
Chapter 5

Semantic-aware image filtering:

Applications to classification of

hyperspectral images and

semantic segmentation of natural

images

5.1 Introduction

Although the filtered images generated by the filtering techniques provided spatial

information, they were seldom exploited for image classification. In this thesis,

we proposed several semantic-aware filtering techniques to protect the significant

structural elements in the image while removing noises or smoothing textural

details. As a result, the filtered images generated by these techniques provided

useful spatial information of the input image. In this chapter, we explore spatial

information of hyperspectral images (HSIs) for spectral-spatial classification using

the filtered images generated by our developed filtering techniques.

The recent development of hyperspectral imaging has enabled numerous

applications across various sectors, including agriculture, mining, forestry, and ur-
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ban area monitoring. Hyperspectral images (HSIs) contain spectral data spanning

hundreds of tiny wavelengths. The curse of dimensionality may result from such

high-dimensional data’s potential for redundant information [12, 51, 102]. But

when carefully investigated using the right methods, the rich spectral information

is discovered to be significantly aiding in the precise classification of different land

cover types.

It is already established that along with spectral knowledge, incorporating

the spatial information of the pixels greatly enhances the classification results of

HSIs. The HSI literature includes numerous spectral-spatial classification tech-

niques. One of the fundamental goal of all such techniques is to build a robust

model that can capable of considering better spatial information of the pixels.

Markov random fields (MRFs) is a tool serves as the foundation for a variety of

spectral-spatial HSI classification techniques. This offers a versatile framework for

considering spatial information of the pixels on the image that has been widely

used with HSI data [57]. Spectral-spatial classification techniques based on sparse

representation (SR) constitute another important category. In [52], a shape adap-

tive fixed region based SR model is proposed to consider spatial information of

the pixels.In [44], a multiscale adaptive sparse representation (MASR) model is

proposed to incorporate improved spatial information. In [66], unmixing and SR

are combined together to extract appropriate spatial information associated to the

pixels on the HSIs. In [46], a multiple-feature-based adaptive sparse representation

(MFASR) is introduced. In [45], superpixels are employed to incorporate spatial

information. Mathematical morphology (MM) is another popular tool widely used

for considering spatial information of the image [14]. A large number of morpho-

logical operations are available in the MM to include spatial information which

are often designed with fixed shaped structuring element (SE) [123]. An extended

morphological profile (EMP) for the spectral-spatial classification of (HSIs) is es-

tablished in [105]. Through variations in the shape and size of the structuring

element (SE), it generates multiple filtered images from the HSI. Then, EMP is
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constructed by concatenating these filtered images along with the HSI. Attribute

filter (AP) is another MM tool that capable of considering geometrical shape of

the objects. Instead of EMP, subsequently, an extended attribute profile (EAP)

[36] is developed by using attribute profiles (AP) with different thresholds for the

HSIs classification. In [16] threshold free EAP is suggested for considering spatial

information. In recent times, several models based on deep neural networks have

been introduced for HSI classification [41, 57, 148]. Also, sparse representation,

MM, and AP based feature sets are now combined in deep ANN and CNN models

for HSI classification [31, 78, 144].

Structure preserving image filtering is a well known approach used to pre-

vent integrity of the structures of the objects of images while removing the noises or

smoothing the textures. The effectiveness of such filtering techniques is assessed by

how efficiently they are capable of removing noise or smoothing the textures with

the minimum distortion of the structures of objects present on the images. The

recent research focuses on the development of semantic-aware filtering techniques

that incorporate the semantic information of the images to better differentiate

structures and textures. Although the filtered images of such advanced techniques

provided better spatial information, they are seldom exploited for image classifica-

tion. In this chapter, to show the impact of our developed filtering approachs for

incorporating spatial information, an extended semantic filtered profile (ESFP) is

created by combining the filtered images generated by our technique. Then the

constructed profile ESEP is utilized for the spectral-spatial classification of HSI.

To assess its effectiveness, we compared our proposed profile against several recent

state-of-the-art techniques using three real hyperspectral datasets.

