg	ion	I	1	1	1	
Name: J	odhpur								
21.6	28.61	32.08	33.94	35.68	36.9	37.59	38.03	33.47	
14.87	20.19	22.97	24.38	25.51	26.6	27.23	27.61	23.67	
26.05	36.42	42.81	46.36	48.49	50.21	51.54	52.39	44.28	
1.11	1.19	1.24	1.28	1.29	1.3	1.31	1.32	1.26	
1.1	1.18	1.23	1.26	1.29	1.3	1.32	1.32	1.25	
	1.04 1.14 matic Z Mame: A 10.6 7.33 18.65 1.08 1.05 matic Z Mame: J 21.6 14.87 26.05 1.11	1.04 1.06 1.14 1.19 matic Zone: 12 (Name: Ahmedah 10.6 15.43 7.33 10.53 18.65 26.02 1.08 1.12 1.05 1.1 matic Zone: 13V Name: Jodhpur 21.6 28.61 14.87 20.19 26.05 36.42 1.11 1.19	1.04 1.06 1.06 1.14 1.19 1.2 matic Zone: 12 Gujarat 1.2 Name: Ahmedabad 10.6 15.43 10.6 15.43 18.28 7.33 10.53 12.5 18.65 26.02 31.16 1.08 1.12 1.17 1.05 1.1 1.13 matic Zone: 13Western I Name: Jodhpur 21.6 28.61 32.08 14.87 20.19 22.97 26.05 36.42 42.81 1.11 1.19 1.24	1.04 1.06 1.06 1.05 1.14 1.19 1.2 1.21 matic Zone: 12 Gujarat Plains and Same: Ahmedabad 10.6 15.43 18.28 19.76 7.33 10.53 12.5 13.58 18.65 26.02 31.16 34.68 1.08 1.12 1.17 1.2 1.05 1.1 1.13 1.16 matic Zone: 13Western Dry Reg Name: Jodhpur 21.6 28.61 32.08 33.94 14.87 20.19 22.97 24.38 26.05 36.42 42.81 46.36 1.11 1.19 1.24 1.28	1.04 1.06 1.06 1.05 1.05 1.14 1.19 1.2 1.21 1.22 matic Zone: 12 Gujarat Plains and Hills Name: Ahmedabad 10.6 15.43 18.28 19.76 20.64 7.33 10.53 12.5 13.58 14.35 18.65 26.02 31.16 34.68 37.21 1.08 1.12 1.17 1.2 1.22 1.05 1.1 1.13 1.16 1.17 matic Zone: 13Western Dry Region Name: Jodhpur 21.6 28.61 32.08 33.94 35.68 14.87 20.19 22.97 24.38 25.51 26.05 36.42 42.81 46.36 48.49 1.11 1.19 1.24 1.28 1.29	1.04 1.06 1.06 1.05 1.05 1.06 1.14 1.19 1.2 1.21 1.22 1.23 matic Zone: 12 Gujarat Plains and Hills Name: Ahmedabad 10.6 15.43 18.28 19.76 20.64 21.36 7.33 10.53 12.5 13.58 14.35 14.92 18.65 26.02 31.16 34.68 37.21 38.9 1.08 1.12 1.17 1.2 1.22 1.24 1.05 1.1 1.13 1.16 1.17 1.19 matic Zone: 13Western Dry Region Name: Jodhpur 21.6 28.61 32.08 33.94 35.68 36.9 14.87 20.19 22.97 24.38 25.51 26.6 26.05 36.42 42.81 46.36 48.49 50.21 1.11 1.19 1.24 1.28 1.29 1.3	1.041.061.061.051.051.061.081.141.191.21.211.221.231.25matic Zone: 12 Gujarat Plains and HillsName: Ahmedabad10.615.4318.2819.7620.6421.3621.777.3310.5312.513.5814.3514.9215.2718.6526.0231.1634.6837.2138.939.951.081.121.171.21.221.241.251.051.11.131.161.171.191.19matic Zone: 13Western Dry RegionXame: Jodhpur21.628.6132.0833.9435.6836.937.5914.8720.1922.9724.3825.5126.627.2326.0536.4242.8146.3648.4950.2151.541.111.191.241.281.291.31.31	1.041.061.061.051.051.061.081.111.141.191.21.211.221.231.251.26matic Zone: 12 Gujarat Plains and HillsName: Ahmedabad10.615.4318.2819.7620.6421.3621.7722.097.3310.5312.513.5814.3514.9215.2715.5718.6526.0231.1634.6837.2138.939.9541.461.081.121.171.21.221.241.251.281.051.11.131.161.171.191.191.2matic Zone: 13Western Dry RegionXame: Jodhpur21.628.6132.0833.9435.6836.937.5938.0314.8720.1922.9724.3825.5126.627.2327.6126.0536.4242.8146.3648.4950.2151.5452.391.111.191.241.281.291.31.311.32	

