
Chapter 3

Reduced parameter sensitive

edge-aware semantic image

filtering

3.1 Introduction

Although, the filtering technique presented in the previous chapter provides satis-

factory results for a wide varieties of images, it has a critical parameter that needs

to be define manually for incorporating appropriate semantic information of the

pixels. To establish whether a pixel is an edge or non-edge, the technique used a

fixed size square window to compute the skewness of local histogram of the gra-

dient image for incorporating semantic information. So, the semantic edge-map

generated by this technique is highly sensitive to the size of this window, which is

varied from image to image. Moreover, for varying scale textural images, a fixed

size window will not be capable of capturing appropriate semantic information.

Thus, the technique may failed to provide good results for such images. Further-

more, to produce the appropriate edge-map for the input image, the technique

presented in the previous chapter iterates some steps. The optimal number of

iterations is varied from image to image and need to be fixed manually.

In order to mitigate above problems, in this chapter, we exploits Jensen
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Shannon Divergence ( JSD ) to incorporate semantic information for edge-map

generation. Here we presented two approaches for generating the semantic edge-

map by JSD. In the first approach the JSD is directly used to distinguish structural

edge and non-edge pixels. In the second approach by exploiting JSD we proposed

some novel features for discriminating structural edge and non-edge pixels. The

first approach has one significant parameter that needs to be set manually for

different images. On the other hand, the second approach reduced the parame-

ter selection into four discrete options, which make it significantly less parameter

dependent. Both the approaches generated the semantic edge-map in single iter-

ation.

The key motivation of this approach is taken from the fact that if a line is

passed through the different objects on a perfectly smoothed image as shown in

Figure 3-1(a), the intensity distribution of the pixels on the image associated to the

different portions of the line either follow step distribution or uniform distribution.

The pixels associated to the portions of the line on the boundary regions of two

objects follow ’Z’ or reverse ’Z’ type step distribution as displayed in Figures

3-1(b), and 3-1(d). The portions on a single object follow uniform distribution

as displayed in Figure 3-1(c). In the proposed work this fact is incorporated as

semantic information for determining whether the pixel is located on the structural

edge or not. This chapter makes the following key contributions:

• It exploits JSD to propose novel features for better discriminating structural

and textural edge pixels.

• It proposes a less parameter sensitive edge-aware filtering technique.

The next part of this chapter is organized as follows: Section 3.2 details the

proposed technique. Section 3.3 discusses and analyzes the experimental findings.

Finally, Section 3.4 concludes the chapter.
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Figure 3-1: (a) A perfectly smooth image and a line passes through different
objects on it, (b) (c) (d) intensity distribution of the pixels on the image associated
to the different portions of the line.

3.2 Proposed filtering technique

In this section, a novel structure preserving semantic texture filtering technique

is presented. The technique proposed two different approaches to generate the

semantic edge-map of the input image by exploiting JS divergence. To remove

impulse noises and enhance the discrimination between textural and structural

edges on the input image I, first, our proposed technique applied morphological

opening ( δSE(εSE(I) ) and closing ( εSE(δSE(I) ) operations on I by using a 3×3

structuring element ( SE ) and generate the pre-processed image J as follows:

J = (I + δSE(εSE(I)) + εSE(δSE(I)))/3 (3.1)

Once the preprocessed image J is obtained, next our proposed technique generates

semantic edge-map of the input image.

3.2.1 Generation of semantic edge-map

The success of edge-aware filtering techniques is dependent on the identification of

appropriate structural edge pixels on the image. To this end, some recent research

focuses on the generation of an edge-map that retains only the structural edges

of the input image. Identification of appropriate structural edges of an image is a

difficult task and still a challenging research topic. In this subsection, we propose
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3.2. Proposed filtering technique

two different approaches to generate semantic edge-map of the original image I by

exploiting Jensen Shannon Divergence ( JSD ). In the first approach, JSD metric

is directly used and in the second approach novel discriminating features are ex-

tracted by exploiting JSD to generate the semantic edge-map for the input image.

The particulars of both the approaches are outlined in the following subsections.

