
Chapter 4

A semantic edge-aware parameter

efficient image filtering technique

4.1 Introduction

To incorporate semantic information for edge-map generation, the technique pre-

sented in Chapter 2 and the Approach I of Chapter 3, both considered a fixed size

window which is manually defined by trial and error method. Although for the

images of having regular texture it is possible to define a suitable window but it

is impossible for varying scale irregular textures. Thus, for the images of having

varying scale irregular textures, both the techniques may have failed to incorpo-

rate sufficient semantic information to generate the semantic edge-map. In order

to mitigate the drawbacks of both the techniques in this chapter, we proposed an-

other parameter efficient filtering technique by exploiting the properties of these

two techniques.

To incorporate semantic information for better discriminating the struc-

tural and textural edges, in this chapter, we introduce a novel approach. Our

method generates the edge-map of the input image by exploiting semantic in-

formation in two phases. In the first phase, a semantic gradient image (SGI) is

generated by analyzing the local distribution of input image and morphological
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4.2. Proposed filtering technique [112]

gradient image. In the second phase, with the help of the generated SGI, the size

of the windows are defined to exploit JS Divergence for generating the semantic

edge-map. Once the edge-map is obtained, the edge-aware adaptive recursive me-

dian filter proposed in Chapter 2 is utilized to produce the filter image. Although

the proposed filtering technique required to define multiple windows, the size and

shape of most of these windows are either automatically defined or kept fixed,

irrespective of the consider input images. There exists only a pair of windows

that needed to be fixed manually by choosing one of the four options. Our tech-

nique provides satisfactory results for a diverse set of input images with minimal

fine-tuning of its parameters, which is an important benefit of the proposed tech-

nique in contrast to the current state-of-the-art techniques. This chapter’s key

contributions are:

• Proposes a novel technique to incorporate semantic information for edge-

map generation.

• Proposes an parameter efficient edge-aware texture filtering technique.

The rest of the Chapter is structured as follows: The proposed technique

is described in Section 4.2. Section 4.3 analyses and analyzes the experimental

findings. In Section 4.4, a conclusion is determined.

4.2 Proposed filtering technique [112]

To reduce the effects from the impulse noises and textural oscillations we used the

equation 3.2 defined in Chapter 3 for generating the preprocessed image J from

the input image I. Once the preprocessed image J is generated, our developed

technique follows two steps to produce the filtered image. In the first step, it

proposes a novel method that generates a semantic-aware edge-map of the input

image. Then, in the second step, the adaptive recursive median filter proposed in

Chapter 2 is used to produce the filter image.
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4.2.1 Generation of semantic-aware edge-map

Figure 4-1: A fixed-size square window and the four lines H, V,D1, and D2

passing through the center pixel p

We proposed a novel method that generates semantic-aware edge-map

of the input image. Our method considers semantic information in two phases.

In the first phase, for each pixel p, it computes mean gradient and average lo-

cal skewness to generate the semantic gradient image (SGI). To this end, a set

W = {w1, w2, . . . , wn} containing increasing size windows are considered. For each

window wi ∈ W , four lines H,V,D1, and D2 passing through the center pixel p in

four directions (as shown in Figure 4-1) are taken. To compute the mean gradient

MDp
W of the pixel p in the pre-processed image J , each line L ∈ {H,V,D1, D2}

inside the windows is partitioned into two equal halves L1 and L2 at p and then

calculate their average intensity difference as follows:

MDp
W =

1

|L| × |W |
×
∑
W

∑
L

|mean(JL1)−mean(JL2)| (4.1)

where mean(JL1) and mean(JL2) represents the average intensity of the pixels

on the line segments L1 and L2, respectively. To compute the mean gradient of a

pixel equation 4.1 incorporates semantic information by analyzing the local spatial

distribution of its neighbor pixels in different directions. The high value of the

mean gradient MDp
W indicates that the pixel p is more probable to be a structural

edge pixel, and the low value indicates that it is more probable to be a non-edge

pixel.
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4.2. Proposed filtering technique [112]

To compute the average local skewness of the pixel p, our technique gen-

erates the morphological gradient image Jmg as follows [111]:

Jmg = (δSE(J)− εSE(J)) (4.2)

Considering the pixel p ∈ Jmg as center pixel of each window wi ∈ W , a local

histogram hwi
is constructed by taking into account only the pixels inside the

window wi lie on the four lines H,V,D1, and D2. Then the average local skewness

Skp
W of the pixel p is computed as:

Skp
W =

1

|W |
∑
wi∈W

max(hwi
)−median(hwi

)

max(hwi
)−min(hwi

)
. (4.3)

To compute the average local skewness of a pixel equation 4.3 incorporates seman-

tic information by analyzing the distribution of its neighbor pixels in morphological

gradient image Jmg and always provides positive value. High value of Skp
W indi-

cates that the pixel p is more probable to be a structural edge pixel and low value

indicates that it more probable to be a non-edge pixel. After compute the aver-

age gradient MDp
W and the average local skewness Skp

W , the proposed semantic

gradient image (SGI) associated to the input image I is generated by combining

these two features as follows:

SGI(p) = MDp
W × Skp

W (4.4)

MDp
W and Skp

W considers semantic information of a pixel p by analyzing

the local distribution of pre-processed image J and morphological gradient image

Jmg, respectively. Both provided higher values for structural edge pixels and

lower values for textural or non-edge pixels. Thus, equation 4.4 combines two

different semantic information of the pixels for generating the semantic gradient
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image (SGI). Hence, the proposed SGI image is capable of better differentiating

the structural and textural edge pixels of the input image. Figures 4-2 (b) and

(g) show the semantic gradient images generated by the proposed technique from

the input images shown in Figures 4-2 (a) and (f). From these figures one can

see that the higher intensity pixels of SGI are associated to the structural edge

and the lower intensity pixels are associated to either non-edge or textural edge.

Note that for the input image of irregular and varying scale textures, there is a

possibility of having some pixels in SGI with high intensity values associated to

textural edge pixels. In such situation even SGI provides little information to

discriminate structural and textural edge pixels.

Figure 4-2: (a)(f) Original images and their corresponding generated (b)(g)
semantic gradient images (SGIs), (c)(h) histograms of SGIs, (d)(i) edge-maps,
and (e)(j) filter images.

In order to discriminate the structural edge and non-edge pixels of the

input image more accurately, we proposed a novel method that exploits JS di-

vergence to consider semantic information of the pixels by defining appropriate

window. Since, the number of structural edge pixels in an image are much smaller

than the number of non-edge pixels. The histogram of the SGI is likely to follow
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a positive-skewed distribution as shown in Figures 4-2(c) and (h). Thus, the his-

togram of SGI can be approximated with lognormal distribution by defining its

two parameters µ and σ as follows:


f(x) = 1

xσ
√
2π
e

−(ln (x)−µ)2

2σ2

µ = ln ( ν√
1+ γ2

ν2

) where x > 0, σ > 0

σ =
√

ln (1 + γ2

ν2
)

(4.5)

The red curves in Figures 4-2(c) and (h) are the lognormal distributions that

approximated the histograms of SGIs by estimating µ and σ using the maximum

likelihood estimator. The pixels in SGI associated to the left tail and the right

tail of the approximated histogram are more certain to be non-edge pixels and

structural edge pixels, respectively. The certainty level of the pixels between left

and right tails are less. In our work to consider semantic information of a pixel,

the size of the window is defined based on its certainty level. Pixels which are

certain to be non-edge and structural edge are used in large and small window,

respectively and the moderate size windows are used for uncertain pixels. The

certainty level of the pixels are defined with help of the approximated histogram.

After estimating µ and σ, the histogram of SGI is divided into four intervals (0,

eµ−σ), [eµ−σ, eµ), [eµ, eµ+σ) and [eµ+σ,+∞). The intensity values of the pixels

in SGI within the first interval (0, eµ−σ) and the fourth interval [eµ+σ,+∞) are

more certain to be non-edge pixels and structural edge pixels, respectively. So,

the window w01, w12, w23, and w34 (such that the size of w01 > w12 > w23 > w34)

is used to consider semantic information of the pixels associated to the intervals

(0, eµ−σ), [eµ−σ, eµ), [eµ, eµ+σ) and [eµ+σ,+∞), respectively. Once the window

for each pixel of the input image is defined, the proposed technique exploits JS

divergence to consider semantic information for determining whether it belongs to

a structural edge or not.
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In probability theory, JS divergence is a useful tool for measuring the

similarity between two probability distributions. In this work JS divergence is ex-

ploited same way as presented in Subsection 3.3.2.3. Lower the value of JSD(P,Q)

indicates P and Q have similar distributions. For each pixel p of the pre-processed

image J , its corresponding window w ∈ {w01, w12, w23, w34} is used to incorporate

semantic information. To this end, considering p as center pixel of w, four lines,

namely horizontal H, vertical V , two diagonal D1 and D2 passes through p as

shown in Figure 4-1 are taken. The probability density function of each line H,

V , D1, and D2 is defined as follows:

PL(q) =
|Jq−min(mean(JL1

),mean(JL2
))|∑

|Jq−min(mean(JL1
),mean(JL2

))| ,

q ∈ L1 ∪ L2, L ∈ {H, V,D1, D2}
(4.6)

where Jq represents the intensity value of the pixel q ∈ L. The probability density

function of at least one of the four lines (i.e., PH , PV , PD1 or PD2) will be similar

to a discrete step distribution if the pixel p is in structural edge. Otherwise, the

probability density functions of all four lines will be more akin to discrete uniform

distributions. To incorporate such semantic information two reference functions,

a uniform function U and a step function T are taken. Let QL and RL denote

the probability density functions for the step function T and the uniform function

U , respectively. If the pixel p is a structural edge pixel then for at least one line

L ∈ {H,V,D1, D2}, the distribution of PL will be similar to the step distribution

QL i.e., the value of JSD(PL, QL) will be low. If the pixel p is not a structural

edge pixel then for all the four lines the distribution of PL will be similar to the

uniform distribution RL i.e., the value of JSD(PL, RL) will be low. In our work

such semantic information is exploited to discriminate structural edge pixels and

pixels of the input image that are non-edge and generate the binary edge-map Eb

as follows:
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4.2. Proposed filtering technique [112]

Eb(p) =


1, if minL{JSD(PL, QL)}

≤ 1
|L|

∑
L{JSD(PL, RL)}

0, otherwise

(4.7)

Figures 4-2 (d) and (i) show the semantic-aware edge-maps generated by

the proposed technique.

4.2.2 Edge-aware adaptive median filter

Once the semantic edge-map of the input image is obtained, the filtered image is

produced by applying the recursive edge-aware adaptive median filter developed

in Chapter 2. Figure 4-2 shows the semantic edge-maps and the filtered images

generated the proposed technique. The pseudo-code for this technique is provided

in Algorithm 4.

Algorithm 4 Proposed parameter efficient image filtering technique

1: Input: Image I
2: Output: Filtered Image If
3: Generate pre-processed image J using equation (3.1)
4: for each pixel p ∈ J
5: for each pre-processed image band Jc
6: for each window w ∈ W
7: Compute feature SGI(p) by
8: using equation (4.4) .
9: end for
10: end for
11: end for
12: SGI is divided into four regions by (0, eµ−σ), [eµ−σ, eµ), [eµ, eµ+σ) and

[eµ+σ,+∞), and a set of window sizes F1∥F2∥F3∥F4 are determined for dif-
ferent region.

13: Generate edge-map Eb by applying equation 4.7.
14: Apply recursive adaptive median filtering using the edge-map Eb to obtain the

filtered image If as described in Section 2.3.4.
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4.2.3 Parameters of the proposed technique

Although the proposed technique considers several windows but most of them are

of fixed-size. In pre-processing step, irrespective of input image, a fixed-size 3× 3

square window is used as SE to generate the pre-processed image J . To gener-

ate SGI, the proposed technique computes the average gradient and the average

local skewness of each pixel by considering semantic information. For the image

of having varying scale irregular textures, it is not possible to capture sufficient

semantic information by using a single window. To incorporate appropriate se-

mantic information, a set of windows W = {w1, w2, . . . , wn} of increasing sizes are

considered. The present work suggested to consider only four windows w1, w2, w3

and w4 to capture semantic information of variety of textures starting from smaller

to moderate to larger and the size of these windows are defined by taking 3rd, 5th,

7th, and 9th numbers from the Fibonacci series [1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ]. In our

work the window size is calculated using the formula 2x+ 1, where x is a number

taken from Fibonacci series. So, irrespective of the considered input image, four

windows of size 5× 5, 11× 11, 27× 27, and 69× 69 are used to generate the SGI.