Line plot of Delhi city result for one step ahead prediction is shown in Figure 4-8:

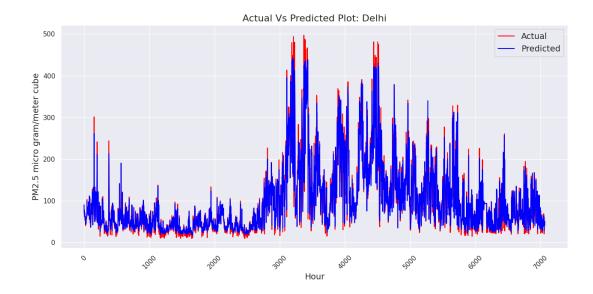


Figure 4-8: Actual Vs Predicted Plot for Delhi

A subplot of the above figure is shown on Figure 4-9 for better visualization of the graph.

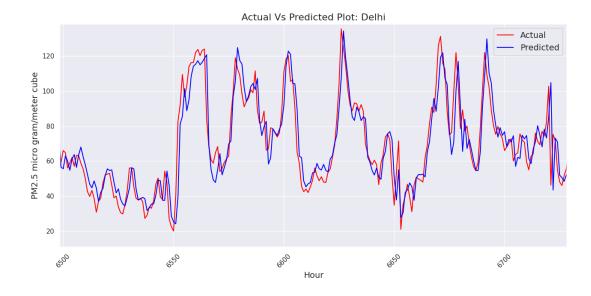


Figure 4-9: Sub plot of Figure 4-8

Figure 4-10 represents scatter plot of the Delhi result for one step ahead prediction:

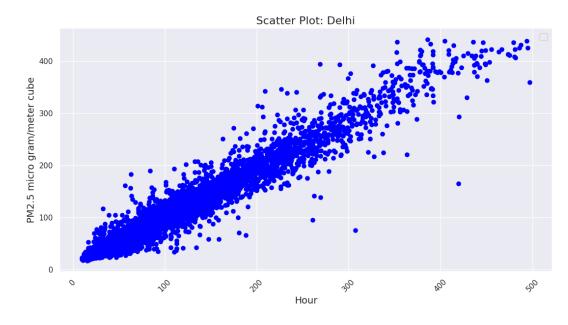


Figure 4-10: Scatter plot of Delhi

Heat Map of all the Stations for 8-step ahead prediction in terms of MAE is shown in Figure 4-11.