3.2.2 Approach I: Generation of semantic edge-map by di-

rect use of JSD metric [110]

In probability theory, the JSD is widely used to measure the dissimilarity between

two probability distributions [86]. The lower the JSD score, the closer the two

distributions are to one another. It is an extension of Kullback-Leibler Divergence

( DKL ) to calculate a symmetrical score between two distributions. Let P and Q

be the probability distribution of a discrete random variable, the Jensen Shannon-

Divergence JSD(P ||Q) between the pair ( P,Q ) is calculated as follows:



JSD(P ||Q) = 1
2
DKL(P ||M) + 1

2
DKL(Q||M)

where,

M = 1
2
(P +Q)

DKL(P ||M) = −
∑

P log M
P
,

DKL(Q||M) = −
∑

Qlog M
Q

(3.2)

Where DKL(P ||M) computes the Kullback-Leibler Divergence between P and M .

In the proposed work, to determine whether a pixel is on a structural edge or not,

first, a fixed size square window is defined by considering it as a center pixel. Then

within the window, several lines in different directions passing through the center

pixel are considered ( as shown in Figure 3-2 ). If spatial distributions of all such

lines ( i.e., the intensity values of the pixels on the line ) are similar to a uniform

distribution, then the center pixel is considered to be a non-edge pixel. On the
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other hand, if the spatial distribution of any of the lines is more similar to a step

distribution then it is considered to be a structural edge pixel. In the proposed

work two discrete distributions viz; a step distribution and a uniform distribution

are used as reference distributions ( as shown in Figure 3-3 ). The JSD scores

computed between the line inside the window and the reference distribution help

us to determine whether the pixel is part of the structural edge or not.

Figure 3-2: Four lines horizontal H, vertical V , diagonal D1 and D2 passing
through the center pixel p within a square window w.

Figure 3-3: Reference (a) step distribution function TL and (b) uniform distri-
bution function UL

In greater detail, let J be the preprocessed input image and Jp stands for

the intensity value of a pixel p in J . Considering p as the center pixel, a fixed-size

square window w is defined. Then inside w four lines viz; horizontal H, vertical

V , and two diagonal D1 and D2 passing through p are taken ( see Figure 3-2 ).

The probability distribution PH , PV , PD1 and PD2 associated to the line H, V ,

D1, and D2, respectively is computed as follow:

PL(q) =
|Jq −min(mean(JL1),mean(JL2))|∑
|Jq −min(mean(JL1),mean(JL2))|

, ∀q ∈ L1 ∪ L2 (3.3)

80



3.2. Proposed filtering technique

Where each line L = H|V |D1|D2 ( i.e., L = H or V or D1 or D2 ) is partitioned

into two line segments L1 and L2 at center pixel p. From equation (3.3) it is seen

that if pixel p is in structural edge, then the probability distribution of at least one

line ( i.e., PH , PV , PD1 or PD2 ) is more similar to a discrete step distribution. On

the other hand, if p is not in structural edge, then the probability distributions of

all four lines are more similar to discrete uniform distributions. In the proposed

work for each PL, (L = H|V |D1|D2) two discrete reference functions as shown in

Figure 3-3 namely uniform function UL and step function TL are defined as follow:

{
UL = 1, ∀ pixels ∈ L (3.4)



if avg(PL1) > avg(PL2)

TL =

1, ∀ pixels ∈ L1

0, ∀ pixels ∈ L2

else

TL =

0, ∀ pixels ∈ L1

1, ∀ pixels ∈ L2

(3.5)

Where avg(PL1) and avg(PL2) are the average values of PL1 and PL2 respectively.

Let for a line L(i.e., L = H|V |D1|D2), QL and RL be the probability density

function of the step function TL and the uniform function UL, respectively. If p

is in structural edge then the spatial distribution of at least one line among four

lines will be more similar to its step probability density function. Thus, in this

work, an edge score Sw
p for the pixel p is computed by taking the minimum JSD

between PL and QL as follows:

Sw
p = min

L=H,V,D1,D2

{JSD(PL, QL)} (3.6)

If p is in structural edge then the edge score Sw
p computed in equation

(3.6) will be smaller than the average JSD between PL and RL i.e., if Sw
p <
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avgL∈w{JSD(PL, RL)} then the pixel p will be in structural edge. Note that one

can generate the edge map that contains only the structural edges of the image by

applying this criterion for every pixel in J . In that case, the width of structural

edges in the edge map will be determined by the considered window size w. To

make the width of structural edges invariant to the window w, we also compute

the edge score Sw5
p considering a 5× 5 window. Then the binary edge map Eb for

the image J is generated as follows:

Eb(p) =


1, if Sw5

p < avgL∈w5
{JSD(PL, RL)}

and Sw
p < avgL∈w{JSD(PL, RL)}

0, otherwise

(3.7)