In addition to this, the proposed filtering techniques are also tested by

applying them to the semantic segmentation of natural images. Semantic segmen-

tation, a fundamental task in computer vision, assigns class labels to every pixel

in an image, enabling critical applications in domains such as autonomous driving,
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medical imaging, and satellite analysis [6, 11, 26, 68, 73, 77, 100, 151]. Achieving

precise boundary delineation and minimizing noise in segmentation maps remain

key challenges in this field. Image filtering techniques, particularly edge-aware

filters like bilateral and guided filters, have proven essential in overcoming these

obstacles. These filters are widely employed in preprocessing to smooth noisy in-

puts while preserving crucial edges and in postprocessing to refine segmentation

outputs, ensuring that predicted boundaries align closely with actual object edges.

Moreover, advanced approaches such as Conditional Random Fields (CRFs) and

edge-preserving neural architectures have incorporated filtering principles to fur-

ther enhance segmentation accuracy. By addressing noise suppression, boundary

precision, and feature enhancement, image filtering significantly improves the ro-

bustness and quality of semantic segmentation in complex real-world scenarios. We

compared our proposed techniques with three other different filtering techniques

by exploiting two different recently developed semantic segmentation techniques:

one is an unsupervised technique called MeanShift++ [68], and the other is a su-

pervised technique named BiSeNet V2 [151]. As the test images, we have taken

two simple RGB images that are already used in the previous chapters to show

the filtering results, and the other two test images are taken from a well known

data set, BSD500 [100] using which the BiSeNet V2 model is also trained.

The next part of the chapter is outlined as follows: Section 5.2 provides

details on the construction of the extended semantic filtered profile (ESFP) for

each of the filtering techniques presented in this thesis. Section 5.3 describes the

HSI datasets used for the experiments. Section 5.4 presents the experimental

results of it. Section 5.5 presents an application in semantic image segmentation,

while Section 5.6 concludes the chapter.
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5.2 Construction of Extended Semantic Filtered

Profile (ESFP)

Chapters 2, 3, and 4 of this thesis present four different semantic-aware image

filtering techniques. The filtered images generated by these techniques may pro-

vide better spatial information of the input image as they considered semantic

information. To take into account spatial information for spectral-spatial classi-

fication of HSI, first, several filtered images of the considered HSI are generated

by applying one of our proposed filtering technique. Then, an extended semantic

filtered profile is constructed by concatenating these filtered images. Finally, the

spectra-spatial features of the pixels on the profile are used for classification of

HSI.

The structure preserving filtering techniques proposed in this thesis excel

at filtering out insignificant details and noises while minimizing distortion of the

underlying structures in the image. Consequently, the filtered images produced

by these techniques offer improved spatial information. Note that to incorporate

appropriate semantic information all the four filtering techniques proposed in this

thesis used window. Since the optimal value of the window is unknown, to consider

a maximum amount of spatial information, one can generate multiple filter images

by varying the size of the window. However, when dealing with HSI with hundreds

of spectral bands, generating multiple filtered images for each band is not feasible.

To circumvent this problem, a reduced set of principal components (PCs) extracted

from the HSI, which preserves the most crucial information, is considered. For each

of the considered PC, multiple filtered images are produced by varying the size

of window. Finally, all the filtered images derived from the considered PCs are

combined together to construct an extended semantic filtering profile (ESFP) for

the HSI classification.

In more detail, let I represent an HSI with dimensions M × N × P . To

reduce the dimension of I with minimal information loss, Principal Component
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Analysis (PCA) is applied to I. Subsequently, the first m principal components

(PCs) are chosen to represent the HSI. Depending on the semantic-aware filtering

technique applied to these PCs, the extended semantic filtering profiles ESFP I,

ESFP II, ESFP III, and ESFP IV are generated as follows:

ESFP I: This profile is constructed by applying the semantic-aware filtering tech-

nique proposed in Chapter 2. In this technique a window w is used to consider

semantic information from the morphological gradient image. Since the best value

of w is unknown, to account for a maximum amount of spatial information, we

generate multiple filtered images by varying the size of w. Let Ipci be the ith

PC of HSI I. The proposed filtering technique is applied to Ipci by considering

increasing size window w = w1, w2, . . . , wn. As a result n filtered images denoted

as Ipciw1
, Ipciw2

, . . . , Ipciwn
are generated. The steps is repeated for other PCs. Finally

all the generated filtered images are concatenated together to form an ESFP I as

follows:

IESFP I = [{Ipc1 , Ipc1w1
, . . . , Ipc1wn

}, {Ipc2 , Ipc2w1
, . . . , Ipc2wn

}, . . . , {Ipcm , Ipcmw1
, . . . , Ipcmwn

}]
(5.1)