After generating the SGI, to incorporate semantic information for each

input image pixel for determining whether it belongs to a structural edge or not,

our technique considers one of the four windows w01, w12, w23, or w34. In this

research irrespective of the considered input image, the window size w01 and w34

is fixed to as (w01 = 69×69) and (w34 = 5×5), respectively. Moreover, depending

upon the textures present in the input image, the size of the other two windows w12

and w23 are manually fixed from four discrete options F1, F2, F3 and F4. Where,

F1 = [w12 = 43× 43, w23 = 27× 27], F2 = [w12 = 27× 27, w23 = 17× 17], F3 =

[w12 = 17× 17, w23 = 11× 11], and F4 = [w12 = 11× 11, w23 = 7× 7] is defined

by considering four consecutive pairs of Fibonacci numbers [21, 13], [13, 8], [8, 5]

and [5, 3], respectively. Note that the size of windows w12 and w23 are the only

parameter of the proposed technique that needs to be fixed manually by choosing
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one of the four options F1, F2, F3 or F4. Irrespective of the input images, the other

parameters are either fixed or defined automatically. Conversely, the majority of

existing state-of-the-art methods require multiple parameters, and their results are

highly sensitive to their parameter values which need to be fine tuned manually

within a wide interval. Figure 4-3 shows the filtered images produced by the

proposed technique considering the options F1, F2, F3, and F4 for a simple cartoon

image. From this figure one can see that the options F3 and F4 are suitable

for preserving smaller details, whereas the options F1 and F2 are suitable for

smoothing.

(a) (b) (c)

(d) (e)

Figure 4-3: (a) Original image and the filtered images produced by our developed
technique by using the options (b) F4, (c) F3, (d) F2, and (e) F1.

4.3 Experimental results and analysis

To assess the robustness of the proposed technique, the experiment includes both

qualitative and quantitative comparisons with various state-of-the-art techniques.
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Figure 4-4: Filtering results of a cross-stitch cartoon image having regular
texture: (a) the original image and the filtered images produced by (b) Reg-
Cov (k = 15, ps = 6, σ = 0.2) [72] (c) BTF, k = 9, nitr = 7 [32], (d) SATF
ss = 3, sr = 0.1, st = 0.1, nitr = 7, div = 30 [69], (e) SATV, λ = 2.5 [125], (f)
RILS ρsmooth = 3, ρsharp = 5 [91], (g) GISF, λ = 50, γ = 20/255, nitr = 15 [92],
and (h) Proposed (F4) techniques.

116
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Figure 4-5: Filtering results of a mosaic image having complex textures and
structures: (a) the original image and the filtered images produced by (b) Reg-
Cov (k = 15, ps = 6, σ = 0.2) [72] (c) BTF, k = 9, nitr = 7 [32], (d) SATF
ss = 3, sr = 0.1, st = 0.1, nitr = 7, div = 30 [69], (e) SATV, λ = 2.5 [125], (f)
RILS ρsmooth = 3, ρsharp = 5 [91], (g) GISF, λ = 50, γ = 20/255, nitr = 15 [92],
and (h) Proposed (F3) techniques.
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Figure 4-6: Filtering results of a floor image having irregular texture: (a) the
original image and the filtered images generated by (b) Reg-Cov (k = 15, ps =
6, σ = 0.2) [72] (c) BTF, (k = 9, nitr = 7) [32], (d) SATF (ss = 3, sr = 0.1, st =
0.1, nitr = 7, div = 30) [69], (e) SATV, (λ = 2.5) [125], (f) RILS (ρsmooth =
3, ρsharp = 5) [91], (g) GISF, (λ = 50, γ = 20/255, nitr = 15) [92], and (h) Proposed
(F3) techniques.

Figure 4-7: Filtering results of a bee image having irregular varying scale tex-
tures: (a) the original image and the filtered images generated by (b) Reg-Cov
(k = 15, ps = 6, σ = 0.2) [72] (c) BTF, (k = 9, nitr = 7) [32], (d) SATF
(ss = 3, sr = 0.1, st = 0.1, nitr = 7, div = 30) [69], (e) SATV, (λ = 2.5) [125], (f)
RILS (ρsmooth = 3, ρsharp = 5) [91], (g) GISF, (λ = 50, γ = 20/255, nitr = 15) [92],
and (h) Proposed (F2) techniques.
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Figure 4-8: (a)(d)(g)(j)(m)(p) Original images with various textures and struc-
tures and their corresponding (b)(e)(h)(k)(n)(q) edge-maps and (c)(f)(i)(l)(o)(r)
filtered images generated by the proposed technique.
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4.3.1 Qualitative comparison

In this experiment, the quality of the filtered images produced by our developed

technique is compared with those generated by six well-known state-of-the-art

structure-preserving filtering techniques: Reg-Cov [72], BTF [32], SATF [69],

SATV [125], RILS [91], and GISF [92]. In qualitative comparison, the filter im-

ages produced by the different techniques are visually analyzed to find out how

well the structures and textures present on the input images are discriminated for

removing minute details of textures while retaining the key structures.