Figure 3-4: Approach I: Overall framework of the developed technique

Figure 3-4 illustrates the overall framework of our developed filtering tech-

nique by generating the edge-map using approach I and algorithm 2 shows the

precise steps of it.
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3.2. Proposed filtering technique

Algorithm 2 Approach I: Proposed reduced parameter sensitive image filtering
technique

1: Input: Original Image I
2: Output: Filtered Image If
3: Generate pre-processed image J using equation (3.1)
4: For a selected window size w
5: for each pixel p ∈ J
6: for each pre-processed image band Jc ∈ J
7: Compute the binary edge score Ec

b(p) using equation 3.7
8: end for
9: Eb(p) = Maxc(E

c
b(p))

10: end for
11: Apply recursive adaptive median filtering using the edge-map Eb to obtain the

filtered image If as described in Section 2.3.4.

3.2.3 Approach II: Generation of semantic edge-map by

extracting discriminating features using JSD

In Approach I, the semantic edge-map generated by the developed technique is

heavily determined by the window size w which is defined manually. Note that

the optimal size of this window varied from image to image. Moreover, for the

images with varying scale textures, a single window will not be capable of providing

sufficient semantic information. In order to reduce the parameter dependency as

well as to incorporate better semantic information for edge-map generation in the

second approach we proposed to extract some novel features by exploiting JSD to

discriminate structural edge and non-edge pixels. The overall frame work of our

developed filtering technique using Approach II is shown in Figure 3-5.

In this approach, each pixel of the preprocessed image is expressed with

a features set. These features are extracted in such a way so that they incor-

porate semantic information of the pixel. To incorporate appropriate semantic

information associated to a pixel, first, considering it as a center pixel, multiple

square windows of increasing sizes are taken. Then, within each window, four lines

passing through the center pixel in different directions are considered ( as shown

in Figure 3-2 ). If the spatial distributions of the pixels on all the four lines are
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Figure 3-5: Approach II: Overall framework of the developed technique

similar to a uniform distribution, then the center pixel will more probable to be a

non-structural edge pixel ( i.e., either a non-edge pixel or a textural edge pixel ).

On the contrary, if the spatial distribution of at least one of these lines is similar to

a step distribution then the pixel will more probable to be a structural edge pixel.

The JS Divergence between the spatial distributions of the lines passing through

the center pixel and the reference distributions are considered as the features of the

center pixel. Since features of the pixels are computed by incorporating semantic

information of whether they belong to structural edges or not. When the pixels

are projected into the feature space, they will form two groups, one for structural

edge pixels and the other for non-edge pixels. Thus, a semantic edge-map of is

easily obtained by applying a simple clustering technique.

Let the probability density function derived from the uniform function U

and the step function T denotes as RL and QL, respectively. If the center pixel

p is on structural edge then for at least one L, (L ∈ {H|V |D1|D2}) ( as shown in

Figure 3-2 ) the value of JSD(PL, QL) will be low. Otherwise, for all four lines

JSD(PL, RL) will be low. To incorporate semantic edge information of pixel p,

its features SSp
L and USp

L for L ∈ {H|V |D1|D2} are computed as follows:
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3.2. Proposed filtering technique

SSp
L = {JSD(PL, QL)}, L ∈ (H,V,D1, D2) (3.8)

USp
L = {JSD(PL, RL)}, L ∈ (H, V,D1, D2) (3.9)

Moreover, to define gradient feature of the center pixel p, the weighted Gaussian

mean of the line segments L1 and L2 is computed as follows:

Gmean(Li) =
1

S

∑
q∈Li

Jq × e−d2 , i = 1, 2. (3.10)

where, the distance metric d = ||p − q||1 and S =
∑

e−d2 . Then the gradient

feature MDp
L for L ∈ {H|V |D1|D2} is defined as:

MDp
L = |(Gmean(JL1)−Gmean(JL2))|, L ∈ (H, V,D1, D2) (3.11)

Inside window w, considering each of the four lines ( i.e., L = H,L = V, L = D1,

and L = D2 ) equations (3.8), (3.9) and (3.10) computes the feature value SSp
L,

USp
L and MDp

L, respectively. If p is a structural edge pixel then at least one

direction ( i.e., for one line ) the value of SSp
L, USp

L, and MDp
L will be low, high,

and high, respectively. If p is a non-structural edge pixel then all four directions (

i.e., for all the four lines ) value of USp
L will be low. To discriminate the structural

and non-structural edge pixels into the feature space, in this research we proposed

two models by taking different combinations of the features SSp
L, USp

L and MDp
L

as follows:

Model I: This model is proposed for texture smoothing. In this model the feature

set F 1
w for the window w is generated by giving more emphasis on USp

L and MDp
L

than SSp
L by applying non linear stretching on SSp

L using the sigmoid function (
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1
1+e−x ) as follows:

F 1
w(p) =

(USp
L +MDp

L)× (1 + e−(SSp
L)) if (SSp

L <= avgL∈w{USp
L})

0, Otherwise
(3.12)

The four components ( features ) of F 1
w that represent a pixel p of the image are

generated by considering the lines L as H,V,D1, and D2 inside the window w.

Model II : This model is proposed for preserving structural small details. In this

model the feature set F 2
w for the window w is generated by giving more emphasis

on SSp
L than USp

L and MDp
L by applying non linear stretching on (USp

L +MDp
L)

using the sigmoid function ( 1
1+e−x ) as follows:

F 2
w(p) =

SSp
L × (1 + e−(USp

L +MDp
L)) if (SSp

L > avgL∈w{USp
L})

0, Otherwise
(3.13)

The four components ( features ) in F 2
w that represent a pixel p on the image are

generated by considering the lines L as H,V,D1, and D2 inside the window w.

In both the models, the feature set generated from a single window will

not provide enough semantic information. To capture better semantic informa-

tion, in this work multiple windows of increasing sizes are taken, and for each

window, four features are generated by using Eq. (3.11) or Eq. (3.12). Thus,

for a gray scale image considering n number of windows, the developed technique

generates 4×n features and for an image of c bands, it generates 4×n×c features.

Since features of the pixels are computed by incorporating semantic information

of whether they belong to structural edges or not. When the pixels are projected

into R4×n×c dimensional feature space, they will be formed two clusters, one for

structural edge pixels and the other for non-edge pixels. Thus, applying k-means
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clustering with k = 2, can easily produce a semantic-aware binary edge-map for

the input image. Figure 3-6 displays the edge-maps produced by applying the

developed Model I and Model II as well as the popular Sobel operator, Prewitt

operator and Canny algorithm. From these figures one can see that the tradi-

tional edge detection models are completely failed to discriminate structural and

textural edges. Whereas, both the proposed models are showed their robustness

to discriminate structural and textural edges. Furthermore, from this figure one

can see that Model I is better for texture smoothing, whereas Model II is suitable

for preserving small structural details.

3.2.4 Generation of filtered image

Either using Approach I or Approach II once the semantic edge-map is obtained,

the recursive edge-aware adaptive median filter developed in Chapter 2 is applied

to produce the filtered image. Figure 3-7 shows the semantic edge-maps and the

filtered images generated by the approach II of the proposed technique.

3.3 Experimental analysis and results

To validate the proficiency of our developed technique, in this section the filtered

images generated by considering the semantic edge-maps produced by Approach

I and Approach II are analyzed. The particulars of the experimental findings for

each of the Approach are given in the next subsections.

87



Chapter 3. Reduced parameter sensitive edge-aware semantic image
filtering

Figure 3-6: Input images (a)(b)(c)(d)(e)(f) and their correspond-
ing edge-maps generated by Model I (a1)(b1)(c1)(d1)(e1)(f1), Model II
(a2)(b2)(c2)(d2)(e2)(f2), Sobel operator (a3)(b3)(c3)(d3)(e3)(f3), Prewitt
operator (a4)(b4)(c4)(d4)(e4)(f4), and Canny edge detection algorithm
(a5)(b5)(c5)(d5)(e5)(f5).
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Figure 3-7: Original image of Pompeii Marine Life mosaic, corresponding edge-
maps, and filtered images produced by Model I and Model II of the proposed
technique

Algorithm 3 Approach II: Proposed reduced parameter sensitive image filtering
technique

1: Input: Original Image I
2: Output: Filtered Image If
3: Generate pre-processed image J using equation (3.1)
4: Select Wj, j = 1|2|3|4
5: for each pixel p ∈ J
6: for each pre-processed image band Jc ∈ J
7: for each window w ∈ Wj

8: Compute feature set F 1
w(p) for Model I and F 2

w(p) for Model II by
9: using equation (3.12) and equation (3.13), respectively.
10: F 1

c (p) =
⊔

w F 1
w(p) and F 2

w(p) =
⊔

w F 2
w(p)

11: end for
12: F 1(p) =

⊔
c F

1
c (p) and F 2(p) =

⊔
c F

2
c (p)

13: end for
14: end for
15: //

⊔
is vector concatenation operator //

16: Project all the pixels into the feature space either using F 1(p) or F 2(p) or
both F 1(p)

⊔
F 2(p).

