Dedicated to Deuta Late Pradip Ranjan Baruah

DECLARATION

I, Prayash Baruah, Research Scholar in the Department of Business Administration, School of Management Sciences, Tezpur University, Assam, hereby declare that the thesis titled "Optimization Model for Inland Water Logistics Infrastructure system of River Brahmaputra and Barak" is a bonafide work carried out by me under the guidance of Dr. Tridib R. Sarma. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for any other degree, diploma or award.

(Prayash Baruah)

Place: Tezpur Registration Number TZ189857 of 2018

Date:12-16-2024

CERTIFICATE

This is to certify that the thesis entitled "Optimization Model for Inland Water Logistics Infrastructure system of River Brahmaputra and Barak" submitted to the Department of Business Administration, School of Management Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Management Sciences is a record of research work carried out by Mr. Prayash Baruah under my supervision and guidance.

All help and support received by him from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

(Dr. Tridib Ranjan Sarma)

Associate Professor

Dated 30th of August, 2024

Tezpur

Department of Business Administration

School of Management Sciences

Tezpur University

PhD Supervisor

Department of Business Administration

Tezpur University

ACKNOWLEDGEMENT

The Ph.D. journey is a challenging yet enriching one and without a supportive ecosystem, it is not possible to sustain the progress. It will be injustice to the success of this thesis if due acknowledgement is not expressed to the people who stood by me throughout the journey. First and foremost, I would like to express my gratitude to my supervisor Dr. Tridib Ranjan Sarma for his constant support and encouragement. I thank him for giving me full freedom to pursue my passion through my ideas and I thank him for his terrific ingenuity in troubleshooting every bottleneck that I faced.

With a sense of immense gratitude, I would like to thank Prof. Mrinmoy K. Sarma and Prof. Anjan Bhuyan who were a part of my doctoral committee at Tezpur University for their valuable suggestions and guidance throughout my journey. I would also like to take this opportunity to express my gratitude to the DRC members for providing me valuable feedback during every progress seminar.

My colleagues and seniors at the Department and University have motivated me immensely to fulfill my dreams and I thank each one of them for their constant support. I would also like to thank the support staff of the department for their help in any administrative matter. I also would like to express my sincere gratitude to Honorable Vice Chancellor's office including the administrative section for all the support extended to me during my PhD tenure.

The major portion of my work was carried out with the cooperation and support of various stakeholders from the Ministry of Ports, Shipping and Waterways, Inland Waterways Authority of India, Inland Water Transport-Assam, academic institutions such as AIT Bangkok, IIT Delhi to name a few and shipping organizations across the North East. I would like to acknowledge my sincere gratitude to all associated experts at the strategic and operational levels who have helped me in getting the much necessary data and support for my research. I would also like to thank officials at the inland water ports and divisional offices for accommodating me and providing access to the requisite information.

Most importantly, I would like to express my extreme gratitude to my pillars of strengthmy wife and my little daughter who have made umpteen sacrifices for my research and have been a source of constant motivation for me. I would also like to thank my parents and especially my mother-in-law for their support and blessings. I would also like to

thank my family members, friends and well-wishers for their motivation and support all throughout the journey.

Thanking you all,

(Prayash Baruah)

List of Tables

Table No	Table Title	Page	
		No	
Table 1.1	Logistics Market Revenue, by Region, 2020-2023 (US\$ Billion)	2	
Table 1.2	LPI 2023 Top 25 countries	4	
Table 1.3	Performance Highlights from LEADS 2023	6	
Table 1.4	Attribute wise comparison of transport modes	9	
Table 1.5	Cost basis of transport modes	10	
Table 1.6	Top 10 container ports (globally)	12	
Table 1.7	Classification of Sea Transport Challenges	14	
Table 1.8	Freight cost comparison for the three modes of transport	17	
Table 1.9	Notification of five National Waterways	19	
Table 1.10	Categorization of the National Waterways	20	
Table 1.11	Classification of Waterways	20	
Table 1.12	List of National Waterways (operational)	21	
Table 1.13	List of National Waterways (feasible for cargo movement)	22	
Table 1.14	Prominent Inland water ports/terminals across major waterways	24	
Table 1.15	Indicative list of government owned equipments	25	
Table 1.16	Major waterways and routes	32	
Table 1.17	Inland water ports along major waterways for freight transport	2.4	
	(Assam)	34	
Table 1.18	Ports of call and extended ports of call (India) as notified in IBP	35	
Table 2.1	Water Transport in terms of economic advantage	45	
Table 2.2	Key Challenges of Inland Waterway Transport	46	
Table 2.3	Inland Waterway Transport- Global and National Perspective	47	
Table 2.4	Inland Water Transport- Regional and Assam studies	47	
Table 2.5	Water Transport optimization measures- worldwide	48	
Table 2.6	Multi Criteria Decision Techniques for Ranking	49	
Table 2.7	Port Ranking and its antecedents	50	
Table 4.1	AHP criteria and sub criteria	63	
Table 4.2	9-point scale for pairwise comparison in AHP	69	
Table 4.3	AHP pairwise comparison Scale (adapted)	70	
Table 4.4	Pairwise Comparison Matrix (empty) on MS Excel tool	71	

