
Chapter 2

Semantic-aware structure

preserving median

morpho-filtering

2.1 Introduction

Natural images typically contain meaningful or significant ( structure ), as well

as irrelevant or insignificant ( texture ) visual information. Structure preserv-

ing image filtering is a key operation to derive the meaningful ( semantic )

information from the images, which have a variety of applications in different

fields like medical imaging, document analysis, remote sensing image analysis, etc

[13, 70, 85]. Recent research focuses on the development of techniques which iden-

tify semantically significant objects from regular or irregular textural patterns

for filtering. In the literature such techniques that incorporate semantic infor-

mation for automatic structure-texture separation is termed as semantic-aware

filtering [25, 133, 141, 145, 149]. In the current chapter, we have proposed a

robust semantic-aware structure preserving filtering technique. Our technique de-

fines a novel method to obtain an edge-aware adaptive window of dynamic shape

for filtering each pixel of the image by excluding its neighbour pixels belonging to

different textural or structural regions. Fig:2-1 illustrates the importance of the
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Chapter 2. Semantic-aware structure preserving median morpho-filtering

uses of adaptive dynamic shape windows in comparison to fixed shape windows for

filtering. As shown in Fig:2-1(b), the small fixed shape window does not work well

to filter out the large-scale textures. On the contrary, large window does not pre-

serve edges properly ( blur the edges ) as illustrated in Fig:2-1(c) and Fig:2-1(f).

Since larger windows are useful to identify large-scale textures and smaller ones are

effective for both detection and preservation of smaller structural edges. Defining

an appropriate dynamic window for filtering varying size textures or structures is

very much important. In the proposed work this issue is addressed by defining

edge-aware adaptive dynamic shape windows as depicted in Fig:2-1(g) and Fig:2-

1(h). In our technique, first, a novel method is proposed to generate the semantic

edge-map by computing the skewness of global and local morphological gradient

histograms. Then, using the generated edge-map an edge-aware structure preserv-

ing adaptive median morpho-filter is designed. The edge-map generation followed

by median morpho-filtering iteratively runs to generate the final filter image. Note

that morphological filters generally preserve the larger structural shapes while re-

moving the smaller irregular shapes. In contrast, median filter converges the pixel

values into the background pixels with greater counts. Thus, the proposed me-

dian morpho-filter merges the narrow texture to its original background as well as

preserves the significant structures. The experimental results demonstrate, unlike

many current techniques, our filtering method successfully balances multiple con-

flicting objectives. It identifies and removes texture, preserves structural edges,

protects subtle features such as corners, and avoids introducing artifacts and dis-

tortions from over-sharpening or over-blurring. The key participation of this work

are:

• Proposes a texture-structure decomposition technique by analysing the mor-

phological gradient histogram of the image.

• Proposes a semantic-aware median morpho-filter for texture smoothing while

preserving the significant structures.
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2.2. Morphological and median filters

Figure 2-1: (a) Original image with simple structure. (b)(c) The filtered images
obtained using smaller and larger static box windows. (d) Original image with
complex structure. The filtered images and their zoomed portion obtained using
(e)(f) static box window and (g)(h) proposed dynamic window.

The next part of this chapter is presented as details: Section 2.2 introduces

briefly to morphological and median filters. The proposed technique is detailed

in Section 2.3. Experimental findings are analyzed in Section 2.4, and finally, the

conclusion of this work is presented in Section 2.5.

2.2 Morphological and median filters

Figure 2-2: (a) Original 1-dimensional signal and the corresponding filtered
signal obtained by applying (b) Opening, (c) Closing, (d) (Opening + Closing)/2,
and (e) Median operations with a fixed SE of size 3 unit.

Our filtering technique exploits the properties of morphological and me-

dian filters [60, 121]. This section presents a concise overview of the two filtering

techniques.
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2.2.1 Morphological filter

It works on the rank ordering principle. The basic two operations dilation ( δ )

and erosion ( ε ) filter the image by replacing the center pixel of the predefined

neighbour called structuring element ( SE ) with the local maximum and minimum

value, respectively. The other operations such as opening ( δ(ε) ) and closing (

ε(δ) ) are designed by applying successive alternative operations of dilation and

erosion. The very basic nature of these operations intuitively removes the impulse

noises smaller in size than the neighbouring window ( i.e SE ) without affecting

the basic shape of objects. Figure 2-2 displays the filtering outcomes obtained on

a 1-dimensional signal by applying different morphological operations with a fixed

SE of size 3 unit. In the proposed technique morphological filter is exploited to

improve the discrimination between structural edges and textural regions of the

image.

2.2.2 Median filter

It’s a widely used rank order filter that substitutes each pixel with the median

value of the defined neighbouring pixels. As the median value always divides the

distribution into equal two parts in the same number of counts, it is naturally

not sensitive to the impulse noise/outliers. Unlike the weighted average filters,

a median filter always replaces the pixel value with a value that already exists

within the window containing odd number of pixels. If the neighbour pixels follow

a positively skewed distribution then the median will be less than the mean. On

the other hand, for a negatively skewed distribution the median will be greater

than the mean. For a symmetric/near-symmetric distribution ( i.e., skewness is

near to zero ) the median will be equal to or closer to the mean value. Figure

2-2 (e) shows the filtering result obtained from Figure 2-2 (a) by applying median

operation with a fixed window of size 3 unit. The median filter merges the high
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intensity textures with its low intensity background if the local distribution is

positively skewed and the low intensity texture with its high intensity foreground

if the distribution is negatively skewed. In our proposed method, this intuitive

property of the median filter is exploited to develop a robust edge preserving

smoothing technique.