For varieties of input images, the filtered images obtained by the different

techniques are shown in Figures 4-4, 4-5, 4-6, 4-7 and 4-8. Examining these figures

reveals that the proposed technique excels in both texture smoothing and struc-

ture preservation. For example, the input image shown in Figure 4-4(a) is a simple

cartoon image with regular textures and smaller structural details of different col-

ors. The filtered images produced by the different techniques and some zoom

portions of these filtered images are presented in Figure 4-4. From these figures, it

can be seen that our developed technique better preserves the smaller color details

while smoothing out the textural details. Figure 4-5(a) shows another input image

with random textures and complex structural details. The corresponding filtered

images and some zoomed portions of these filtered images are illustrated in Figure

4-5. Again, from these images, it is evident that, in contrast to the existing state-

of-the-art methods, the proposed technique better preserves the smaller structures

while smoothing out the textural details. Figures 4-6 and 4-7 show the filtering

results for another two input images with varying scale textures. By visually an-

alyzing these results, it can be observed that our developed technique is able to

preserve the structures and smooth out the textures much better than most of

the state-of-the-art techniques. Note that all the literature techniques considered

here have multiple parameters, and their filtering results are heavily determined

by these parameters. The measurements of these parameters are varied from im-
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age to image and needed to be fixed manually within a wide range of continuous

interval. To ensure a fair comparison, this experiment uses parameter values from

the respective papers where the best results are reported, whenever feasible. Oth-

erwise, the optimal values for these parameters are set manually through trial

and error. Whereas, as presented in Section 4.2.3 the size of windows w12 and

w23 are the only critical parameters of the proposed technique that needed to be

fixed manually by choosing one of the four discrete options of F1, F2, F3 or F4.

This appears to be a significant advantage of our developed technique over exist-

ing state-of-the-art methods. Our proposed technique is tested on a substantial

number of images with a variety of regular and irregular textural patterns and al-

ways gets satisfactory results. Figure 4-8 show few more filtering results from our

developed technique for different types of input images. From these results, one

can observe that our technique accomplishes numerous contradictory aims, such

as locating and removing texture, maintaining structural boundaries, safeguard-

ing subtle features like corners, and avoiding over-sharpening and/or over-blurring

artifacts.

4.3.2 Quantitative comparison

In this experiment, a quantitative comparison between the filtered images pro-

duced by our developed and state-of-the-art techniques are carried out. Here we

use three subjective reference IQA metrics: SSIM [136], MSSIM, and MI [131]

and one subjective no-reference metric, PIQE [132] for quantitative comparisons,

where both SSIM and MSSIM range from [0, 1], MI ranges from [ 0-log(m× n) ],

wherem×n is the image size, and PIQE ranges from [0, 100]. For the first three in-

dices SSIM, MSSIM and MI, a higher value indicates better performance, whereas

a lower value for PIQE indicates better. Table 4.1 reports the scores of different

IQA measures computed from the filter images generated by different techniques.

From these results, it is evident that the proposed technique consistently yields

better IQA scores compared to the existing state-of-the-art techniques.
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4.3.3 Applications

As in previous chapter, also in this chapter our developed technique is validated

across three different applications: image denoising, image enhancement, and tone

mapping.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4-9: (a)(d)(g) Original images, (b)(e)(h) images with Gaussian noise
(σ = 0.03) and their corresponding (c)(f)(i) denoised images obtained by applying
proposed filtering technique.
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4.3.3.1 Image denoising

In Figure 4-9, the presented results display both the noisy and the corresponding

denoised images achieved through the proposed filtering technique. The filtered

image clearly demonstrates its ability to preserve structures effectively while suc-

cessfully eliminating noise.

(a) (b)

(c) (d)

(e) (f)

Figure 4-10: (a)(c)(e) Original images and their corresponding (b)(d)(f) en-
hanced images obtained by the proposed technique.
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4.3. Experimental results and analysis

4.3.3.2 Detail enhancement

In Fig. 4-9, the presented images showcase both the original images and their

corresponding enhanced versions achieved through the proposed filtering method.