ESFP II: This profile is constructed by applying Approach I of the semantic-

aware filtering technique proposed in Chapter 3. In this technique a window w is

used to consider semantic information by exploiting JS divergence. Since the best

value of w is unknown, to account for a maximum amount of spatial information,

we generate multiple filtered images by varying the size of w. Let Ipci be the ith

PC of HSI I. The proposed filtering technique is applied to Ipci by considering

increasing size window w = w1, w2, . . . , wn. As a result n filtered images denoted

as Ipciw1
, Ipciw2

, . . . , Ipciwn
are generated. The steps is repeated for other PCs. Finally

all the generated filtered images are concatenated together to form an ESFP II as

follows:
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IESFP II = [{Ipc1 , Ipc1w1
, . . . , Ipc1wn

}, {Ipc2 , Ipc2w1
, . . . , Ipc2wn

}, . . . , {Ipcm , Ipcmw1
, . . . , Ipcmwn

}]
(5.2)

ESFP III: This profile is constructed by considering Approach II of the semantic-

aware filtering developed in Chapter 3. In this technique four windows W1,W2,W3

and W4 are used to consider semantic information. The proposed filtering tech-

nique is applied to Ipci by considering the four windows. As a result 4 filtered

images denoted as IpciW1
, IpciW2

, IpciW3
, and IpciW4

are generated. The steps is repeated for

other PCs. Finally all the generated filtered images are concatenated together to

form an ESFP III as follows:

IESFP III = [{Ipc1 , Ipc1W1
, Ipc1W2

, Ipc1W3
, Ipc1W4

}, . . . , {Ipcm , IpcmW1
, IpcmW2

, IpcmW3
, IpcmW4

}] (5.3)

ESFP IV: This profile is constructed by considering the semantic-aware filtering

developed in Chapter 4. In this technique four options F1, F2, F3 and F4 are used

to consider semantic information. The proposed filtering technique is applied to

Ipci by considering the four options. As a result 4 filtered images denoted as

IpciF1
, IpciF2

, IpciF3
, and IpciF4

are generated. The steps is repeated for other PCs. Finally

all the generated filtered images are concatenated together to form an ESFP IV

as follows:

IESFP IV = [{Ipc1 , Ipc1F1
, Ipc1F2

, Ipc1F3
, Ipc1W4

}, . . . , {Ipcm , IpcmF1
, IpcmF2

, IpcmF3
, IpcmF4

}] (5.4)

The profiles ESFP I, ESFP II, ESFP III or ESFP IV constructed from

HSI I contains rich spatial information. Figure 5-1 show the first PC of the
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Pavia University data set and the five filtered images generated by the filtering

techniques presented in Chapter 2 and the Approach I presented in Chapter 3

for the window of sizes 7 × 7, 11 × 11, 17 × 17, 27 × 27, and 43 × 43. Figure 5-2

show four filtered images generated from the first PC of Pavia University data set

by applying the Approach II presented in Chapter 3 and the filtering techniques

presented in Chapter 4. These figures, shows that the filtered images generated by

the two of our developed technique well preserve the significant objects structures

during the smoothing of textures and removing of noises. After constructing the

profiles ESFP I, ESFP II, ESFP III, or ESFP IV, the derived spectral-spatial

features of the pixels from these profiles are provided as input to a classifier for

HSI classification.. The steps for the construction of profiles are summarized in

Algorithm 5.

(a)

(b)

Figure 5-1: First PC of the Pavia University data set and the five filtered images
generated from it by applying (a) the filtering technique presented in Chapter 2
and (b) the Approach I presented in Chapter 3, considering the size of windows
7× 7, 11× 11, 17× 17, 27× 27, and 43× 43.
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(a)

(b)

Figure 5-2: First PC of the Pavia University data set and the four filtered images
generated from it by applying (a) the Approach II presented in Chapter 3 and (b)
the filtering technique presented in Chapter 4 by using four discrete options.