Figure 2-3: (a) Original image, its magnified part enclosed with yellow rectangle
and the intensity values of the pixels on the red line. The filtering results obtained
by applying (b) Opening, (c) Closing, and (d) ( Opening + Closing ) / 2.

2.3 Proposed technique [111]

The proposed filtering technique has two main tasks. First, it generates a binary

edge-map by analysing the morphological gradient histogram of the image. Then,

based on the generated edge-map, a semantic edge-aware median morpho-filtering

technique is designed to generate the filtered image. The subsequent subsections

provide a detailed explanation of the proposed filtering technique:
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Chapter 2. Semantic-aware structure preserving median morpho-filtering

2.3.1 Image gradients for edge detection

In image processing, a traditional gradient represents the directional change in

intensity or color within an image. Including the morphological gradient, there

are several other traditional ways to generate gradients in images:

Sobel gradient: The Sobel operator uses convolution with specific filters

to detect edges by emphasizing horizontal and vertical gradients. It’s commonly

used to highlight edges in both x ( horizontal ) and y ( vertical ) directions.

Prewitt gradient: Similar to Sobel but with slightly different kernel

values, the Prewitt operator is also used for edge detection. It’s simpler than

Sobel but less sensitive to noise, making it effective for general gradient detection.

Scharr gradient: The Scharr operator is an improved version of the Sobel

operator, especially for detecting edges in high-noise images. It emphasizes edges

more strongly by using a different kernel, which can produce sharper gradients.

Laplacian of Gaussian ( LoG ): The Laplacian of Gaussian first ap-

plies Gaussian smoothing to reduce noise, then the Laplacian operator detects the

gradient. LoG is beneficial for finding fine details and edges in complex images.

Roberts cross gradient: The Roberts Cross operator detects edges by

calculating gradients diagonally ( at 45-degree angles ). It’s particularly useful for

simple edge detection in noiseless images.

Canny edge detector: The Canny detector is an advanced edge detec-

tion method that involves Gaussian smoothing, finding intensity gradients, and

applying non-maximum suppression and edge tracking. While more complex, it’s

highly effective for identifying strong and weak edges, making it suitable for de-

tecting image boundaries.

Isotropic gradient: This involves computing the gradient magnitude
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and direction using isotropic ( rotation-invariant ) kernels. The gradient vector’s

magnitude and direction provide detailed information about the intensity changes.

Each of these methods has its own unique characteristics and application

suitability, depending on image quality, noise levels, and the specific purpose (

e.g., edge detection, feature extraction, or enhancing contrast ). In addition to

these, all the above-mentioned techniques are particularly applicable to the single

band/channel or gray-scale images. For multi band/channel or RGB image these

methods can be applied after converting/reducing to singe band/channel or gray

scale image. There are techniques that can directly applied to the RGB or multi

band/channel images directly for gradient generation.

Marginal Ordering: This approach involves applying morphological op-

erations independently on each color channel ( e.g., R, G, B in an RGB image ).

While straightforward, it can ignore the interactions between channels, potentially

resulting in inconsistencies when combining channels back together.

Vectorial Ordering: This strategy considers the multichannel image as a

vector field, treating each pixel as a vector of values across channels ( e.g., [R,G,B]

). Morphological operations are then defined based on the vector magnitude or

another vector ordering scheme. This approach better preserves inter-channel

relationships, making it particularly relevant for tasks requiring nuanced color

interpretation, such as hyperspectral imaging.

In the proposed techniques we have used morphological gradient from

the corresponding gray scale image, as because this makes simple both in con-

cept and computationally also. Morphological gradients offer significant advan-

tages over other traditional gradient methods, particularly in their robustness to

noise, preservation of shape integrity, and resilience to illumination changes. By

leveraging the difference between dilation and erosion, they produce precise and

well-defined object boundaries while minimizing false positives in complex scenes.
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Their adaptability through customizable structuring elements allows them to ex-

cel in diverse applications such as medical imaging, satellite-based remote sensing,

industrial inspection, and document analysis. Additionally, their seamless integra-

tion with other morphological operations makes them a powerful tool for advanced

image analysis tasks.

2.3.2 Generation of gradient image

Our filtering method works on both gray scale as well as colour images. If the

input is a colour image, then its corresponding gray scale image is used to generate

the morphological gradient image. In many cases, the images may have high

gradient textural contents which could be misinterpreted as the structural edges.

To optimize the discrimination between textural and structural contents of the

image, in this work, we proposed a pre-processing step that performs filtering on

the input image by defining a morphological filter combining opening and closing

operations. Let Igray represent the grayscale image derived from the input image.

The proposed pre-processing step generates a filtered image J from Igray using a

(3× 3) SE of 8-neighbours as follows:

J = (δSE(εSE(Igray) + εSE(δSE(Igray))/2 (2.1)

Figure 2-2(a) shows a 1-dimensional signal with some high textural oscil-

lations having equal or higher gradients than the structural edges. Figure 2-2(d)

shows the filtered signal obtained by applying the morphological operation defined

in equation (2.1). From this figure, one can see that the average of opening and

closing removes the lower textural oscillations and diminishes the higher textural

gradient while keeping the higher structural gradients mostly unchanged. Thus, it

helps to create a difference between high gradient textural and structural contents

in the gradient domain. To better understand the usefulness of the morphological
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operation defined in equation (2.1), Figure 2-3 displays a real image alongside the

filtered images obtained through applying different morphological operations. It

also plots the pixels intensity values on the red line ( passes through both textural

and structural regions) for these images. From Figure 2-3(a) it is showing that in

the original image, there are some textural edges whose gradients are as high as

the structural edges. From Figures 2-3(b) and 2-3(c) one can see that the indi-

vidual operation of the opening increases the darker textural gradient and closing

increases the brighter textural gradient. But the average of both the operations

as defined in equation (2.1) diminishes the textural high gradients ( or impulse

noises ) while keeping structural edges with minimum distortion as shown in Fig-

ure 2-3(d). After obtaining the filtered image J , the proposed technique generates

morphological gradient image Jmg as follows [114]:

Jmg = (δSE(J)− εSE(J)) (2.2)

Figure 2-4: (a) Gradient image without applying pre-processing, (b) Gradient
image with applying proposed pre-processing and (c) Its histogram with the best
fitted log-normal distribution curve by maximum likelihood estimator. (d) The
initial edge-map Eb obtained by applying global threshold t1.

