
Chapter 6

Identification of Parasite Eggs

using Machine Learning

Algorithms

After segmenting and extracting features, the detected objects are classified into

multiple classes using machine learning-based classifiers. These classes include

three types of parasite eggs: Ascaris, Necator, and Trichuris, and one class of

non-egg objects. The experimentation involves evaluating several classifiers, such

as Artificial Neural Network (ANN), Support Vector Machine (SVM), k-nearest

Neighbours (kNN), Decision Tree (DT), Random Forest (RF), and eXtreme Gradi-

ent Boosting (XGBoost). These classifiers are tested with various hyper-parameter

configurations, employing an empirical approach to determine optimal settings for

different feature sets. Table 6.1 shows some important hyper-parameter settings

used in various classifiers for our classification tasks.

Certain parameters, such as the value of K in k-nearest neighbours (kNN),

maximum depth, minimum sample split, etc., in decision trees and random forest

classifiers, are determined using the cross-validation method. This approach in-

volves performing classification with k-fold cross-validation for different values of

each parameter and selecting the value that yields optimal performance. Figure

6-1 illustrates an example of determining the value of K (number of neighbours)

in the kNN classification algorithm using Hu’s seven invariant moments. The fig-

ure shows that the highest classification accuracy is achieved when K=7. Similar

procedures are applied to optimize parameters for other feature sets.

In the following sections, the findings of our classification experiments
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Table 6.1: Different classification algorithms and hyper-parameter settings for
classifying parasite egg images

Classifier Parameters
ANN Number of Hidden Layers: 2 (Hu moments, Texture and pixel

intensity feature), 3 (for other moments)
Learning rate: Adaptive learning rate based on Adam (Adap-
tive Moment Estimation) algorithm
Activation Function: ReLU (Rectified Linear Unit)
Optimizer: SGD (Stochastic Gradient Descent) and Adam
(Adaptive Moment Estimation)
Batch Size: 64.

SVM Kernel type: Radial Basis Function (RBF)
Degree: 2
Gamma Parameter:
Class Weight: total samples / (number of classes × number
of samples of each class)
Decision Function: One-Vs-Many.

kNN No. of Neighbours: Determined using cross-validation
method
Distance Metric: Euclidean distance (for Hu moments), and
Manhattan distance (for others).

Decision Tree criterion: Entropy
Max depth, Min Samples Split, Min Samples Leaf: Deter-
mined using cross-validation
Max Features: square root of total features.

Random Forest No. of estimators, max depth, min samples split, min samples
leaf, max features: Determined using cross-validation.

XGBoost learning rate: 0.1
No. of estimators, max depth: determined using cross-
validation
gamma: Tuned using cross-validation within the range of [0,1]
alpha (L1 regularization), (L2 regularization): Empirically
chosen between [0, 10].

using different sets of features are provided. At first, all the objects that are not

parasite eggs are grouped into a single class, and the results are examined. Later

on, the effectiveness is evaluated by dividing non-egg objects into multiple classes

and comparing the outcomes with our initial approach. This step-by-step analysis

allows us to gain insights into the effectiveness of the classification methods in

different scenarios.
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Figure 6-1: Change of classification accuracy with K-value for KNN with Hu’s
moments

6.1 Classification Using Four Classes of Objects

For the classification task, using a single class of non-egg object and three parasite

eggs, the training dataset is prepared using various data augmentation techniques,

as discussed in Chapter 3. All classifiers are trained using a randomly selected

80% of the total data, and validation is done using 10-fold cross-validation method.

The remaining 20% of samples are used for testing and evaluating the models.

6.1.1 Classification Results Obtained Using Image Mo-

ments

6.1.1.1 Classification Results using Hu’s Moments

To obtain an effective ML-based trained model, several experiments are performed

by fine-tuning several hyper-parameters, as mentioned in 6.1. The highest overall

classification accuracies obtained by various classifiers are recorded in Table 6.2.

The confusion matrices and classification reports obtained from the testing of ANN

and SVM models are shown in Figures 6-2 and 6-3.