Algorithm 5 Algorithm to generate the proposed profiles IESFP Ior IIor IIIor IV

INPUT- First m PCs (Ipc1 , Ipc2 , . . . , Ipcm) of the HSI I and n windows
(w1, w2, . . . , wn) of increasing size or n parameter options

OUTPUT- Extended semantic filtering profile: IESFP Ior IIor IIIor IV

IESFP Ior IIor IIIor IV =Φ,

For i=1 to m do

For j=1 to n do

Generate the filtered image Ipciwj
or IpciWj

or IpciFj
by applying presented filtering

respectively

IESFP Ior IIor IIIor IV =
⊔

Ipciwj
or IpciWj

or IpciFj

End For

End For

/*
⊔

is the vector concatenation operator */
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5.3 Data sets description

Three widely recognized hyperspectral data sets: the Indian Pines data set, the

University of Pavia data set, and the University of Houston data set are used to

determine the efficacy of our proposed technique. Here are brief descriptions of

each of these datasets:

5.3.1 Indian Pines data set

The benchmark data set utilized in this study comprises hyperspectral imagery

acquired over the rural landscape in Indian Pines, in northwest Indiana, USA.

The data collection employed the Infrared Imaging Spectrometer/Airborne Visible

(AVIRIS) sensor, equipped with 220 channels covering a spectral range from 0.2 to

2.4 micrometers (µm). Through preprocessing, the dataset underwent a reduction

to 200 spectral bands where 20 water absorption bands are excluded within the

ranges of [104-108], [150-163], and band 220. The resultant image has a 20 meters

spatial resolution of dimensions of 145 by 145 pixels. The classes, training samples,

test samples, ground truth map all the details required for experimental validation

are shown in Figure 5-3 and Table 5.1.

(a) (b) (c) (d) (e)

Figure 5-3: Indian Pines data set: (a) False color composition; (b) Classes with
color code; (c) Training samples; (d) Test samples; and (e) Ground truth map.

138



5.3. Data sets description

Table 5.1: Class names, labels, as well as training and test samples selected by
the IEEE GRSS Data Fusion Committee in 2013 [57], and available ground truths
for Indian Pines dataset.

Land Classes Class labels Training samples Test samples Labeled Samples

Alfalfa 1 50 1384 1434
Corn (No till) 2 50 784 834
Corn (Min till) 3 50 184 234

Corn 4 50 447 497
Pasture/Grass 5 50 697 747
Trees/Grass 6 50 439 489

Pasture (Mowed)/Grass 7 50 918 968
Hay (Windrowed) 8 50 2418 2468

Oats 9 50 564 614
Soyabeans(No till) 10 50 162 212
Soyabeans (Min till) 11 50 1244 1294
Soyabeans (Clean till) 12 50 330 380

Wheat 13 50 45 95
Woods 14 15 39 54

Grass/Trees/Building 15 15 11 26
Steel/Towers/Stone 16 15 5 20

5.3.2 Pavia University data set

(a) (b) (c) (d) (e)

Figure 5-4: Pavia University data set: (a) False color composition; (b) Classes
with color code; (c) Training samples; (d) Test samples; and (e) Ground truth
map.

This hyperspectral dataset was obtained over the urban area of the Uni-

versity of Pavia in Pavia, Italy. It was taken by the Reflective Optics System

Imaging Spectrometer (ROSIS-03) airborne optical sensor. This sensor, equipped

with 115 channels, 0.43 to 0.86 micrometers (µm) spanned the spectral range.
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Following preprocessing, which entailed the removal of the 12 noisiest bands, the

dataset was refined to consist spectral bands of 103. The resulting image possesses

dimensions of 610 by 340 pixels showcases a spatial resolution of 1.3 meters. The

details of the classes, training samples, test samples, ground truth map required

for experimental validation are shown in Figure 5-4 and Table 5.2.

Table 5.2: Class names, labels, as well as training and test samples selected by
the IEEE GRSS Data Fusion Committee in 2013 [57], and available ground truths
for Pavia University dataset.

Land Classes Class Labels Training Samples Test Samples Labeled Samples

Asphalt 1 548 6304 6852
Meadow 2 540 18146 18686
Gravel 3 392 1815 2207
Tree 4 524 2912 3436

Metal sheet 5 265 1113 1378
Bare soil 6 532 4572 5104
Bitumen 7 375 981 1356
Brick 8 514 3364 3878

Shadow 9 231 795 1026

5.3.3 Houston University data set

The hyperspectral image of the University of Houston was captured through the

Compact Airborne Spectrographic Imager (CASI) sensor, encompassing both the

university grounds and the adjacent urban areas. The CASI sensor, with a 380

to 1050 nanometers (nm) ranged wavelength, equipped with 144 channels. This

image features a spatial resolution of 2.5 meters and exhibits dimensions of 349

by 1905 pixels. The details of the classes, training samples, test samples, ground

truth map required for experimental validation are shown in Figure 5-5 and Table

5.3.
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(a) (b)

(c) (d)

(e)

Figure 5-5: University of Houston data set: (a) False color composition; (b)
Classes with color code; (c) Training samples; (d) Test samples; and (e) Ground
truth map.