Figure 2-4(a) and Figure 2-4(b) is the gradient image obtained without

and with applying the pre-processing step, respectively. From these figures, one

can see that the proposed pre-processing step diminishes high gradient textures

while keeping the structural edges with minimum distortions.
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2.3.3 Generation of edge-map

The gradient image Jmg obtained from equation (2.2) is applied to produce the

edge-map. For an image, a very less number of pixels are associated with signif-

icant structural edges as compared to the non-edge pixels. Thus, in the gradient

image Jmg, higher gradient pixels associated with the structural edges are much

less in number than the lower gradient pixels associated with smooth areas. So,

the histogram of the gradient image is likely to follow a positively-skewed distribu-

tion with a high peak of lower values and a right-tail of higher values, as illustrated

in Figure 2-4(c). Note that the domain of the gradient image Jmg is associated

with non-negative values. So the positively-skewed histogram of the non-negative

gradient can be assumed to follow a log-normal distribution [3, 40]:


f(x) = 1

xσ
√
2π
e

−(ln (x)−µ)2

2σ2

µ = ln ( ν√
1+ γ2

ν2

) where x > 0, σ > 0

σ =
√

ln (1 + γ2

ν2
)

(2.3)

The probability density function of a log-normal distribution f(x) for a

random variable x is a continuous distribution of positive values as define in equa-

tion (2.3), such that the logarithm of x i.e., ln(x) follow a normal distribution

N(µ, σ). Where µ = ln(m) is the scale parameter represents mean of ln(x) and

m is the median of the x, σ is the shape parameter represents standard devia-

tion of ln(x). The standard deviation and mean of x are denoted as γ and ν

respectively. Since the gradient image Jmg may have zero gradient value we have

added a very small positive value η as Jmg = Jmg + η to model Jmg as log-normal

distribution. In order to generate an accurate edge-map, first, a global threshold

t1 from the gradient image Jmg histogram is detected by exploiting the properties

of the log-normal distribution. The threshold t1 roughly differentiates the edge

pixels and the non-edge ones in the gradient image. For a log-normal variate x,
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the corresponding normal distribution ln(x) contain 66.68% of values within the

range (µ − σ, µ + σ), which corresponds to the high peak portion (eµ−σ, eµ+σ) of

the log-normal distribution. The right-tail potion (>= eµ+σ) of the corresponding

log-normal distribution contains less than 33.32% of total values. In this work,

we have taken the global threshold t1 = eµ+σ to roughly differentiate between the

edge ( high gradient ) and the non-edge ( low gradient ) pixels. After obtaining the

threshold t1, the initial binary edge-map Eb from the gradient image is generated

as follows:

Eb(p) =

1, if Jmg(p) >= t1

0, if Jmg(p) < t1
(2.4)

The initial edge-map Eb generated by considering the global threshold

t1 may have textural edges along with structural edges. To further reduces the

presence of non-structural edges in the edge-map, a novel technique is proposed to

refine it. For each edge pixels p in Eb, the technique constructs a local histogram

H(Jw
mg) of the gradient image Jmg considering a fixed size window W = (w ×

w) centering at pixel p. Then to determine whether the pixel p is part of a

structural edge or not, it computes the non-parametric skewness value Skp from

the histogram H(Jw
mg) as follows:



Skp =
µl−ml

σl

µl = mean of H(Jw
mg)

ml = median of H(Jw
mg)

σl = standard deviation of H(Jw
mg)

(2.5)

In the proposed technique for each edge pixel p in Jmg, if the skewness

Skp is positive, then the pixel remains an edge pixel. In other cases, it converts

into a non-edge pixel. So, the proposed technique generates the refine edge-map
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Figure 2-5: (a)(d) Original images, their (b)(e) initial edge-maps Eb, and (c)(f)
refined edge-maps Er produced by the proposed technique.

Er from the initial edge-map Eb as follows:

Er(p) =

1, if Eb(p) = 1 and Skp > 0

0, Otherwise
(2.6)

Table 2.1: The skewness values obtained from local histograms are associated with
the different pixels of the gradient image.

Test Pixels (p) Skewness (Skp) Status
p1 1.0715 edge
p2 -0.0083 non-edge
p3 0.7069 edge
p4 -0.0467 non-edge
p5 -0.0733 non-edge

Figure 2-5 show the initial edge-map Eb and the corresponding refined

edge-map Er produced by the proposed technique for two different images. For a

deeper insight how the local skewness value of the gradient image helped to find

whether a pixel is an edge pixel or not, five edge pixels p1, p2, p3, p4, and p5 from
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2.3. Proposed technique [111]

Figure 2-6: (a) Original image I and (b) the corresponding gradient image Jmg.
(c)(d)(e)(f)(g) The zoomed version of the red windows of center pixels p1, p2, p3, p4
and p5 are shown in the original image, and (h)(i)(j)(k)(l) their corresponding local
histograms obtained from the gradient image.