17: Generate edge-map Eb by applying 2-means clustering in the feature space.
18: Apply recursive adaptive median filtering using the edge-map Eb to obtain the

filtered image If as illustrated in Section 2.3.4.
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3.3.1 Results: Filtered image obtained from the edge-map

produced by Approach I

Figure 3-8: Comparative results of a mosaic floor image: (a) Original image
and zoomed portions of it. Filtered images with best possible parameters and
its respective SSIM Values obtained by (b) Reg-Cov ( k = 15, ps = 6, σ = 0.2 )
[SSIM = 0.36] [72] (c) BTF ( k = 9, nitr = 7 ) [SSIM = 0.37] [32], (d) SATF (
ss = 3, sr = 0.1, st = 0.1, nitr = 7, div = 30 ) [SSIM = 0.44] [69], (e) SATV (
λ = 1.25 ) [SSIM = 0.32] [125], (f) RILS ( λ = 1.5, γ = 50/255, nitr = 15 ) [SSIM
= 0.25] [91], (g) GISF ( α = 0.75, λ = 1.25, nitr = 10 ) [SSIM = 0.45] [92], and (h)
Proposed ( w = 11× 11, nitr = 5 ) [SSIM = 0.51] techniques.

To validate Approach I of the developed technique, the filtered image generated

from the edge-map produced by it is compared with the filtered images provided

by six structure preserving filtering techniques of state-of-the-art such as Reg-Cov

[72], bilateral texture filtering ( BTF ) [32], scale-aware texture filtering ( SATF
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) [69], structure adaptive total variation ( SATV ) [125], real-time iterative least

square ( RILS ) [91], and generalized image smoothing framework ( GISF ) [92].

The first two (i.e., Reg-Cov [72] and BTF [32]) are textural feature based, next two

(i.e., SATF [69] and SATV [125]) are structural edge based and last two (i.e., RILS

[91] and GISF [92]) are learning based texture filtering techniques. Comparison

with these techniques is carried out qualitatively on the basis of how much they

are effective to differentiate texture and structure by smoothing out fine details of

textures while preserving the significant structures. Structural Similarity ( SSIM

) [136] is calculated for a quantitative comparison.

Figure 3-9: (a)(c)(e)(g)(i) Original images with different types of textures and
structures, (b)(d)(f)(h)(j) Corresponding filtered images generated by the pro-
posed technique.

Figure 3-8 displays the filtering results attained by the developed as well

as the state-of-the-art methods for the floor image. By examining the zoomed-in

sections of the filtered images produced by all these methods, it is evident that

our method surpasses the other compared methods in both respects: i) texture

smoothing and ii) preserving the significant structures. From this figure, it is
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apparent that the first two textural feature based methods i.e., Reg-Cov [72] and

BTF [32] are performing overall smoothing well but from the zoomed part it is

seen that they blurred the edges while preserving the smaller structure. The edge

aware techniques, SATF [69] produce poor smoothing results. Whereas SATV

[125] blurred the edges of the smaller structure. The RILS [91] and GSF [92]

both blurring the smaller structural objects. In contrast, our developed method

is equally effective in texture smoothing of varying scales as well as preserving

the significant structure of different sizes. In contrast to the other considered

methods, instead of blurring, the developed method sharpens the structural edges

of the filtered image . It is capable of preserving the small structural details,

like alphabets and light sources on the floor image more prominently than the

others. The SSIM values are also proclaiming the better preservation of structural

similarity by the developed technique. To further evaluate the effectiveness of

it, we have applied to a wide variety of images across different categories and

sizes of textural patterns and obtained satisfactory results. The filtering results

obtained from a few of such images are shown in Figure 3-9. These results show

the potentiality of our technique for filtering varieties of images.