Table 4.5	Standardized Matrix on MS Excel Tool	71
Table 4.6	Consistency calculation on MS Excel Tool	72
Table 4.7	Dry Port attributes comparison (region specific)	76
Table 4.8	Hub-and-spoke model for the port network (region specific)	77
Table 5.1	Key Inland Water Ports (for ranking)	79
Table 5.2	Coding of the Criteria/Sub Criteria	83
Table 5.3	Pairwise Comparison matrix for Sub criteria of Criterion 1	84
Table 5.4	Pairwise Comparison (standardized) matrix for Sub criteria of	0/
	Criterion 1	84
Table 5.5	Calculation of weights and ranks for Sub criteria of Criterion 1	85
Table 5.6	Pairwise Comparison matrix for Sub criteria of Criterion 2	86
Table 5.7	Pairwise Comparison (standardized) matrix for Sub criteria of	94
Table 5.7	Criterion 2	86
Table 5.8	Calculation of weights and ranks for Sub criteria of Criterion 2	86
Table 5.9	Pairwise Comparison matrix for Sub criteria of Criterion 3	87
Table 5 10	Pairwise Comparison (standardized) matrix for Sub criteria of	87
Table 5.10	Criterion 3	0/
Table 5.11	Calculation of weights and ranks for Sub criteria of Criterion 3	87
Table 5.12	Pairwise Comparison matrix for Sub criteria of Criterion 4	88
Table 5.13	Pairwise Comparison (standardized) matrix for Sub criteria of	88
	Criterion 4	oc
Table 5.14	Calculation of weights and ranks for Sub criteria of Criterion 4	89
Table 5.15	Pairwise Comparison matrix for Sub criteria of Criterion 5	89
Table 5.16	Pairwise Comparison (standardized) matrix for Sub criteria of	90
	Criterion 5	90
Table 5.17	Calculation of weights and ranks for Sub criteria of Criterion 5	90
Table 5.18	Pairwise Comparison matrix for the Main Criteria	91
Table 5.19	Pairwise Comparison (standardized) matrix for Main Criteria	91
Table 5.20	Calculation of weights and ranks for Main Criteria	91
Table 5.21	Random Index (RI) Table	93
Table 5.22	Consistency Check for Pairwise Comparison of Criterion 1 sub	93
	criteria	73
Table 5.23	Consistency Check for Pairwise Comparison of Criterion 2 sub	93

	criteria	
Table 5.24	Consistency Check for Pairwise Comparison of Criterion 3 sub criteria	94
Table 5.25	Consistency Check for Pairwise Comparison of Criterion 4 sub criteria	94
Table 5.26	Consistency Check for Pairwise Comparison of Criterion 5 sub criteria	94
Table 5.27	Consistency Check for Pairwise Comparison for main criteria	95
Table 5.28	Calculation of global weights for the twenty sub criteria	95
Table 5.29	Global ranks of the sub criteria	97
Table 5.30	Data Details for calculating sub criteria score for the inland water ports	98
Table 5.31	Stakeholder scores (out of 10) for sub-criteria IE, PM, SM and CE	99
Table 5.32	Distance measurement (in kms.) for sub-criteria HR, DP and PC	100
Table 5.33	Area measurement for sub-criteria TA, TS and PD	101
Table 5.34	Time measurement for sub-criteria BW, BT and WC	102
Table 5.35	Cost estimation for sub-criteria DC, HC, LU and TX	103
Table 5.36	LAD information (average for the year 2023) for sub-criteria WD	104
Table 5.37	Port Equipment information for sub-criteria PE	104
Table 5.38	Loading/Unloading rate (2023) for sub-criteria LE	105
Table 5.39	: Consolidated sub-criteria wise comparison of the inland water ports	106
Table 5.40	Calculation of total scores for the selected inland water ports	107
Table 5.41	Final Ranking of the inland water ports	108
Table 6.1	Key Inland Water Ports as feeder ports	109
Table 6.2	Prospective dry port locations (hubs)	110
Table 6.3	Distance Matrix for inland water and dry port alternates	111
Table 6.4	1 Hub Scenario Model (with existing dry port at Amingaon)	112
Table 6.5	1 Hub Scenario Model (alternate)	112
Table 6.6	2 Hub Scenario Model	113
Table 6.7	3 Hub Scenario Model	114