The results show that Hu’s moments fail to produce satisfactory outcomes

across all classification methods. Particularly, it exhibits challenges in low iden-

tification accuracy for Hookworm eggs within our dataset. This limitation may

be due to the similarity between the internal textures of Hookworm eggs and the

background, resulting in resemblances with other non-egg objects present in the

images.
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Table 6.2: Classification Results Obtained by Various Classifiers Using Hu’s Seven
Moments

Classifier Overall Accu-
racy (Train-
ing)

Overall Accu-
racy (Test)

ANN 89.72% 88.87%
SVM 88.92% 87.85%
kNN 84.45% 82.77%
Decision Tree 85.34% 84.21%
Random Forest 89.25% 87.84%
XGBoost 90.86% 89.52%

(a) (a) Confusion Matrix (Testing) (c) (b) Classification Report (Testing)

Figure 6-2: Test results of ANN using Hu’s seven moments

(a) (a) Confusion Matrix (Testing) (c) (b) Classification Report (Testing)

Figure 6-3: Test results of XGBoost using Hu’s seven moments
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6.1.1.2 Classification Results Obtained Using Chebyshev, Legendre,

and Krawtchouk Moments

The feature dimension grows with the order of moments as (n+1)(n+2)
2

, where n is

the moment order. Various experiments are conducted, exploring different moment

orders, to observe how accuracy changes with moment orders for all three types of

moments. The overall classification accuracy obtained by different classifiers using

different orders of Chebyshev, Legendre, and Krawtchouk Moments presented in

Table 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8.

Table 6.3: Classification Results Obtained by ANN using Various types of Image
Moments

Moment
Order

No. of Mo-
ments

Legendre
Moment

Chebyshev
Moments

Krawtchouk
Moments

5 21 89.9 87.5 78.7
10 66 92.7 89.6 77.4
15 136 92.1 93.2 84.5
20 231 91.3 91.7 88.1
25 351 90.0 91.2 88.6
30 496 88.7 90.1 89.5
35 666 88.1 89.6 90.8
40 861 86.3 88.3 92.1
45 1081 85.5 86.8 91.9
50 1326 83.7 85.2 92.0

Table 6.4: Classification Results Obtained by SVM Using Various Types of Image
Moments

Moment
Order

No. of Mo-
ments

Legendre
Moment

Chebyshev
Moments

Krawtchouk
Moments

5 21 90.7 86.8 76.0
10 66 93.1 93.5 77.9
15 136 93.0 92.5 83.0
20 231 91.6 91.4 87.5
25 351 90.5 90.5 85.7
30 496 89.3 89.4 89.6
35 666 88.6 88.1 90.8
40 861 85.9 87.6 91.3
45 1081 84.4 86.3 91.6
50 1326 83.2 84.6 91.5

Based on the results presented in the above tables, a graph is drawn as

shown in Figure 6-4, highlighting the impact of moment order on the performance
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Table 6.5: Classification Results Obtained by kNN using Various types of Image
Moments

Moment
Order

No. of Mo-
ments

Legendre
Moment

Chebyshev
Moments

Krawtchouk
Moments

5 21 87.7 89.3 79.1
10 66 90.4 90.3 80.3
15 136 89.1 89.2 82.1
20 231 88.2 87.4 84.8
25 351 87.3 87.5 85.7
30 496 86.8 86.9 87.0
35 666 85.2 84.7 88.9
40 861 83.6 83.2 89.5
45 1081 81.5 82.6 89.8
50 1326 81.3 80.7 89.9

Table 6.6: Classification Results Obtained by Decision Tree Using Various Types
of Image Moments

Moment
Order

No. of Mo-
ments

Legendre
Moment

Chebyshev
Moments

Krawtchouk
Moments

5 21 87.5 89.6 80.3
10 66 89.4 90.4 81.4
15 136 90.2 89.7 82.8
20 231 88.5 88.8 84.5
25 351 87.7 87.3 85.7
30 496 87.2 86.7 86.9
35 666 85.6 85.3 88.5
40 861 84.6 84.6 89.6
45 1081 82.5 82.7 89.8
50 3126 81.4 81.1 89.8

Table 6.7: Classification Results Obtained by Random Forest Using Various Types
of Image Moments

Moment
Order

No. of Mo-
ments

Legendre
Moment

Chebyshev
Moments

Krawtchouk
Moments

5 21 89.5 88.3 79.2
10 66 92.1 91.6 79.9
15 136 92.7 92.8 82.6
20 231 91.5 92.2 84.3
25 351 90.7 90.5 86.9
30 496 90.3 88.6 88.6
35 666 87.9 87.3 90.3
40 861 86.2 86.6 90.7
45 1081 83.5 85.1 91.0
50 3126 82.3 83.7 90.7
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Table 6.8: Classification Results Obtained by XGBoost Using Various Types of
Image Moments

Moment
Order

No. of Mo-
ments

Legendre
Moment

Chebyshev
Moments

Krawtchouk
Moments

5 21 91.2 88.8 79.0
10 66 92.9 93.1 81.7
15 136 92.7 93.4 84.2
20 231 92.4 92.3 87.5
25 351 90.7 91.2 88.9
30 496 89.3 89.8 89.5
35 666 88.6 88.3 91.5
40 861 86.2 87.5 92.0
45 1081 83.7 86.3 91.6
50 1326 82.4 83.6 91.2

of various classifiers. It is observed that the classification accuracy generally in-

creases with the moment order for Krawtchouk moments up to a certain level.