5.4 Experimental results

5.4.1 Experimental setting

To reduce the curse of dimensionality problem, the first m PCs of the considered

HSI which preserve more than 99% information are used to construct the ESFP.

For each PC, If n filtered images are generated, then the size of the constructed

ESFP will be m× n. In the present experiment regardless of the considered data

set first 10 PCs are used to construct the ESFP. Once the ESFP is obtained, for

experimental validation random forest (RF) classifier is used. The m×n spectral-
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Table 5.3: Class names, labels, as well as training and test samples selected by
the IEEE GRSS Data Fusion Committee in 2013 [57], and available ground truths
for the University of Houston dataset.

Land Classes Class Labels Training Samples Test Samples Labeled Samples

Grass (Healthy) 1 198 1053 1251
Grass (Stresses) 2 190 1064 1254
Grass (Synthetic) 3 192 505 697

Tree 4 188 1056 1244
Soil 5 186 1056 1242

Water 6 182 143 325
Residential 7 196 1072 1268
Commercial 8 191 1053 1244

Road 9 193 1059 1252
Highway 10 191 1036 1227
Railway 11 181 1054 1235

Parking (Lot 1) 12 192 1041 1233
Parking (Lot 2) 13 184 285 469
Court (Tennis) 14 181 247 428
Track (Running) 15 187 473 660

spatial features of the profile are fed into the classifier for computing classification

results. In our experiment, 200 trees are considered to construct the random forest

classifier.

In the experiment the ESFP I and ESFP II are constructed by taking five

windows of increasing size. The size of these windows is taken from the Fibonacci

numbers [1 2 3 5 8 13 . . . ], which grow exponentially with a non-uniform spacing

of numbers, but their ratios converge to the golden ratio (approximately 1.618).

The formula used to determine the size of the windows is 2 × f + 1, where the

value of f is taken from the Fibonacci series [1 2 3 5 8 13 21 . . . ]. Both the ESFP

I and ESFP II are constructed by considering the window of sizes 5 × 5, 7 × 7,

11× 11, 17× 17, and 27× 27. So the size of both the profiles is 10× 5 = 50. The

ESFP III and ESFP IV is constructed by generating 4 filtered images from each

PC using the options W1|W2|W3|W4 and F1|F2|F3|F4, respectively. As a results

the size of these profiles is 10× 4 = 40.
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(a) (b) (c)

(d) (e)

Figure 5-6: (a) Ground truth map and the classification maps provided by (b)
ESFP I, (c) ESFP II (d) ESFP III and (e) ESFP IV for the Indian Pines data set.

5.4.2 Results analysis

In [57], a more challenging training and test samples for the above three described

data sets are exercised to compare the overall performance of many state-of-the-art

spectral-spatial HSI classification techniques that incorporate spatial information

by using MRF, MM, segmentation, sparse representation, and deep neural net-

works. To show the potential of the proposed approaches, the ESFPs constructed

by our four different method are also classified using the same training and test

samples as used in [57]. This allows us to measure our developed techniques

against the large number of state-of-the-art techniques reported in [57], which in-

clude other existing mathematical tools such as MRF, MM, segmentation, sparse

representation, and deep neural networks for incorporating spatial information in
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HSI.

(a) (b) (c)

(d) (e)

Figure 5-7: (a) Ground truth map and the classification maps provided by (b)
ESFP I, (c) ESFP II (d) ESFP III and (e) ESFP IV for the Pavia University data
set.