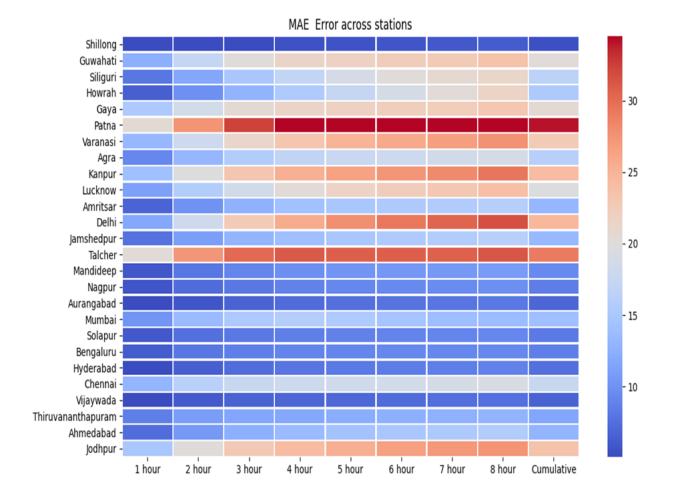


Figure 4-11: Heat Map of MAE Error

Zone	Error	1 hour	2 hour	3 hour	4 hour	5 hour	6 hour	7 hour	8 hour	Cum
	Metrics									
СРН	RMSE	8.4	10.7	12.1	12.9	13.5	13.8	14.0	14.3	12.6
	MAE	5.8	7.6	8.6	9.3	9.7	9.9	10.0	10.2	8.9
	MAPE	18.0	23.5	26.8	29.1	30.6	31.5	32.0	33.0	28.1
ECPH	RMSE	15.0	18.0	19.3	19.8	20.0	20.2	20.4	20.5	19.2
	MAE	8.9	11.1	12.1	12.5	12.7	12.9	13.2	13.4	12.1
	MAPE	28.4	36.4	39.9	41.4	42.2	43.3	44.9	46.4	40.4
EH	RMSE	12.9	17.7	20.6	22.3	23.3	24.2	24.7	25.3	21.8
	MAE	8.3	11.3	13.4	14.7	15.4	16.1	16.5	17.1	14.1
	MAPE	17.9	22.8	26.3	29.1	30.8	32.1	33.3	35.0	28.4
EPH	RMSE	20.4	27.1	29.9	31.2	31.4	31.4	31.4	31.9	29.6
	MAE	14.0	19.3	21.7	22.6	22.8	23.1	23.2	23.7	21.3
	MAPE	21.0	30.1	34.5	36.6	37.8	38.5	39.0	40.4	34.7
GPH	RMSE	10.6	15.4	18.3	19.8	20.6	21.4	21.8	22.1	19.1
	MAE	7.3	10.5	12.5	13.6	14.4	14.9	15.3	15.6	13.0
	MAPE	18.7	26.0	31.2	34.7	37.2	38.9	40.0	41.5	33.5
LGP	RMSE	9.6	15.4	20.2	23.9	26.8	29.2	31.3	33.0	24.8
	MAE	6.4	9.8	12.9	15.4	17.3	18.9	20.3	21.6	15.3
	MAPE	10.8	15.2	19.3	22.7	25.6	28.2	30.6	33.0	23.2
MGP	RMSE	30.3	35.5	38.8	40.7	42.3	43.4	44.4	45.5	40.4
	MAE	16.3	21.5	24.7	26.7	28.1	29.1	29.8	30.6	25.8
	MAPE	20.5	26.9	31.3	34.3	36.3	37.8	39.0	40.6	33.3
SPH	RMSE	7.6	10.1	11.1	11.5	11.8	11.9	12.0	12.2	11.1
	MAE	5.4	7.2	8.0	8.4	8.7	8.8	8.9	9.0	8.0
	MAPE	15.8	21.3	23.8	25.4	26.3	26.9	27.3	27.9	24.3
TGP	RMSE	14.4	21.6	26.5	29.7	31.8	33.1	34.1	35.2	29.1
	MAE	9.3	14.2	17.7	19.9	21.4	22.3	23.0	23.8	19.0
	MAPE	15.9	23.6	29.8	34.1	36.5	37.9	39.2	41.3	32.3
UGP	RMSE	19.8	26.8	30.6	32.9	34.4	35.3	36.0	37.0	32.1
	MAE	11.5	16.3	19.1	20.9	22.0	22.7	23.3	24.1	20.0
	MAPE	19.3	26.0	31.0	34.4	36.7	38.2	39.6	41.5	33.3
WCPG	RMSE	12.4	15.3	16.0	16.3	16.8	16.9	17.1	17.6	16.1
	MAE	8.6	10.9	11.6	11.8	12.2	12.5	12.6	12.9	11.6
	MAPE	27.2	33.6	35.3	35.2	36.8	37.8	39.5	41.2	35.8
WD	RMSE	21.6	28.6	32.1	33.9	35.7	36.9	37.6	38.0	33.5
	MAE	14.9	20.2	23.0	24.4	25.5	26.6	27.2	27.6	23.7
	MAPE	26.1	36.4	42.8	46.4	48.5	50.2	51.5	52.4	44.3
WPH	RMSE	9.4	12.4	13.8	14.3	14.2	13.9	13.7	13.8	13.3
	MAE	6.7	8.9	10.0	10.5	10.6	10.4	10.3	10.3	9.7
	MAPE	18.1	24.0	27.1	28.8	29.3	29.0	29.0	29.9	26.9