The enhancement process begins by decomposing the input image into two compo-

nents - one being a smoothed image and the other capturing textural details. The

final enhanced image is produced by incorporating these textural details into the

original image. The enhanced images prominently highlight the textural details,

showcasing the performance of our developed filtering technique.

4.3.3.3 Tone mapping

In Figure 4-10(a)(c), two LDR image (RGB) tone-mapped from two HDR images

using Farbman’s technique [47] is presented. Figure 4-10(b)(d) illustrates the

corresponding tone-mapped RGB version generated with the proposed filtering

technique. Notably, the proposed filtering technique was seamlessly integrated in

place of bilateral filtering (BF) within Durand’s method [49] with γ = 0.5. This

replacement demonstrates the impact of our developed technique in the context

of tone mapping.

(a) (b) (c) (d)

Figure 4-11: (a)(c) RGB tone mapped images by Farbman techniques [47] and
(b)(d) RGB tone mapped images by proposed filtering, respectively, from two
different HDR images.
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4.3.4 Computational performance analysis

The computational complexity of our developed technique is dependent on the al-

gorithm used to generate the semantic-aware edge-map and the recursive median

filter. For an input image of size (M × N), the computational complexity of our

algorithm that generates the semantic-aware edge-map is Θ(M ×N × S1 logS1),

where S1 represents the size of the largest window in W used to incorporate se-

mantic information. Where skewness calculation for window S1 takes Θ(S1 logS1).

The computational complexity of the adaptive median filter used in the proposed

technique is Θ(M × N × S2 logS2), where S2 represents the size of the largest

window among the adaptive windows Lw and wa
s automatically define for filtering

non-edge and edge pixels, respectively. The complexity of median calculation is

Θ(S2 logS2). Therefore, the overall computational complexity associated with our

approach is Θ(M ×N × (S1 logS1 + S2 logS2)).

4.3.5 Limitations

The method begins with computing a morphological semantic gradient on input

images using a series of increasing window sizes selected from alternate Fibonacci

numbers (e.g., 2, 5, 13, 34), corresponding to square windows of sizes 5×5, 11×11,

27× 27, and 69× 69. This approach reduces sensitivity to parameter selection by

capturing gradients for objects of varying scales, from small to large, making it

effective for images with diverse object sizes and scales.

Subsequently, a Jensen-Shannon Divergence (JSD)-based gradient iden-

tification is performed in four directions. The window size for this operation is

adaptively determined based on the gradient values computed in the initial phase,

ensuring that the first layer of operation guides optimal window selection for the

second phase. The accuracy of the final edge map depends on the sensitivity of

the second phase to the initial semantic gradient computation.
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4.4. Conclusions

As a two-layer technique, this method effectively handles multiscale edge

detection but incurs higher runtime complexity due to its iterative and adaptive

processes of two phases.

4.4 Conclusions

The most challenging task in structure preserving filtering is to discriminate im-

portant structures from textures, especially when irregular textural patterns with

different scales are present. In many cases, spectral and spatial variations of the

input image is not sufficient to discriminate structures and textures. In such cases,

semantic information may provide additional useful insight. In this regard, the

existing methods are very much parameter sensitive. Here, we introduced a novel

approach for leveraging the semantic information of the image to enhance the

discrimination of structural and textural edges. Our technique first generates a

semantic-aware edge-map of the input image by exploiting semantic information.

Then an edge-aware adaptive recursive median filter is utilized to generate the

final filtered image. Although the developed filtering technique requires multiple

windows, the size of most of these windows are either fixed or defined automat-

ically, irrespective of the considered input image. There exists only a pair of

windows that need to be fixed manually by choosing one of the four discrete op-

tions. The proposed technique provides satisfactory results for a wide selection of

input images with minimal fine-tuning of its parameters, which is an important

benefit in comparison to the current state-of-the-art techniques. Furthermore,

in contrast to the majority of existing techniques, our technique accomplishes

numerous contradictory aims, such as locating and removing texture, maintain-

ing structural boundaries, safeguarding subtle features like corners, and avoiding

over-sharpening and/or over-blurring artifacts. Furthermore, along with different

computer graphics applications, the proposed technique also shows its robustness

to incorporate spatial information for image classification.
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