The results for all three data sets, provided by the numerous spectral-

spatial classification techniques are reported in [57]. By looking into these results,

we found that three techniques, namely EMEP[56], MFASRC[46], and Gabor-CNN

[30], provided significantly better results than the others. To gauge the adequacy

of the proposed ESFPs, their classification results are contrasted with those of the

three methods. Moreover, the threshold free attribute profile (TEAP) technique
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(a)

(b)

(c)

(d)

(e)

Figure 5-8: (a) Ground truth map and the classification maps provided by (b)
ESFP I, (c) ESFP II (d) ESFP III and (e) ESFP IV for the University of Houston
data set.
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presented in [16] and the PCA-based edge-preserving filtering (EPF) technique

presented in [71] are used for comparison. The average class-wise accuracy (AA),

the overall accuracy (OA), the kappa accuracy (κ) and the class-by-class accu-

racy metrics are used for comparison. where both OA and AA have a range of

[0, 100], while κ ranges from [0, 1], with higher values in each metric indicating

better performance. Table 5.4, Table 5.5, and Table 5.7 reports the classification

results provided by the different techniques for Indian Pines, Pavia University and

University of Houston data sets, respectively. Where for the proposed techniques,

four different classification models are applied for classifications, viz Random for-

est ( RF ), Support Vector Machine ( SVM ), Sparse Representation Classifier

( SRC ) and Convolution Neural Network ( CNN ). Among all these classifiers,

RF provides the best results for the proposed approaches. Random Forest out-

performs SVM, CNN, and SRC in HSI classification due to its robustness to high

dimensionality, built-in feature selection, resilience to noise, and ability to han-

dle limited training data ( as the standard train test used here has limited and

nonuniform training samples throughout the classes ). It models complex non-

linear relationships effectively without extensive hyperparameter tuning. While

CNNs excel with large datasets and spectral-spatial patterns, RF’s simplicity and

ensemble learning make it ideal for HSI data with limited training samples. From

these tables, it can be observed that for the Indian Pines data set, our proposed

ESFP I, ESFP II, ESFP III and ESFP IV provide higher AA than the existing

techniques, while ESFP II produces the highest AA of 98.23% and OA of 97.26%.

Whereas the best literature method (i.e., MFASRC [46]) yields an AA of 97.25%

and an OA of 95.22%. For Pavia University data set, the proposed ESFP II pro-

vides the highest AA (97.84%) and OA (95.73%) while the best literature method

(i.e., EMEP [56]) results in an AA of 96.57% and an OA of 95.46%. Similar results

also observed on University of Houston data set. For this data set, the proposed

technique provides classification accuracy higher of 2% and 3% than those of the

best TEAP [16] and second best MFASRC [46] literature methods, respectively.
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5.4. Experimental results
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Chapter 5. Semantic-aware image filtering: Applications to classification
of hyperspectral images and semantic segmentation of natural images

Thus, for all the three data sets the constructed ESFPs are not only pro-

vided best classification results, but it also showed better consistency of the results

obtained through all the classes and the datasets than the literature methods. For

visual analysis, the classification maps generated by our ESFPs are shown in Fig-

ures 5-6, 5-7, and 5-8. These results confirmed the superiority of our proposed

filtering techniques for incorporating spatial information in HSI classification.

5.5 Semantic segmentation of natural images

Semantic segmentation is a valuable approach for testing the effectiveness of edge-

aware filtering in real-time image processing. Edge-aware filters aim to suppress

noise while preserving critical boundaries, which is essential for maintaining the

visual and structural integrity of real images. By applying semantic segmenta-

tion algorithms to both the raw and edge-aware filtered images, the effectiveness

of boundary preservation can be evaluated. Metrics like boundary accuracy and

edge alignment, combined with visual inspection, help determine whether the fil-

tering retains fine details and sharp edges without introducing over-smoothing or

distortions. This ensures the filtered images are optimized for real-time applica-

tions where edge fidelity is crucial.

In this section, firstly we have evaluated the proposed filtering techniques

on two simple RGB images ( without ground truth edge maps), previously used to

show the filtering results in the previous chapters, to demonstrate the basic func-

tionality and effectiveness of the methods. Additionally, we tested the techniques

on two real test images ( with ground truth edge maps ) selected from the BSD500

dataset [100], a widely used benchmark image set for image processing tasks like

edge detection and segmentation. These real-world images provide a robust ba-

sis to analyze the performance of the filtering techniques under more complex

and natural conditions, emphasizing their capability to preserve meaningful edges

while reducing noise.
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5.5. Semantic segmentation of natural images

For this analysis, we have selected two recently developed semantic seg-

mentation techniques to evaluate the edge-aware filtering results. The first is

MeanShift++ [68], an unsupervised method that clusters pixels based on spatial

and color similarities, making it suitable for evaluating edge preservation without

reliance on labeled data. The second is BiSeNet V2 [151], a supervised model

trained on the BSD500 [100] training set, which leverages a real-time architecture

to produce precise segmentation maps. By using these complementary approaches,

we aim to comprehensively assess the performance of the filtering techniques in

terms of edge retention and noise reduction across both simple RGB and real-world

BSD500 test images [100].