Parameter analysis: The semantic edge-map generated by Approach I is heavily

determined by the window size w ( i.e., the fixed size square window for consid-

ering lines in different directions within it ) which is defined manually. Note that

the optimal size of this window varied from image to image. Moreover, for the im-

ages with varying scale textures, a single window will not be capable of providing

sufficient semantic information. Thus the success of the technique is significantly

dependent on the parameter w and finding its optimal value is difficult task. In

Approach II we try to reduce the drawbacks of Approach I by extracting discrim-

inating features using JSD.
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3.3.2 Results: Filtered image obtained from the edge-map

produced by Approach II

In this section, we first demonstrate our developed technique’s robustness with

respect to its parameters. Subsequently, we assess the efficiency of the developed

technique through qualitative and quantitative outcomes contrasting with multiple

state-of-the-art methods.

3.3.2.1 Parameters setting

In this approach for edge-map generation each pixel is expressed with a set of

feature and these features are generated by considering multiple windows of in-

creasing size. As the feature values rely on the window size, it is important to con-

sider appropriate windows for generating the features of the pixels. In this work

to consider appropriate windows, a subset {2, 3, 5, 8, 13, 21, 34} from Fibonacci

series is selected. Then by taking four consecutive elements of it, four subsets

W1 = {2, 3, 5, 8},W2 = {3, 5, 8, 13},W3 = {5, 8, 13, 21} and W4 = {8, 13, 21, 34}

are formed. And then looking into the kind of texture present on the input image

one of these four subsets is chosen to define the windows for feature generation.

For example, if the subset W2 is chosen, the windows of sizes ( 2 × W2 + 1 ) i.e

7 × 7, 11 × 11, 17 × 17, and 27 × 27 are used to generate the features of each

pixel. In this research, for the input images of having fine-scale textural details

W1 or W2 and for the image of having large-scale textural details W3 or W4 is

chosen for feature generation. As a result, in edge-map generation step of the

proposed approach only the parameter w, where w = {W1|W2|W3|W4} is needs to

be selected manually. The radius of the windows are taken from The Fibonacci

numbers as because the series grows exponentially with a non-uniform spacing,

but their ratios converges to the golden ratio ( approximately 1.618 ). This work

well in generating semantic feature in variety of scales.
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In the proposed filtering technique except the parameter w of edge-map

generation step, all the other parameters are manually set with fixed values ir-

respective of the input images. Depending on the kind of input image only the

w parameter is required to be set manually among four discrete options. This

represents a significant advantage of the our technique over other state-of-the-

art methods. It provides satisfactory results for varieties of images with minimal

manual fine tune of its parameters. Note that the filtering results of most of the

existing state-of-the-art methods are highly relied on one or multiple parameters

which are required to fine tune manually within a continuous interval.

3.3.2.2 Qualitative Comparison

To evaluate the performance of our technique, it is contrasted with six state-of-

the-art structure-preserving filtering techniques including Reg-Cov [72], BTF [32],

SATF [69], SATV [125], RILS [91], and GISF [92]. Figure 3-10 shows the filtered

images generated by applying various techniques for a floor image. By looking at

the zoomed areas of the image one can observe that contrast to the state-of-the-art

techniques the developed technique performed superior in terms of both, structure

preserving and texture smoothing. The textural feature based techniques Reg-Cov

[72] and BTF [32], and the structural edge-aware techniques SATF [69] and SATV

[125], blurred the edges while smoothing smaller structures.
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Figure 3-10: Comparative results for Mosaic Floor I image: (a) Input image
and some highlighted portions of it. Filtered images produced by applying (b)
Reg-Cov (k = 15, ps = 6, σ = 0.2) [72] (c) BTF, k = 9, nitr = 7 [32], (d) SATF
ss = 3, sr = 0.1, st = 0.1, nitr = 7, div = 30 [69], (e) SATV, λ = 2.5 [125], (f)
RILS ρsmooth = 3, ρsharp = 5 [91], (g) GISF, λ = 50, γ = 20/255, nitr = 15 [92], (h)
Proposed Model I, ( w = W2 ), and (i) Proposed Model II, ( w = W3 ) techniques.
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Figure 3-11: Comparative results for Mosaic Floor II image: (a) Input image.
Filtered images produced by applying (b) Reg-Cov ( k = 15, ps = 6, σ = 0.2 ) [72]
(c) BTF, ( k = 9, nitr = 7 ) [32], (d) SATF ( ss = 3, sr = 0.1, st = 0.1, nitr =
7, div = 30 ) [69], (e) SATV, ( λ = 2.5 ) [125], (f) RILS ( ρsmooth = 3, ρsharp = 5
) [91], (g) GISF, ( λ = 50, γ = 20/255, nitr = 15 ) [92], (h) Proposed Model I, (
w = W2 ), and (i) Proposed Model II, ( w = W3 ) techniques.