Table 4-15: Model performance agro-climatic zone wise

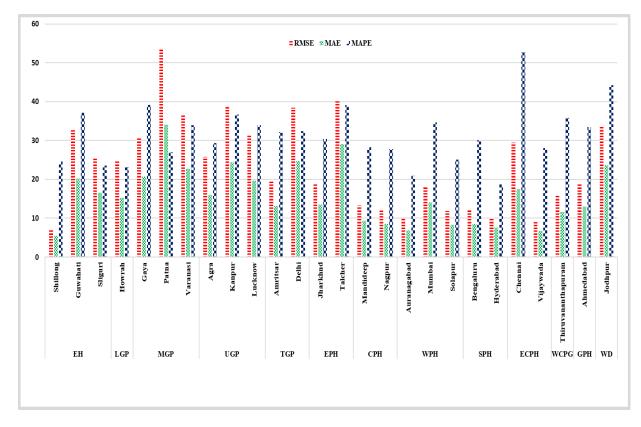


Figure 4-12: Model performance Agro climatic zone wise

4.1.5 Model Performance in terms of Data length and SNR values

Since the forecasting results vary widely among India's various agroecosystems, we have carried out an investigation to find the effect of noise present in the data on model performance. Moreover correlation analysis was done to find effect of data length on model performance. Signal to noise ratio (SNR) measures the percentage of accurate or desired information in each data series compared to inaccurate or undesired information. SNR values were used for this purpose (Table 4-16). The following equation was used to determine SNR values [135] for each pre-processed time series data.

 $SNR = \mu/\sigma$

where μ and σ are the mean and standard deviation of the time series data respectively.

The data length and model performance error as represented by the trend line (Figure 4-13) and scatter plot (Figure 4-14), reveals no correlation between them, suggesting that the length of the data has little to no impact on the performance of the model. A scatter diagram (Figure 4-15) shows a sharply declining trend in MAE versus SNR for both 1-hour ahead and 8-hour cumulative forecasting. Clearly, for both forecasting horizons, there is a significant decline in the model error as the noise component decreases. It is to be noted that error variance dramatically decreases at SNR value greater than approximately 1.5 and the model's performance greatly increases. One possible explanation for the variation in results among Indian sites could be the degree of noise in the data series. Due to high traffic volumes and population densities, pollution sources differ greatly in northern India, which raises the relative variance in the data set. Fertilizer waste burning and large-scale farming are wellknown practices in the Indo Gangetic Plain (IGP) area. With the exception of the monsoon season, when easterlies bring monsoon rains, it should be noted that westerlies are predominant in this area all year long. The dust load over the area is highly unpredictable due to dust storms caused by westerlies and agricultural burning. The uncertainties resulting from weather patterns could be the reason for the model's poor multistep ahead forecasting performance in this area.

Sl.No.	Agro Climatic Zone	Station Name	SNR
1.	Eastern Himalayan Region	Shillong	1.633
1.	Lustern Thinanayan Region	Guwahati	1.178
		Siliguri	1.203
2.	Lower Gangetic Plain Region	Howrah	1.140
3.	Middle Gangetic Plain Region	Gaya	1.217
5.	initiale Galigette Flam Region	Patna	1.170
		Varanasi	1.229
4.	Upper Gangetic Plains Region	Agra	1.161
т.	opper Gangette Flams Region	Kanpur	1.134
		Lucknow	1.168
5.	Trans-Ganga Plains Region	Amritsar	1.480
		Delhi	1.320
6.	Eastern Plateau and Hills	Jamshedpur	1.835
		Talcher	1.259
7.	Central Plateau and Hills	Mandideep	1.416
		Nagpur	1.493
8.	Western Plateau and Hills	Aurangabad	1.735
		Mumbai	1.539

		Solapur	1.629
9.	Southern Plateau and Hills	Bengaluru	1.556
		Hyderabad	2.115
10.	Eastern Coastal Plains and Hills	Chennai	1.347
		Vijayawada	1.899
11.	Western Coastal Plains and Ghats	Thiruvananthapuram	1.588
12.	Gujarat Plains and Hills	Ahmedabad	1.542
13.	Western Dry Region	Jodhpur	1.688