different portions of the gradient image Jmg obtained from the Figure 2-6(a) are

chosen. Considering these pixels as center pixels, the corresponding portions in

the original image cover by the local windows ( red boxes ) are shown in Figure

2-6(a). The zoomed version of these windows are depicted in Figures 2-6(c), 2-

6(d), 2-6(e), 2-6(f), and 2-6(g). From these figures, one can see that pixels p1

and p3 originally belong to the structural-edge regions, whereas pixels p2, p4 and

p5 originally belong to the textural or smoother regions. Figure 2-6(h), Figure

2-6(i), Figure 2-6(j), Figure 2-6(k), and Figure 2-6(l) shows the local histogram

( considering window W ) of the gradient image Jmg associated to the center

pixel p1, p2, p3, p4 and p5 respectively. From these figures, it is evident that the

gradient distribution of the local histograms corresponding to the pixels p1 and

p3 which are on the structural-edge regions are positively skewed ( i.e., their local
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histograms from Jmg contain few locally higher gradient pixels those are part of the

significant edges ). Whereas, the distribution of the local histograms corresponding

to the pixels p2, p4 and p5 which belong to the textural or smoother regions are

not positively skewed ( i.e., their local histograms in Jmg contain more locally

higher gradient pixels or similar gradient pixels those are part of some textural

or smoother regions ). Table 2.1 reports the skewness values computed for these

five local histograms. Form the table one can see that the pixels having positive

skewness values are on the structural-edges, and pixels of negative skewness are on

the textural/smoother regions. Note that for the presence of high gradient noises,

some pixels in the textural region may possess positive skewness values. In such

cases, our method may wrongly identify these pixels as structural-edge pixels. To

mitigate this, in the proposed work the edge-map for the next iteration is updated

based on the filtered image generated in the current iteration.

2.3.4 Median morpho-filtering

To produce the final filtered image, we propose a novel semantic-aware structure

preserving filtering technique by exploiting the generated edge-map Er. Let I be

the original image will be filtered and Er be the corresponding edge-map generated

by the proposed technique. By exploiting the edge-map Er, our technique follows

different approaches to determine the dynamic window of the median filter for

filtering the edge pixels and non-edge ones. For filtering the pixels belonging to

textural regions ( i.e., non-edge pixels ), our technique determines the dynamic

size square window by looking into the surrounding edge pixels present in Er.

For each non-edge pixel, the algorithm starts with a small square window Lw

and then increases its size uniformly until a sufficiently large size square window

is obtained or an edge pixel is found. Thus, for filtering non-edge pixels our

algorithm determine dynamic size square windows by looking into the edge pixel

on the edge-map. The blue boxes in Figure 2-7 depict the windows obtained by
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the proposed algorithm for some non-edge pixels. From this figure one can see that

the larger size windows are formed for filtering the pixels of textural areas which

are far from the structural-edges and smaller size windows are formed for filtering

the pixels near to the structural-edges. Thus, the size of the windows defined by

the proposed algorithm for filtering non-edge pixels is adaptive in nature. On the

other hand, conversely, for filtering the pixels that are part of structural-edges (

i.e., edge pixels ), our technique determines the shape of the window of the median

filter dynamically by identifying the appropriate object in which the edge pixel

belongs. Note that edge pixels always belong to either one of the two objects that

are responsible for forming the edge. By computing the intensity value of the edge

pixel within a fixed-size window, our algorithm tried to find out the appropriate

object to which the considered edge pixel belongs and then reshape the window for

filtering. The red curves in Figure 2-7 formed the dynamic windows by considering

the appropriate edge pixels for filtering some structural-edge pixels. The window

sizes defined by the developed algorithm for filtering edge pixels is also adaptive

in nature.

In greater detail, let p be an edge pixel and its intensity value in the original

image I is Ip. Our algorithm first defines a fixed-size square window Ws by using

p as a center pixel. Considering the window Ws, let Iws and Ews
r be the sub-image

obtained from the input image I and the edge-map image Er, respectively. Let I
e
ws

represent the intensity values of the edge pixels in Iws . The middle intensity value

Rmid of the edge pixels within Ws will be Rmid = (max(Iews
) +min(Iews

))/2. The

pixel intensity Ip is larger ( or smaller ) than Rmid implying that the edge pixel p

belongs in the higher( or lower ) intensity object. Thus, for filtering the pixel p,

if Ip is larger than Rmid then the pixels in Iws having higher intensity values than

Rmid are considered to define the window W u
s of the median filter. Otherwise, the

pixels in Iws having lower intensity values than Rmid are considered to define the

window W l
s of the median filter. In the proposed technique for filtering edge pixels

the dynamic size window W a
s of the median filter within Ws is defined as follows:
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Rmid = (max(Iews
) +min(Iews

))/2

W l
s = pixels in Ws for which (Iws <= Rmid)

W u
s = pixels in Ws for which (Iws > Rmid)

if (Ip <= Rmid), then W a
s = W l

s

if (Ip > Rmid), then W a
s = W u

s

(2.7)

Figure 2-7: Adaptive windows for the median filter are designed using the gen-
erated edge-map ( Er ).

From the above equations, one can see that the dynamic window W u
s is

formed when the center pixel’s ( Ip ) intensity value is higher than Rmid, oth-

erwise, it is formed the dynamic window W l
s for filtering the edge pixel p. The

proposed algorithm splits the fixed size window Ws to form an edge adaptive dy-

namic shape window along the approximate edge alignment. The red curves in

Figure 2-7 connected with appropriate edge pixels show the dynamic windows de-

fined by the proposed algorithm for filtering edge pixels. From this figure, one can
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Figure 2-8: (a)(f) Original images and the generated edge-maps after (b)(g)
iteration 1, (c)(h) iteration 2, (d)(i) iteration 3. (e)(j) Filtered images produced
by the proposed technique after 3rd iteration.