Figure 3-12: Comparative results for Mosaic Floor III image: (a) Input image.
Filtered images produced by applying (b) Reg-Cov ( k = 15, ps = 6, σ = 0.2 ) [72]
(c) BTF, ( k = 9, nitr = 7 ) [32], (d) SATF ( ss = 3, sr = 0.1, st = 0.1, nitr =
7, div = 30 ) [69], (e) SATV, ( λ = 2.5 ) [125], (f) RILS ( ρsmooth = 3, ρsharp = 5
) [91], (g) GISF, ( λ = 50, γ = 20/255, nitr = 15 ) [92], (h) Proposed Model I, (
w = W3 ), and (i) Proposed Model II, ( w = W3 ) techniques.
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Figure 3-13: (a)(c)(e)(g)(i) Input images with a wide range of diverse textures
and structures, and (b)(d)(f)(h)(j) Respective filtered images obtained by applying
developed method.

Whereas, Model I and Model II of the proposed approach able to preserve

the important structures of various sizes, as well as better smoothing the textures

present at varying scales. Moreover, in contrast to the state-of-the-art techniques,

both the models of the developed technique produced sharpen filtered images

without distorting the structural edges. Small structural details such as alphabets

and light sources as shown in Figure 3-11 are better preserved by the developed

technique. To establish the robustness of the developed technique, we tested it

with a wide varieties of images containing diverse types of regular and irregular

textural patterns and always found satisfactory results. Figures 3-10, 3-11, 3-12,

and 3-13 show some of the filtered images provided by the developed technique.

By looking at these figures, it can be observed the robustness of our technique for

smoothing varying scale regular and irregular textures, as well as for preserving

significant structural details.
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3.3.2.3 Quantitative Comparison

To demonstrate the robust performance of the developed technique, in this ex-

periment a quantitative comparison between the filtered images produced by the

developed and the state-of-the-art techniques is carried out. Here, for quantitative

comparison three subjective IQA metrics like SSIM [136], MSSIM, MI [131] and a

subjective no-reference metric PIQE [132] are used, where SSIM and MSSIM both

range from [0, 1], and MI ranges from [0, log(m×n)], where m×n represents the

image size, PIQE ranges from [0, 100]. For all the three SSIM, MSSIM, and MI,

higher values indicate better performance, whereas for PIQE, a lower value indi-

cates better quality. The scores of these IQA measures are reported in Table 3.1.

From the table it can be observed that both the models of the developed technique

yielded superior results contrast to the existing state-of-the art techniques. This

once again confirms the robustness of the developed technique..

3.3.2.4 Applications

Structure-preserving filtering techniques find diverse numerous applications in im-

age processing and analysis. These techniques can be employed as either pre-

processing or post-processing steps for various tasks, including image denoising,

image enhancement, tone mapping, image abstraction, image classification, im-

age segmentation, and more. The following subsections describe some of the key

applications of the proposed filtering technique.

Image denoising: In Figure 3-14 it is showing the noisy and corresponding

denoised images produced the proposed filtering technique. The filtered images

are showing that it preserving structures well while removing noises.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3-14: (a)(d)(g) Original images, (b)(e)(h) images with Gaussian noise (
σ = 0.03 ) and their corresponding (c)(f)(i) denoised images obtained by applying
proposed filtering technique.

Detail enhancement: Here the images in Figure 3-15 are showing the original

images and their corresponding enhanced images using proposed filtering. The

filtering technique first decompose the input image into two part- one is smoothed

image and other is textural details. By adding the textural details to the origi-
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nal image we can get the final enhanced image. The enhanced images are more

prominently showing the textural details.

(a) (b)

(c) (d)

(e) (f)

Figure 3-15: (a)(c)(e) Original images and their corresponding (b)(d)(f) en-
hanced images obtained by the proposed technique.

Tone mapping: Figure 3-16(a)(c) showing LDR image ( RGB ) tone mapped
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from two HDR image by Farbman techniques [47] and Figure. 3-16(b)(d) shows

the corresponding tone mapped RGB version produced by using the proposed

filtering technique. We have simply replaced the proposed filtering technique in

place of bilateral filtering ( BF ) in Durand’s method [49] with γ = 0.5.

(a) (b) (c) (d)

Figure 3-16: (a)(c) RGB tone mapped images generated by Farbman techniques
[47] and (b)(d) RGB tone mapped images generated by integrating proposed fil-
tering technique in [49].