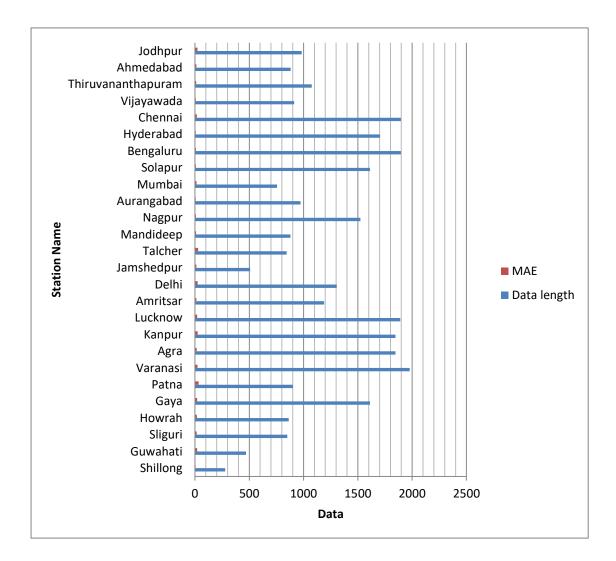


Figure 4-13: Data length Vs Error Plot

`

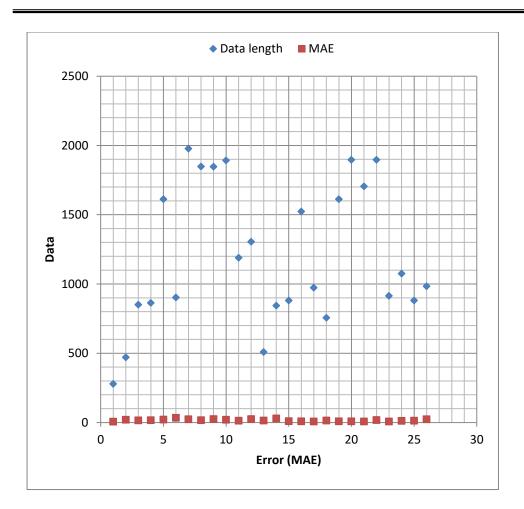


Figure 4-14: Correlation between Data length and Error

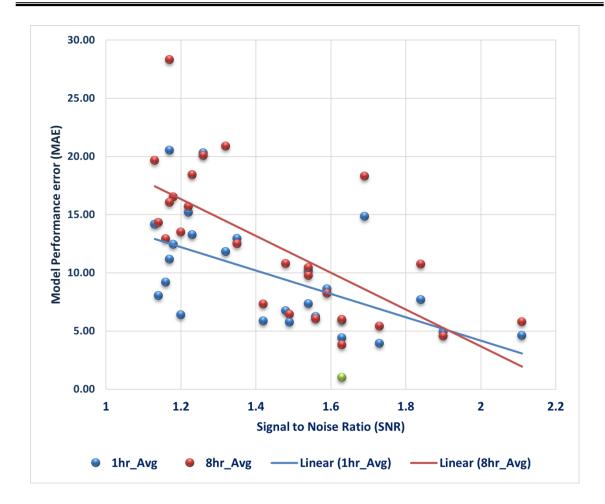
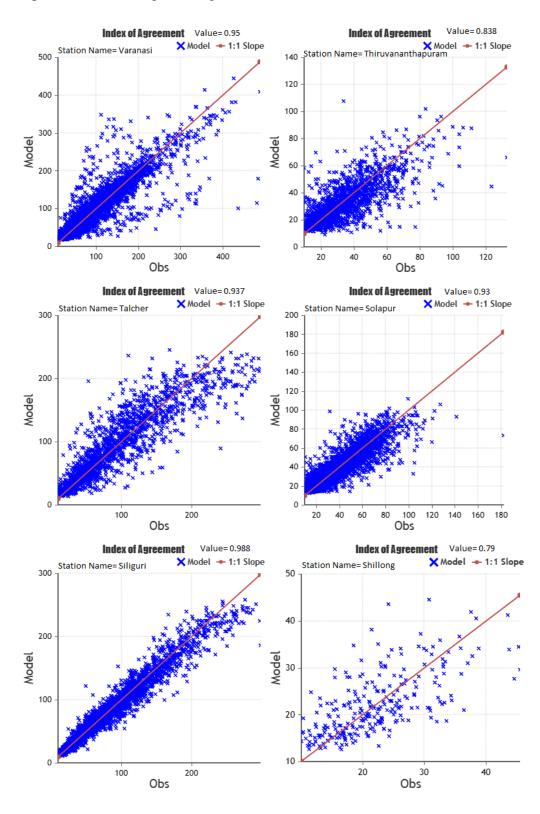
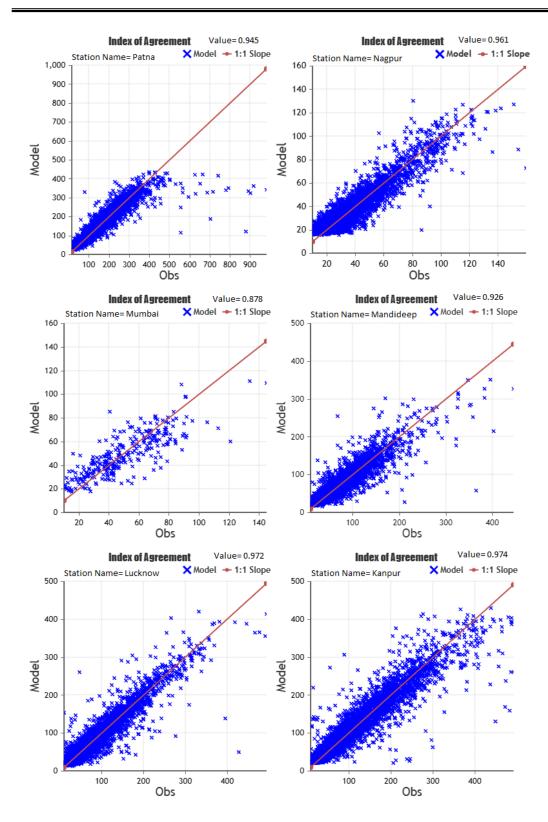
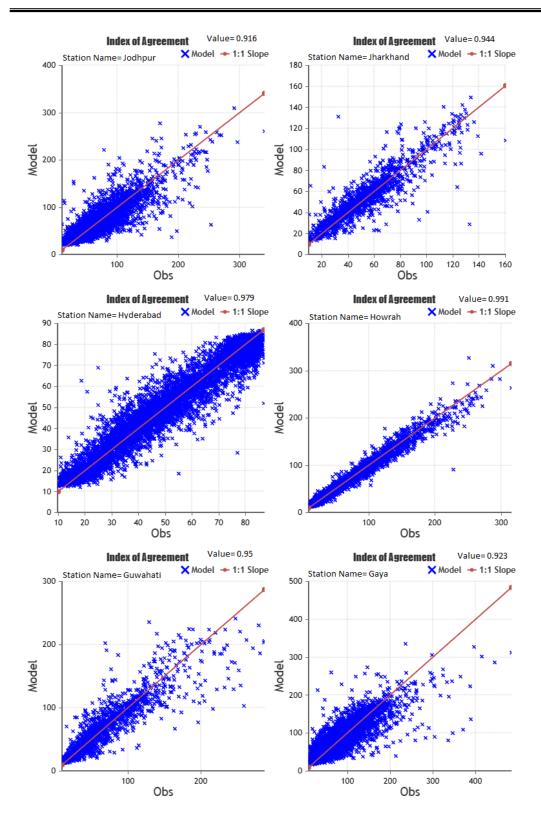
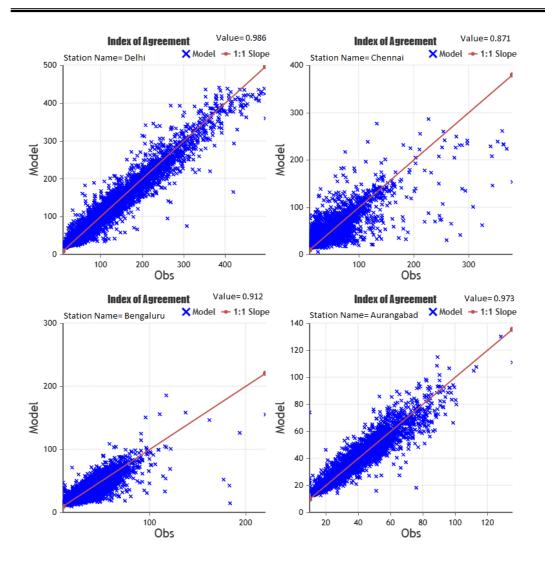


Figure 4-15: SNR Vs Model performance


4.1.6 Index of Agreement


Index of agreement (d) was proposed by [136] as a standardized measure for degree of model prediction error, and its value ranges from 0 to 1. Higher index values suggest that the modelled values have better agreement with the observational values. Due to square differences in the mean square error in the numerator, the index of agreement is sensitive to extreme values even though it offers some improvement over the coefficient of determination.


$$d = 1 - \frac{\sum_{i=1}^{n} (Obs_i - Pred_i)^2}{\sum_{i=1}^{n} (|Pred_i - \overline{Obs}| + |Obs_i - \overline{Obs}|)^2}$$
, $0 \le d \le 1$,


Where Obs_i is observed value, $Pred_i$ is the model predicted value

IoA values for all the stations have been calculated [137]. Most of the IoA values are close to 1 which shows better performance of the model. Details of the IoA result are represented in the Figures (Figure 4-16) below