Figure 2-9: (a) Original image and some magnified portions of it. Filtered images
obtained by the proposed technique after (b) iteration 1, (c) iteration 3, and (d)
iteration 5.
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Algorithm 1 Proposed semantic-aware structure preserving filtering technique

1: Input: Image I
2: Output: Filtered Image If
3: Obtain grayscale image Igray from the input image I
4: Generate pre-processed image- J = (δSE(εSE(Igray) + εSE(δSE(Igray))/2
5: Generate gradient image Jmg = δSE(J)− εSE(J)
6: for iteration = 1 to nitr

7: for all pixel p ∈ Jmg

8: if (Jmg(p) >= e(µ+σ))
9: Eb(p) = 1
10: else
11: Eb(p) = 0
12: end if
13: end for
14: for all pixels p ∈ Eb

15: if (Eb(p) = 1 & Skp > 0.0)
16: Er(p) = 1
17: else-if (Eb(p) = 1 & Skp <= 0.0)
18: Er(p) = 0
19: end if
20: end for
21: for image band c = 1 to C
22: for all pixels p ∈ Ic
23: if (Er(p) = 1 & Ic(p) <= Rmid)
24: Define window W a

s = W l
s using (2.7)

25: else-if (Eb(p) = 1 & Ic(p) > Rmid)
26: Define window W a

s = W u
s using (2.7)

27: else-if (Eb(p) = 0)
28: Define window W a

s by starting from Lw

29: to a maximal size square window that does
30: not contain any edge content.
31: end if
32: Replace Ic(p) by the median value from Ic
33: within the window W a

s .
34: end for
35: If (c) = (δSE(εSE(Ic) + εSE(δSE(Ic))/2
36: end for
37: I = If
38: end for

see that windows at the edge are formed according to the edge linearity. Since

there is a possibility that the window division for edge pixels may not always be

as accurate as the actual edge alignment. In such cases, a small amount of edge

distortion may occur after applying the proposed adaptive median filter. In order

to refine these distortions, the morphological operation defined in equation (2.1)
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with a small static window is applied. The adaptive median filtering followed by

morphological filtering alternatively suppresses/refines the artifacts/distortions of

each other. That is, the edge dilation of median filtering regains its sharpness

by the morphological counterpart and the impulse edge shape distortion of mor-

phological filtering is smoothed by median filtering. In this work, we refer to this

technique as adaptive median morpho-filtering.

All the steps of the proposed technique need to be repeated multiple times

to generate the desired filtered image. Let If be the filtered image obtained from

the input image I. Then the output image If is considered as the input image (

I = If ) for the next iteration. Figure 2-8 shows the edge-maps produced by the

proposed technique at different iterations and the filtered image obtained after 3rd

iteration. Figure 2-9 shows the filter images produced by the proposed technique at

different iterations. From these figures, it is evident that the developed technique

successfully preserves the structure of the objects. The developed technique is

outlined in Algorithm 1.

2.4 Experimental results and analysis

To evaluate the effectiveness of the proposed filtering technique, it is compared

with six widely recognized structure-preserving smoothing techniques consid-

ered as state-of-the-art, such as bilateral texture filtering( BTF ) [32], Relativ-

ity of Gaussian( RoG ) [22], scale-aware texture filtering( SATF ) [69], struc-

ture adaptive total variation( SATV ) [125], fast adaptive bilateral filtering(

FABF ) [55], and real-time iterative least square( RILS ) [91]. To achieve an

equitable comparison, the parameters of all these state-of-the-art methods are

meticulously chosen. Whenever possible, the parameter values are adopted from

the respective papers that reported the best results. Otherwise, we manually

adjust the parameter values to achieve the best possible results using a trial-
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and-error approach. The images analyzed in this study are accessible publicly

at http://www.cse.cuhk.edu.hk/~leojia/projects/texturesep/index.html

and http://cg.postech.ac.kr/publications. Detailed comparisons are out-

lined in the subsequent subsections.

2.4.1 Qualitative comparison

Qualitative comparisons between the developed and the state-of-the-art methods

are performed on the basis of how much they are effective to differentiate texture

and structure by smoothing out fine details of textures while preserving the signif-

icant structures. Figure 2-10 shows the filtering results obtained by the developed

as well as the six state-of-the-art methods for the part of the Roman marine life

mosaic image. By looking into the zoomed portions of the filter images produced

by the different methods, it is evident that our method is outperforming the ex-

isting methods in both terms: i) texture smoothing and ii) structure preserving.

From the figure, it is observed that BTF [32], SATF [69], FABF [55] are capable

of preserving the significant structures but producing poor smoothing results for

the varying scale textures. Whereas, the RoG [22] filtering technique is good in

texture smoothing but fails to preserve the smaller structures, and the RILS [91]

produces blur structural objects. On the contrary, our developed method is equally

effective in smoothing varying scales texture as well as preserving the significant

structures of different sizes. Unlike the other methods, instead of blurring, the

proposed method sharpens the filtered image by preserving the structural edges.