In this evaluation, we used two types of metrics, one is reference based and

the other is non-reference based, to quantitatively assess the quality of segmen-

tation for the edge-aware filtered images. This distinction was applied because

the first two simple RGB images have no ground truth edge map for reference,

while the two test images from the BSD500 dataset [100] include annotated ground

truth data. Hence, to evaluate the quality of segmentation for edge-aware filtered

images comparatively, we utilized both reference-based and non-reference-based

metrics, ensuring comprehensive analysis across images with and without ground

truth.

The non-reference based metrics, applicable to all images, include the Edge

Preserving Index (EPI) [6] ( ranges from 0 to 1, where higher is better) to mea-

sure edge retention. Spatial Entropy [26] ( ranges from 0 to log n, where n is the

number of spatial zones, which also lower is better) to assess the uniformity of

segmented regions, Color Homogeneity [11] ( ranges from 0 to 1, where higher

is better) for evaluating consistency within segments, and Normalized Gradient

Deviation (NGD) [77] (lower is better) to determine the preservation of gradient

information. Together, these metrics provide a balanced framework to assess edge

preservation, semantic coherence, and overall segmentation quality, with optimal
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values indicating better performance for each respective criterion. The metrics

Spatial Entropy, Color Homogeneity, Edge Precision Index (EPI), and Normal-

ized Gradient Difference (NGD) provide complementary yet often contradictory

perspectives on segmentation quality. Spatial Entropy assesses the balance of

segment sizes, favoring evenly distributed regions, while Color Homogeneity em-

phasizes the uniformity within segments, prioritizing smoothness over boundary

precision. EPI focuses on accurate edge detection, rewarding sharp and well-

defined boundaries but potentially penalizing over-smoothing. In contrast, NGD

evaluates the preservation of smooth transitions, often conflicting with EPI by pe-

nalizing sharp gradients. These metrics highlight the inherent trade-offs between

uniformity, edge accuracy, and smoothness in evaluating segmentation results.

The first two rows of Table 5.7 show the quantitative values for these met-

rics for two simple RGB image taken from the previous chapters. Where the seg-

mentation is done by the unsupervised MeanShift++ [68] semantic segmentation

technique. Figure 5-9 is showing the corresponding images and their comparative

segmented images, respectively.

The evaluation reveals distinct strengths across techniques, with the orig-

inal image of Pompeii Marine Life 5-9(a) excelling in edge preservation (EPI =

0.4543) and GISF [92] leading in spatial entropy (1.7366) and color homogene-

ity (0.4701), highlighting their suitability for structural detail and region uni-

formity, respectively. The proposed three techniques, particularly the proposed

III from Chapter 4, offer a balanced trade-off, excelling in gradient consistency

(NGD = 0.4820) and achieving the best edge retention (EPI = 0.2071) among

them while maintaining reasonable spatial entropy and color homogeneity. Pro-

posed III stands out as the most versatile for general-purpose segmentation tasks.

Similarly, for the image of the flower in Figure 5-9(i) the proposed I technique

produces the overall best balanced semantic segmented map using MeanShift++

[68].
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5.5. Semantic segmentation of natural images

The reference-based metrics, applicable to the BSD500 dataset with

ground truth, include the F1 Score [6] for Edge ( ranges from 0 to 1, where

higher is better) for measuring overlap between predicted and true edges, Frag-

mentation Index ( FI ) [126] ( ranges from 0 to 1, where lower is better) for as-

sessing edge continuity, Normalized Mutual Information (NMI) [9] ( ranges from

0 to 1, where higher is better) for quantifying agreement with ground truth, and

Hausdorff Distance [73] ( ranges from 0 to the diagonal length of input image,

where lower is better) for evaluating the proximity of predicted and true bound-

aries. The metrics F1-Score for Edges, Fragmentation Index (FI), Normalized

Mutual Information (NMI), and Hausdorff Distance offer diverse and sometimes

conflicting evaluations of segmentation quality. The F1-Score for Edges assesses

the overlap between predicted and ground truth edges, prioritizing precision and

recall for boundary accuracy. Fragmentation Index (FI) evaluates the structural

coherence within segments, penalizing excessive splitting of regions and favoring