、

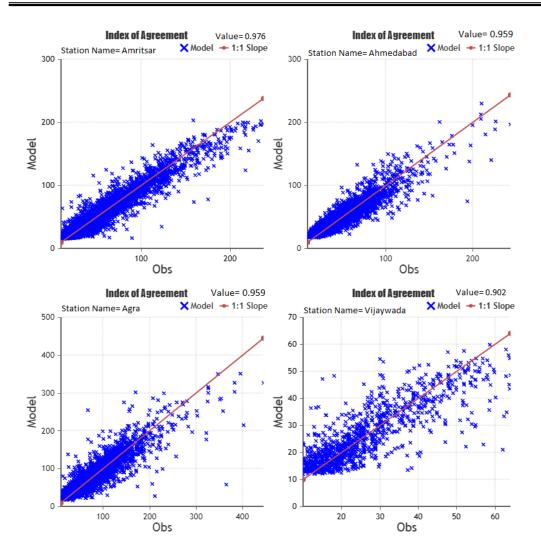
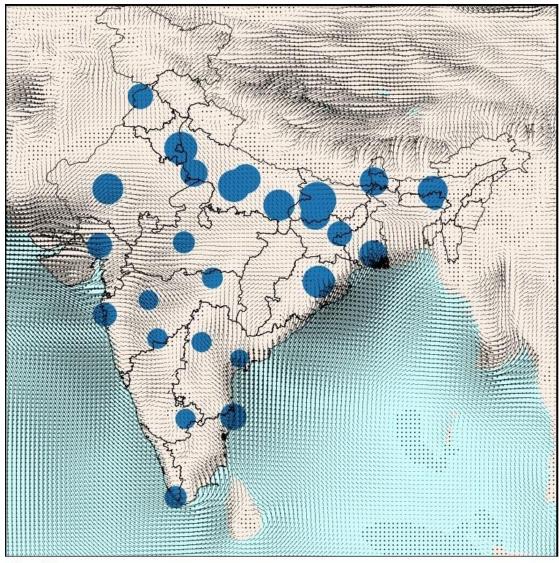



Figure 4-16: IoA for 26 Stations

4.1.7 Seasonal Wind effect :

In order to observe the wind circulation throughout Indian subcontinent Quiver plot was used. A quiver plot is a special point style where the direction of the symbol and the size of the symbol are derived from attributes. Seasonal analysis of wind circulation was done for four seasons – Pre-Monsoon (Figure 4-17), Monsoon (Figure 4-18), Post-Monsoon(Figure 4-19), and Winter(Figure 4-20). A detail of the seasonal wind circulation is presented in figures below.

Pre-Monsoon

Figure 4-17: Quiver Plot for Pre- Monsoon

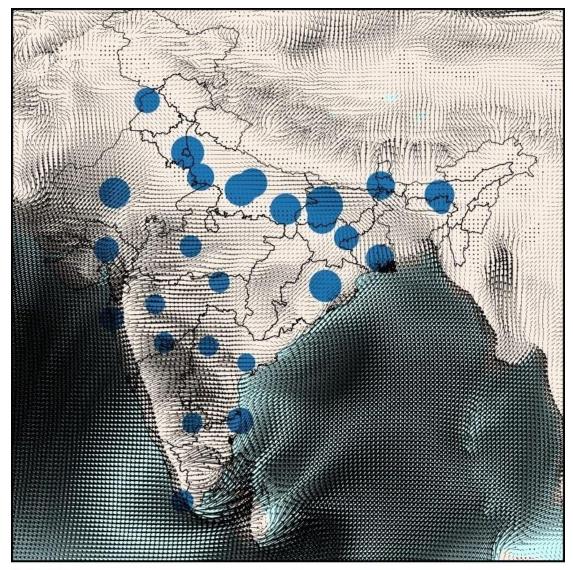
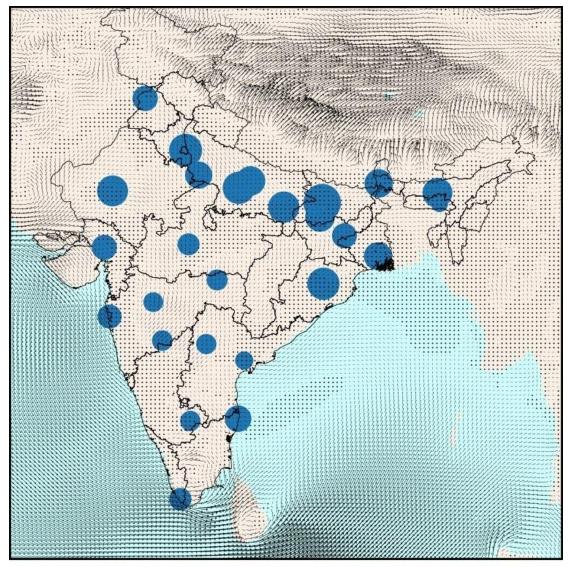



