CONTENTS

Abstract		i-ii
Declaration		iii
Certificates		iv-v
Preface		vi
Acknowledgement		vii-ix
List of Abbreviations and Symbols		xv-xvi
List of Schemes		xvii
List of Figures		xviii-xxxi
List of Tables		xxxii
Chapter 1		1-33
1.1. Introduction		1-1
1.2. Analytical techniques for fluoride detection		1-3
1.2.1. Electrochemical		1-4
1.2.2. Chromatographic method		1-5
1.2.3. Spectroscopy method		1-5
1.2.4. Microfluidic method		1-6
1.3. Chemical sensor		1-7
1.3.1. Classification based on the signalling element		1-7
1.3.1.1. Chromogenic/Colorimetric sensors		1-8
1.3.1.2. Fluorogenic/Fluorometric sensors		1-8
1.3.1.3. Electrochemical sensor		1-9
1.3.2. Classification based on the recognition process		1-10
1.3.2.1. Chemosensor		1-10
1.3.2.2. Chemodosimeter		1-12
1.3.2.2.1. Chemodosimeters based on F ⁻ promoted cleavage of Si-O Bonds		1-14
1.3.2.2.2. Chemodosimeters based on F ⁻ promoted cleavage Bonds	of Si-C	1-15

	1.3.2.2.3.	Chemodosimeters	based	on	Boron-fluoride	1-16
	interaction					
	1.3.3. Chen	nosensors based inter	raction of	f fluor	ides with metal	1-16
	complexes					
	1.3.4. Impor	rtance of the develop	ment of F	luorid	e	1-19
	sensi	ng methodology in th	e context	of cu	rrent status	
1.4. O	bjective of th	esis				1-20
1.5. H	ypothesis ado	opted to meet the obje	ectives			1-21
	1.5.1: Нуро	thesis 1				1-21
	1.5.2: Нуро	thesis 2				1-21
1.6. Re	eferences					1-22

Chapter 2: Fluoride sensing study of benzothiazole based organic probe

molecules having amine and amide moieties in aqueous medium	1-30
2.1. Introduction	2-1
2.2. Objective of study	2-4
2.3. Results and discussion	2-4
2.3.1. Synthesis and Characterization	2-4
2.3.2. Anion recognition studies in organic medium	2-6
2.3.3. ¹ H-NMR titration study	2-8
2.3.4. Fluoride recognition of R and P in aqueous medium	2-10
2.3.4.1. UV-Vis spectroscopy study	2-10
2.3.4.2. Electrochemical study	2-13
2.3.4.3. Investigation of sensing mechanism	2-17
2.3.4.4. DFT study	2-19
2.3.5. Validation of the method with real life sample	2-23
2.4. Conclusion	2-24
2.5. References	2-25

Chapter 3: Fluoride sensing study of amine and nitro substituted	
thiourea derivatives in aqueous medium	1-26
3.1. Introduction	3-1
3.2. Objective of the study	3-5
3.3. Results and discussion	3-5
3.3.1. Synthesis and characterization	3-5
3.3.2. Anion binding studies in DMSO	3-7
3.3.3. ¹ H-NMR titration study	3-10
3.3.4. Fluoride recognition study of B1 and B2 in aqueous medium	3-12
3.3.4.1. UV-Vis spectroscopy study	3-12
3.3.4.2. Electrochemical study	3-16
3.3.5. Investigation of sensing mechanism	3-18
3.3.6. Validation of the method with real life sample	3-20
3.4. Conclusion	3-22
3.5. References	3-22
Chapter 4: Fluoride sensing study of <i>bis</i> -thiourea based tweezers	
in aqueous medium	1-28
4.1. Introduction	4-1
4.2. Objective of study	4-4
4.3. Results and discussion	4-5
4.3.1. Synthesis and characterization	4-5
4.3.2. Anion affinity study of S1 and S2 in organic medium	4-8
4.4.3. ¹ H-NMR titration study	4-11
4.3.4. Fluoride recognition study of S1 and S2 in aqueous medium	4-12
4.3.4.1. UV-Vis spectroscopy study	4-12
4.3.4.2. Electrochemical study	4-16

4.3.4.3. Investigation of the sensing mechanism	4-18
4.3.4.4. DFT study	4-20
4.4. Application in paper strips	4-22
4.5. Validation of the method with real life sample	4-23
4.6. Conclusion	4-24
4.7. References	4-24
Chapter 5: Pushing Limits: Fluoride Sensing in water at ppb Level	1-22
using a Novel Colorimetric and Fluorometric Approach with	
Perylene Tetracarboxylate Dye	
5.1. Introduction	5-1
5.2. Objective of study	5-5
5.3. General experimental details	5-5
5.3.1. Synthesis of K ₄ PTC	5-5
5.3.2. General Procedures for UV–Vis and fluorescence	5-6
spectroscopy studies	
5.3.3. Determination of F^- in Water Samples	5-7
5.4. Results and Discussion	5-7
5.4.1. UV-Vis and Fluorescence study	5-7
5.4.2. Recyclability study	5-13
5.4.3. Investigation of the sensing mechanism	5-14
5.5. Validation of the method with real life sample	5-16
5.6. Conclusion	5-17
5.7. References	5-17
Chapter 6: Detection of Fluoride in water with Fluorescein	1-24
Dye-A Colorimetric and Fluorometric	
Approach	<i>c</i> 1
6.1. Introduction	6-1

6.2. Objective of the study	6-5
6.3. General experimental details	6-5
6.3.1. Synthesis of Fluorescein (M)	6-5
6.3.2. Synthesis of the Potassium salt of fluorescein (K_2M)	6-6
6.3.3. General Procedures for UV-Vis and Fluorescence	6-6
Spectroscopy Studies	
6.3.4. Determination of F^- in water sample	6-6
6.4. Results and Discussion	6-7
6.4.1. F ⁻ sensing study of fluorescein (M) in DMSO medium	6-7
6.4.2. F sensing study of potassium salt of fluorescein (K_2M) in water medium	6-11
6.4.3. Recyclability study	6-17
6.4.4. Investigation of the sensing mechanism	6-18
6.5. Validation of the method with real life sample	6-20
6.6. Conclusion	6-20
6.7. References	6-21
Chapter 7: Conclusions and future prospects	1-5
7.1. Summary and conclusions	7-1
7.2. Future Prospects	7-5
Appendix	1-15
A1.1. Materials and Methods	A1
A1.2. References	A3
A2.0. Spectroscopic and crystallographic data	A4
A2.1. Spectroscopic data	A4