Moreover, it is capable to preserve the small structural details like the iris and

eyelids of the fishes more prominently than the others. In the experiment per-

formed on a large number of images containing different types of textural patterns

the proposed technique always produced satisfactory results.
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2.4. Experimental results and analysis

Figure 2-10: Comparative results for part of the Roman marine life mosaic
image in Pompeii (a) Original image and some zoomed portions of it. Filtered
images generated by applying (b) BTF, k = 7, nitr = 5 [32], (c) SATF ss =
4, sr = 0.05, st = 0.1, nitr = 7, div = 30 [69], (d) RoG, λ = 0.01, σ1 = 2, σ2 =
4, K = 4, dec = 2.0 [22], (e) SATV, λ = 1.25, nitr = 19 [125], (f) FABF ρsmooth =
5, ρsharp = 5 [55], (g) RILS, λ = 0.35, γ = 50/255, nitr = 25 [91], and (h) Proposed,
W = 31× 31, nitr = 4
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Figure 2-11: Comparative results for part of a roman still life mosaic image:
(a) Original image and the filtered images produced by applying (b) BTF, k =
5, nitr = 3 [32], (c) SATF ss = 3, sr = 0.1, st = 0.1, nitr = 7, div = 30 [69], (d)
RoG, λ = 0.01, σ1 = 1, σ2 = 2, K = 2, dec = 2.0 [22], (e) SATV, λ = 2.5 [125], (f)
FABF ρsmooth = 2, ρsharp = 4 [55], (g) RILS, λ = 0.5, γ = 25/255, nitr = 15 [91],
and (h) Proposed, W = 17× 17, nitr = 3

The filtering results obtained from a few of such images are shown in

Figures 2-11, 2-12, and 2-13. From these figures, one can see that for the input

images of smaller textural patterns e.g. part of the Roman still life mosaic image

in Figure 2-11(a) as well as the images of larger texels e.g. the brick wall graffiti

image in Figure 2-12(a), the proposed method always provides better or as good

as the best result produced by the existing state-of-the-art methods. Looking into

the filtering results in Figure 2-11 and Figure 2-12, one can see that our method

outperforms most of the existing techniques. Figure 2-13 displays the filtering

results of the developed technique on a few more popular images containing rich

textural variation.
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Figure 2-12: Comparative results for a brick wall graffiti image: (a) Original
image and the filtered images produced by applying (b) BTF, k = 9, nitr = 7
[32], (c) SATF ss = 7, sr = 0.05, st = 0.1, nitr = 7, div = 30 [69], (d) RoG,
λ = 0.01, σ1 = 2, σ2 = 4, K = 4, dec = 2.0 [22], (e) SATV, λ = 0.75 [125], (f)
FABF ρsmooth = 5, ρsharp = 5 [55], (g) RILS, λ = 0.75, γ = 50/255, nitr = 25 [91],
and (h) Proposed, W = 7× 7, nitr = 7

Figure 2-13: (a)(b)(c)(d) Original images, and (e)(f)(g)(h) the filtered images
obtained by the proposed technique.
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2.4.2 Quantitative comparison

From recent studies, it was found that the classical non-subjective Image Quality

Assessment ( IQA ) metrics like Peak Signal to Noise Ratio ( PSNR ), Signal to

Noise Ratio ( SNR ) are not good enough for assessing the quality of the filtered

images, particularly when they are generated by structure-preserving or texture

filtering techniques [140]. The subjective reference IQA metrics such as Structural

Similarity Index ( SSIM ) [136], Multi-scale SSIM ( MSSIM ), Mutual Informa-

tion ( MI ) [131] and the subjective no-reference metrics like Perception based

Image Quality Evaluator ( PIQE ) [132] and Naturalness Image Quality Evalu-

ator ( NIQE ) are more closer to human perception. For additional information

on these IQA metrics reader may refer to [131, 132, 136, 140]. To evaluate the

effectiveness of the developed technique with respect to both texture smoothing

and structure preservation, a quantitative comparison is performed with the help

of three subjective references IQA metrics SSIM, MSSIM, MI, and a subjective

no-reference metric PIQE, where SSIM and MSSIM have a range of [0, 1], while

MI ranges from [0, log(m × n)], where m × n denotes the image size, and PIQE

ranges from [0, 100]. Higher values for SSIM, MSSIM, and MI indicate better

performance, whereas a lower value for PIQE signifies better quality. Table 2.2 re-

ports the values provided by those IQA metrics for different filtered images. This

table demonstrates that for the natural texture images, the developed technique

always provides superior results contrast to all six state-of-the-art methods con-

sidered for comparison. For the Lena image with artificial texture and noise, our

method yields competitive results to the best literature method. Thus, by ana-

lyzing both the quantitative and qualitative results leads us to conclude that the

proposed technique surpasses existing state-of-the-art methods in terms of both

texture smoothing and structure preservation.
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Table 2.2: The values of the IQA metrics SSIM, MSSIM, MI and PIQE obtained
for the filter images generated by the different techniques. The bold font indicates
the best values of these IQA metrics.

Images Metrics BTF [32] SATF [69] RoG [22] SATV [125] FABF [55] RILS [91] Proposed [111]

SSIM 0.43 0.41 0.42 0.42 0.44 0.42 0.48
Marine life MSSIM 0.58 0.55 0.50 0.51 0.47 0.58 0.63
PIQE=20.18 MI 1.74 1.72 1.65 1.69 1.67 1.73 1.80

PIQE 89.10 89.56 88.64 82.90 90.03 89.34 79.37
SSIM 0.56 0.53 0.56 0.55 0.50 0.57 0.59

Still life MSSIM 0.76 0.69 0.70 0.70 0.61 0.74 0.77
PIQE=34.63 MI 2.30 2.27 2.30 2.28 2.26 2.31 2.35

PIQE 86.86 88.85 86.64 75.28 85.30 86.82 75.10
SSIM 0.75 0.72 0.78 0.72 0.74 0.71 0.79

Graffiti MSSIM 0.68 0.57 0.71 0.56 0.58 0.62 0.74
PIQE=27.43 MI 2.03 1.92 2.11 1.90 1.88 1.89 2.27