compactness. Normalized Mutual Information (NMI) measures the consistency

between predicted and ground truth labels, emphasizing alignment in segmenta-

tion structure without focusing on spatial precision. Hausdorff Distance quantifies

the maximum spatial deviation between segment boundaries, focusing on extreme

mismatches but ignoring overall accuracy. Together, these metrics reflect trade-

offs between edge precision, segment cohesion, label alignment, and boundary

deviations, providing a comprehensive yet contrasting view of segmentation per-

formance.

Figure 5-10 shows the semantic segmentation results of two different test

images from the well-known dataset BSD500 [100] applying the real-time super-

vised technique BiSeNet V2 [151]. From the segmented images, it can be seen

that the proposed techniques produce an overall balanced segmentation map for

both images. The last two rows of Table 5.7 show the quantitative values for these

metrics for two test images, respectively.
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5.5. Semantic segmentation of natural images

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5-9: (a)(i) Original images ( Two simple RGB images, those already used
in the previous chapters to show the filtering results ) and (b)(j) Segmented im-
age from those original images, (c)(k) Segmented image from the filtered images
of BTF [32], (d)(l) SATF [69], (e)(m) GISF [92], and (f-h)(n-p) proposed I, II,
and III techniques from Chapters: 2, 3, and 4 respectively. Segmented using an
unsupervised technique, MeanShift++ [68].
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 5-10: (a)(g) Two original test images from BSD500 dataset [100] and (b)(j)
segmented images from those original images, (c)(k) segmented images from the fil-
tered images of BTF [32], (d)(l) SATF [69], (e) GISF [92], and (f-h)(n-p) proposed
I, II, and III techniques from the Chapters: 2, 3, and 4 respectively. Segmented by
applying a supervised technique called BiSeNet V2 [151], (q)(r) Respective ground
truth edges of the two test images.
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5.6. Conclusions

The superiority of the last three segmentation maps is evident when an-

alyzed across the four metrics: F1-Score, Fragmentation Index (FI), Normalized

Mutual Information (NMI), and Hausdorff Distance (HD). While for the first but-

terfly image the proposed II technique excels in the three different metrics F1

score ( 0.4813 ), FI ( 0.6833 ), and HD ( 70.48 ) indicating the highest agree-

ment with ground truth, reflecting reduced fragmentation and minimal mismatch.

Also, both techniques, the proposed I and III, demonstrate a balanced perfor-

mance across all the metrics. These metrics collectively highlight the robustness

of the last three techniques, with the proposed II standing out as the most consis-

tent performer, demonstrating their overall superiority in handling the trade-offs

between precision, fragmentation, agreement, and boundary alignment. Similarly

for the second test image of the plunger, all three proposed techniques produce

overall well-balanced results, where proposed III excels the most.

5.6 Conclusions

Semantic-aware structure preserving image filtering techniques play a pivotal role

in preserving crucial structural information while reducing irrelevant textures and

noises in the image. Even if the images produced by such an approach pro-

vide rich spatial information, they are seldom used for HSI classification. In this

chapter, the semantic edge-aware structure preserving image filtering techniques

proposed in this thesis are used to construct ESFPs for spectral-spatial classifi-

cation of HSI. The performance of the proposed techniques have been validated

by comparing it with that of many state-of-the-art spectral-spatial HSI classifi-

cation techniques that incorporate spatial information by exploiting MRF, MM,

segmentation, sparse representation, or deep neural networks. The results of the

comparison pointed out the supremacy of the semantic filtering profile over the

state-of-the-art techniques for incorporating spatial information. As a future de-

velopment of this part of work, we plan to use the ESFP as an input to the deep
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models for guiding the extraction of more effective features. To the end, in addi-

tion to this, the proposed filtering techniques are also validated through semantic

segmentation of natural images by one unsupervised technique, MeanShift++, and

another supervised technique, BiSeNet V2. The comparative results have shown

the potential of the techniques in the overall balanced image segmentation. As a

future task as an extension to this part, we plan to develop a new approach for

semantic segmentation, incorporating our filtering techniques.
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