All these above three results on different applications showing that the

proposed technique providing satisfactory results. Also by comparing the results

for these applications with the previous technique proposed in Chapter 2, it can

be seen that for image denoising and image enhancement technique proposed tech-

nique in Chapter 2 perform better whereas in tone mapping application proposed

technique in this chapter is doing better.

3.3.2.5 Computational analysis

The computational complexity of the developed technique is determined by the

semantic-aware edge-map generation and the recursive median filter used to pro-

duce the filtered image. For an image of size M ×N , if S1 is the size of the largest

window used to extract the features of the pixels, the computational complexity of

the generation of semantic-aware edge-map is θ(M ×N × S1). The recursive me-

dian filter used by the proposed technique define adaptive window Lw and wa
s for

filtering non-edge and edge pixels, respectively. The complexity of the recursive
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median filter is θ(M×N×S2), where S2 = max{Lw, w
a
s}. Thus the computational

complexity of our technique is θ(M ×N × S), where S = max{S1, S2}. table 3.2

is showing the comparative execution time taken by the developed and the state

of the art techniques.

Table 3.2: The run time ( in seconds ) of the state-of-the-art and the technique
we developed.

Images RegRov [72] BTF [32] SATF [69] SATV [125] RILS [91] GISF [92] Proposed

Mosaic Floor I ( 675 × 900 ) 510.23 177.95 126.34 11.72 6.204 13.49 306.67

Mosaic Floor II ( 600 × 800 ) 415.74 153.46 113.65 11.440 6.01 49.99 216.93

Mosaic Floor III ( 450 × 600 ) 232.49 101.58 54.38 7.26 3.46 22.44 108.456

3.3.2.6 Selection of optimal model ( Model I or Model II )

The proposed techniques have two main different approaches: the first one is

the wise manual parameter ( windoiw size ) selection, and that parameter needs

to be selected depending on the texture sizes in the input image. That is for

smaller textural pattern removal, window size may be chosen as smaller as 7 × 7

to 11 × 11, and for the larger size textural images, it may be taken as 15 × 15

to 21 × 21. The second approach is mainly focused on the reduction of this

manual parameter selection. This approach has two different models ( Model

I, Model II ) with two different types of feature generation methods. Model I

and II have the same parameters set, that is W1,W2,W3,W4. These parameters

W1 = {2, 3, 5, 8},W2 = {3, 5, 8, 13},W3 = {5, 8, 13, 21} and W4 = {8, 13, 21, 34}

basically represent a range of window sizes, where selecting W1 or W2 suitable

for the images ( like in Figure 3-11 ) having smaller objects to be preserved and

selecting W3 or W4 is preferable for the images ( like in Figure 3-7 ) having smaller

insignificant objects to be removed. The basic differences between the two models

are that Model I is preferable for maximal smoothing, whereas Model II is suitable

for preserving most of the objects while smoothing less compared to Model I.
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3.4 Conclusions

Structural edge-aware features are more robust than the textural features for fil-

tering images of having varying scale irregular textures. However, the effectiveness

of edge-aware filtering techniques dependent on their ability to identify the right

structural edges.

In this chapter, we exploits JSD to incorporate semantic information for

edge-map generation. We presented two approaches for generating the semantic

edge-map. In Approach I, JSD is directly used to distinguish structural edge and

non-edge pixels. In Approach II, by exploiting JSD we extracted some novel dis-

criminative features for representing structural edge and non-edge pixels. Then

by projecting the pixels into the feature space our approach applied k-means clus-

tering to generate a semantic-aware edge-map. Once the edge-map is obtained

either by applying Approach I or Approach II, an edge-aware adaptive recursive

median filter is used to generate the filtered image. The first approach has one

significant parameter that needs to be set manually for different images. On the

other hand, the second approach reduced the parameter selection into four discrete

options, which make it significantly less parameter dependent. However, both the

approaches generated the semantic edge-map in single iteration.

The performance of the our developed technique is demonstrated by con-

trasting it with several state-of-the-art methods using a diverse set of images

consisting of varying scale regular and irregular textures. The proposed technique

can achieve several competing objectives that cannot be accomplished by using

a single existing method, such as detecting and smoothing textures, protecting

corners and other areas that are easy to overlook, avoiding over-blurring and/or

over-sharpening artifacts, and maintaining structural edges.
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