PIQE 86.74 92.19 87.70 87.23 87.39 83.05 78.88

2.4.3 Parameters setting and analysis

To incorporate information from neighboring pixels, the proposed technique con-

siders a few windows. The window W used to form the local histogram of the

gradient image for computing the local skewness is one such parameter of the

proposed technique. The optimum size of this window is dependent on the scale

and size of the texels ( single textural pattern ) present in the input image. In

the experiment, the size of W is set manually by looking at the input image. The

square windows Lw and Ws of the proposed technique are the spatial parameters

supplied as input to the median filter for filtering textural and structural-edge pix-

els, respectively. Since our technique increases the initial size of Lw in an adaptive

manner, the size of the square window Lw should be small ( can be taken from

3 × 3 to 11 × 11 depending on the size of the small structure to be preserved )

and is not a critical parameter to set. In the experiment, the initial size of Lw is

set to 3 × 3 for all the considered images. As for filtering structural-edge pixels,

the window Ws is divided into two parts along with the edge alignment. The size

of Ws should cover sufficient pixels to form two groups. If we fix the size of Ws
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very large, then there is a possibility of overlapping the textural and structural

edges. Experimentally we found that the size of Ws between 5 × 5 to 11 × 11

provides satisfactory results for a wide variety of images. Keep in mind that the

size of the square window Ws is not a critical parameter to set as our technique

dynamically reshapes it before filtering. Taking its size smaller preserves more but

smoothing needs more iterations. In the experiment the size of Ws is set to 7× 7

for all the considered images. For morphological filtering, the proposed technique

uses a small SE of size 3 × 3. Table 2.3 illustrated the list of parameters of the

developed technique and their suggested values. From this table, one can see that

the proposed technique has only a critical parameter W . Figure 2-14 shows filter

images and their corresponding values of different IQA metrics of the developed

technique for different window sizes W .

Table 2.3: List of parameters of the proposed technique and their suggested values.

Parameters Used for
Suggested
range

Taken in
experi-
ment

W
Local gradients skewness

calculation
5×5 to 41×41 set manually

Lw Filtering textural pixels 3×3 to 11×11 3× 3

Ws Filtering edge pixels 5×5 to 11×11 7× 7

SE Morphological operations 3× 3 or 5× 5 3× 3

nitr No of iterations 1 to 10 set manually
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Figure 2-14: (a) Original image of a mosaic floor ( PIQE=38.97 ) and some
zoomed portions of it. Filtered images obtained by the proposed technique after
iteration 3 for (b)W = 7× 7 ( SSIM=0.75, MSSIM=0.76, MI=2.27, PIQE=79.92
), (c)W = 15 × 15 ( SSIM=0.75, MSSIM=0.77, MI=2.28, PIQE=78.34 ), and
(d)W = 23× 23 ( SSIM=0.76, MSSIM=0.77, MI=2.28, PIQE=78.50 ).

2.4.4 Applications

Structure-preserving filtering techniques find widespread applications in the realm

of image processing and analysis. They prove valuable as both pre-processing

and post-processing tools for tasks such as image denoising, enhancement, tone

mapping, abstraction, classification, segmentation, and more.

Below are brief descriptions of some specific applications where the pro-

posed filtering technique demonstrates its efficacy.

2.4.4.1 Image denoising

Image denoising involves the removal of unwanted or random variations in pixel

values, known as noise, from digital images. Noise often accompanies image ac-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2-15: (a)(d)(g) Original images, (b)(e)(h) images with Gaussian noise
(σ = 0.03) and their corresponding (c)(f)(i) denoised images obtained by applying
proposed filtering technique.

quisition, transmission, or processing, leading to a degradation in image quality.

The objective of denoising is to redevelop the original, clean image by reducing

or removing the impact of noise. In Figure 4-9, the presented results display both

the noisy and the corresponding denoised images achieved through the proposed

filtering technique. The filtered image clearly demonstrates its ability to preserve
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structures effectively while successfully eliminating noise.

2.4.4.2 Detail enhancement

(a) (b)

(c) (d)

(e) (f)

Figure 2-16: (a)(c)(e) Original images and their corresponding (b)(d)(f) en-
hanced images obtained by the proposed technique.
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Image enhancement encompasses the modification of an image to enhance its vi-

sual quality, rendering it more suitable for human perception or specific computer

vision tasks. These enhancement techniques aim to accentuate particular features,

amplify contrast, reduce noise, and overall elevate the image’s quality. In Fig. 4-9,

the presented images showcase both the original images and their corresponding

enhanced versions achieved through the proposed filtering method. The enhance-

ment process begins by decomposing the input image into two layers - one being

a smoothed image and the other capturing textural details. The final enhanced

image is produced by appending these textural details to the original image. The

enhanced images prominently highlight the textural details, showcasing the impact

of the developed filtering technique.

2.4.4.3 Tone mapping

Tone mapping is a technique employed in computer graphics and image process-

ing to transform high-dynamic-range ( HDR ) images into a format suitable for

display on devices with lower dynamic ranges ( LDR ), such as computer moni-

tors, TVs, or printed media. HDR images capture a broader range of luminance

values compared to standard images, and tone mapping assists in rendering these

images on regular displays while retaining as much visual information as possible.

In Figure 4-10(a)(c), two LDR image ( RGB ) tone-mapped from two HDR im-

ages using Farbman’s technique [47] is presented. Figure 4-10(b)(d) illustrates the

corresponding tone-mapped RGB version generated with the proposed filtering

technique. Notably, the proposed filtering technique was seamlessly integrated in

place of bilateral filtering ( BF ) within Durand’s method [49] with γ = 0.5. This

replacement demonstrates the impact of the developed technique in the context

of tone mapping.
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(a) (b) (c) (d)

Figure 2-17: (a)(c) Tone mapped images generated by Farbman’s method [47]
and (b)(d) tone mapped images generated by Durand’s method [49] integrating
proposed filtering technique.