3 Hub Scenario Model (alternate)

3 Hub Scenario Model (with existing dry port)

Table 6.8

Table 6.9

114

115

Table 6.10	Comparison of cumulative distances for the simulated networks	116
Table 6.11	Hub-and-spoke model for the port network	116

List of Figures

Figure No	Figure Title	Page
		No
Figure 1.1	Logistics Market Share, by Region, 2023	3
Figure 1.2	Parameter wise performance highlight of Assam from LEADS 2023	7
Figure 1.3	Transportation services market size, 2023 to 2032 (USD Trillion)	8
Figure 1.4	Inland waterway lengths of G20 member countries* (in kms.)	15
Figure 1.5	Total and Navigable Length of Inland Waterways- State wise (in kms.)	18
Figure 1.6	Total no. of National Waterways- State wise*	19
Figure 1.7	Cargo Traffic on inland waterways (in Million Metric Tons) for last 10 years	22
Figure 1.8	Cargo Traffic comparison on Major NWs (in Million Metric Tons-MMT)	23
Figure 1.9	Major Commodity/Cargo Type on NWs for FY 2022-23	23
Figure 1.10	Organization Chart- Ministry of Ports, Shipping and Waterways	27
Figure 1.11	Organisation Chart- Inland Waterway Authority of India (IWAI)	28
Figure 1.12	Financial Outlay of National Waterway Development Projects (in Crores)	29
Figure 1.13	Movement of cargo (in Tonnes) on India-Bangladesh inland waterways	30
Figure 1.14	Route Map of the Brahmaputra (NW-2)	33
Figure 1.15	Route Map of the Barak (NW-2)	33
Figure 1.16	Organisation Chart- IWAI Guwahati Regional Office	36
Figure 4.1	AHP Methodology	61
Figure 4.2	AHP Fundamental Framework	62
Figure 4.3	AHP Conceptual Framework for inland water port ranking	66
Figure 4.4	Hub and Spoke Theoretical framework	76
Figure 5.1	Respondent profile for the AHP questionnaire	82
Figure 5.2	Weights for Sub criteria of Criterion 1	85
Figure 5.3	Weights for Sub criteria of Criterion 2	86
Figure 5.4	Weights for Sub criteria of Criterion 3	88
Figure 5.5	Weights for Sub criteria of Criterion 4	89

Figure 5.6	Weights for Sub criteria of Criterion 5	90
Figure 5.7	Weights for the Main Criteria	92
Figure 5.8	Global weights of the sub criteria	96

Glossary of Terms/Acronym

Acronym Description

AEP Act East Policy

AHP Analytic Hierarchy Process

ASEAN Association of South East Asian Nations

CAGR Compound Annual Growth Rate

CAR-D Cargo Data Portal, IWAI

CI Consistency Index

CLAP Comprehensive Logistics Action Plan

CR Consistency Ratio

DEA Data Envelopment Analysis

DWT Deadweight tonnage

EXIM Export Import
FY Financial Year

GDP Gross Domestic Product

HS Hub and Spoke

IBP Indo Bangladesh Protocol

ICC International Chamber of Commerce

ICT Information and Communication TechnologiesISO International Organisation for Standardization

IWAI Inland Waterways Authority of India

IWT Inland Water TransportJMVP Jal Marg Vikas Project

LEADS Logistics Ease Across Different States

Lo Lo Load off

LPI Logistics Performance Index

MCDM Multi-Criteria Decision-Making

MMLP Multimodal logistics park

MMT Million Metric tons

NAFTA North American Free Trade Agreement

NLP National Logistics Policy

NW National Waterways

PIB Press Information Bureau

RCEP Regional comprehensive economic partnerships

RI Random Index

RITES Rail India Technical and Economic Service

Ro Ro Roll on Roll off

SAARC South Asian Association for Regional Cooperation

SDG Sustainable Development Goals

UNICTRAL United Nations Commission on International Trade Law