Figure 4-18: Quiver Plot for Monsoon

Post-Monsoon

Figure 4-19: Quiver Plot for Post-Monsoon

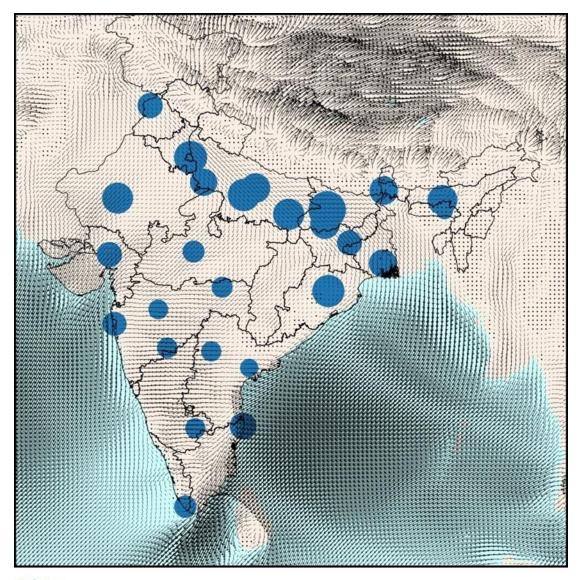


Figure 4-20: Quiver Plot for Winter

4.1.8 Comparison with Other Studies

Our model exhibits a significant improvement in terms of RMSE error when compared to multi-output prediction. The best RMSE value of 39 was obtained by [138] using a multi-output auto encoder model to forecast PM2.5 and PM10 concentrations in Beijing City. The model used multiple inputs, including meteorological variables along with pollutant concentrations. [139] have used an ANN model to obtain a correlation coefficient of 0.7301 and an MSE error of 0.0191. The model used single step prediction and the model's applicability for multi-step ahead prediction was not known. Likewise, [140] assessed a basic feed-forward artificial neural network model with multivariate input parameters for the Kolkata region in eastern India in order to predict one-step PM2.5 concentrations during the COVID19 lockdown period. They found that the model's RMSE value was 3.74, while its MAE value was 11.14. Similar to this, [141] tested eight different models on various air pollutants in Kolkata, including the BiLSTM, LSTM-autoencoder, Conv2DLS TM, and stacked LSTM models. They found that the MAE and RMSE values were greater than 10 μ g/m3. In the same way, for PM2.5 forecasting in Delhi, [142] has obtained an MAE value of about 15. Additionally, for the Talcher station in India, [138] reported RMSE values of 31, 56, and 68 for 3-hour, 5-hour, and 9-hour ahead prediction using an ANN model. With the help of LSTM and BiLSTM, they have obtained RMSE values of 26, 41, 80 and 42 and 155 and 168, respectively, as opposed to RMSE values of 29.04 and 40.41 for prediction horizons of one hour and eight hours ahead. The proposed model in this study has shown a RMSE range of 7.09 to 53.81 across 26 data stations covering 13 distinct Indian agroclimatic zones. RMSE values below 30 are found in 18 out of 26 locations in India. The findings demonstrate the model's robustness and its applicability to various Indian locations without modification.

Authors	Result Obtained	Our Result
[138] Samal et	The best RMSE value 39	RMSE values ranges
al. 2021		from 7.09 to 53.81 . Out
[139] Masood	Correlation coefficient of 0.7301 and an MSE	of 26 only two stations
et al. 2020	error of 0.0191.	have high value of 40.41
[140] Bera et	RMSE value was 3.74, while its MAE value was	and 53.81
al. 2021	11.14.	
[141]	MAE and RMSE values were greater than 10	MAE values ranges from
Middya, et	μg/m3	5.41 to 34.09
al. 2022		
[142] Kumar	MAE value of about 15.	MAPE values ranges
et al. 2020		from 18.64 to 52.69
[138] Masood	RMSE values of 31, 56, and 68 for 3-hour, 5-	Out of 26 only two
et al. 2020	hour, and 9-hour ahead prediction.	stations have high
		MAPE value of 44.28
		and 52.69