2.4.4.4 Edge detection

Edge detection is a fundamental step in image processing, impacting applications

such as object recognition, segmentation, and feature extraction. Traditional edge

detection methods like the Sobel, Prewitt, and Laplacian operators often face chal-

lenges in accurately detecting edges in noisy or complex images. The Canny Edge

Detector is one of the popular techniques that use sobel operator with Gaussian

smoothing. Early edge detection methods like Sobel and Prewitt operators relied

on calculating directional ( horizontal or vertical ) intensity gradients using sim-

ple 3x3 convolution kernels. These methods were computationally efficient and

easy to implement but suffered from noise sensitivity, especially in high-frequency

areas. Laplacian and Laplacian of Gaussian (LoG) operators improved edge local-

ization by highlighting regions of rapid intensity change; however, they were also

noise-prone and often required additional smoothing to avoid spurious edges. The

Canny Edge Detector, with its multi-step process (including Gaussian smoothing,

gradient calculation, and edge tracking), set a new standard by improving edge

continuity and reducing noise, though at a higher computational cost.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2-18: (a)(g) Original images and (b)(h) Edge detected from the original
images, (c)(i) Edge detected after 5×5 Gaussian smoothing, (d)(j) Edge detected
after 9× 9 Gaussian smoothing, (e)(k) Edge detected after smoothing by the pro-
posed technique using Canny operator, and (f)(l) Edge detected by the proposed
technique with proposed morphological gradient-based approach.

In this work, we propose a morphological gradient-based approach to ad-

dress edge detection challenges. The morphological gradient offers advantages over

traditional directional gradients, as it detects intensity changes in all directions.

However, applying the morphological gradient directly for edge detection can re-

sult in sensitivity to noise and high frequencies, similar to the existing methods.

To mitigate this, our approach explores both the local and global distribution of

the morphological gradient, which reduces the noise and high frequency sensitivity

while effectively identifying semantic edges. In the Figure 2-18 presents a compar-

ative analysis: the edge detection results from the Canny detector applied to two

original images, followed by results after Gaussian smoothing with masks of sizes
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5× 5 and 9× 9, respectively. We then show the edges detected by the canny edge

detector from the filtered images of the proposed technique, along with the results

from our morphological gradient-based approach. These comparisons highlight

the effectiveness of our technique in precisely detecting semantic edges.

2.4.5 Computational performance analysis

Table 2.4: The execution times ( in seconds ) of the developed method in contrast
to the state-of-the-art methods.

Images BTF [32] SATF [69] RoG [22] SATV [125] FABF [55] RILS [91] Proposed

Marine life ( 675 × 900 ) 56.04 77.95 9.96 5.57 7.47 3.21 56.67
Still life ( 600 × 450 ) 11.05 53.46 5.49 3.94 5.05 2.98 19.01
Graffiti ( 640 × 960 ) 46.42 101.58 10.08 7.50 7.76 3.51 88.20

The proposed technique has two important steps. First, it generates

the edge-map, then based on the generated edge-map, adaptive median morpho-

filtering produces the filtered image. The edge-map generation followed by median

morpho-filtering is iteratively executed to obtain the final filtered image. The edge-

map generation step has the complexity of O(M ×N ×W ), where M ×N is the

size of the image and W is the window for local gradient skewness calculation.

The adaptive median morpho-filtering has the complexity of O(M × N × W a
s ),

where W a
s is the adaptive window for filtering edge and non-edge pixels. So, the

computational complexity of the developed algorithm is O(M ×N ×W
′
), where

W
′
= max{W,W a

s }.

The proposed technique and the available Matlab codes of the 6 state-of-

the-art techniques used for comparison are executed on a 3.70 GHz Xeon(R)-8

Core(s) processor with 128 GB RAM. Table 2.4 shows the execution time ( in

seconds ) of different techniques. From this table, it is evident that although the

developed technique takes lesser time than the existing SATF technique and com-

parable time with BTF technique, it takes significantly higher time than the RoG,
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SATV, FABF, and ILS techniques. Note that our current Matlab implementation

is worked on a CPU environment and is not heavily optimized. It takes some

time for skewness, adaptive windows, and median computation, which can be sig-

nificantly enhanced through parallel GPU implementation [60] and by employing

more advanced sampling [64] and sorting algorithm ( like counting sort [118] ).

2.5 Conclusions

The main challenge for developing a robust structure preserving filtering tech-

nique lies in the fact of handling varying scale textural patterns. In order to

better handle varying scale textural patterns, in this chapter we have proposed

a semantic-aware structure preserving filtering technique. Our technique defines

a novel method to obtain an edge-aware adaptive window of dynamic shape for

filtering each pixel by excluding its neighbour pixels belonging to different textu-

ral or structural regions. To this end, at first, a novel approach is proposed to

generate the edge-map by analysing the skewness of global and local histograms

of the morphological gradient. Then, using the generated edge-map a semantic-

aware structure preserving median morpho-filtering is designed by combining the

output of median and morphological filters. The key advancements of this work

are: i) proposes a texture structure decomposition technique analysing the global

and local morphological gradient distribution, and ii) proposes a combined me-

dian morpho-filtering for better texture smoothing while preserving the significant

structures. Our filtering method, unlike most existing techniques, can simultane-

ously achieve several conflicting goals, including identifying and removing texture,

preserving structural edges, safeguarding subtle features such as corners, and pre-

venting both over-sharpening and over-blurring artifacts or distortions.

Although the developed technique successfully works on a broad spectrum

of images but our present implementation is not of real-time. Implementation of

the proposed technique in real-time or near real-time and apply this technique to
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different image/video processing applications like semantic segmentation, object

detection and classification etc would be an interesting extension of this work.
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