However, for Legendre and Chebyshev moments, the classification accuracy tends

to decrease as the moment order increases. As Legendre and Chebyshev moments

are prone to sensitivity to noise, the introduction of additional information through

higher moment orders may lead to ambiguity, resulting in a decrease in classifica-

tion accuracy as the moment order increases. Krawtchouk moments exhibit less

sensitivity to noise compared to the other two types of moments. This robustness

enables Krawtchouk moments to effectively capture the underlying structure of the

data even in the presence of noise. However, the classification accuracy increases

only up to a certain level due to the effect of increasing the feature dimension. The

highest overall classification results obtained by different classifiers are provided

in Table 6.9.

Table 6.9: Highest classification accuracy obtained by different classifiers using
different moment orders

Classifier Training Accuracy Test Accuracy
ANN 93.2 (Chebyshev, order 15) 91.6%
SVM 93.5 (Chebyshev, order 10) 92.2%
kNN 90.4 (Legendre, order 10) 89.2%
Decision Tree 90.4 (Chebyshev, order 10) 89.5%
Random Forest 92.7 (Chebyshev, order 15) 91.2%
XGBoost 93.4 (Chebyshev, order 15) 91.9%

The test results for SVM and XGBoost in the form of confusion matrices

and classification reports are shown in Figures 6-5 and 6-6.
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(a) Accuracy Vs Moment Order for
ANN

(c) Accuracy Vs Moment Order for
SVM

(e) Accuracy Vs Moment Order for
kNN

(g) Accuracy Vs Moment Order for De-
cision Tree

(i) Accuracy Vs Moment Order for
Random Forest

(k) Accuracy Vs Moment Order for
XGBoost

Figure 6-4: Change of classification accuracy with moment orders for different
classifiers
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(a) (a) Confusion matrix (c) (b) Classification report

Figure 6-5: Test result of SVM using 10th order Chebyshev moment

(a) (a) Confusion matrix (c) (b) Classification report

Figure 6-6: Test result of XGBoost using 15th order Chebyshev moments

6.1.1.3 Use of Dimensionality Reduction Techniques for Higher-Order

Moments

To optimize classification accuracy across different types of image moments, two

widely used feature dimension reduction techniques, Principal Component Anal-

ysis (PCA) and Linear Discriminant Analysis (LDA) are applied. For Legendre

and Chebyshev moments, both dimensionality reduction methods are applied to

feature sets generated by the 10th and 15th orders, respectively, as these orders

achieve the highest classification accuracy. Likewise, for Krawtchouk moments,

the 45th order is used.

The optimal number of PCA components for a classifier is determined

by evaluating its performance across different numbers of components within the

range of 1 to 300. An example illustrating how the performance of a Random

Forest classifier changes with the number of PCA components when using Cheby-
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shev moments is shown in Figure 6-7. The highest training classification results

achieved by various classifiers are presented in Table 6.10, along with the improve-

ment rates with previous results. The improvement rate in classification accuracy

for a classifier is calculated by comparing the highest accuracy achieved by a clas-

sifier using a specific moment without PCA to the accuracy obtained with PCA.

The formula for computing this rate is represented by Equation 6.1.

Percentage =
resultPCA − result0

resultPCA

× 100 (6.1)

Where resultPCA represents the highest classification result obtained by the spe-

cific classifier using the specific image moment with PCA components, and result0

represents the highest classification accuracy obtained by the same classifier using

the same image moment (which may differ in moment order) without using PCA

analysis.

Figure 6-7: Change of classification accuracy with the number of PCA compo-
nents for SVM with 50th order Chebyshev Moments

Test results of the classification models with the highest training accuracy

are presented in Table 6.11.

Similar to PCA, LDA is also employed to reduce the feature dimension.

The reduced feature set is subsequently used to evaluate the performance of various

classification algorithms. Table 6.12 shows the highest training accuracies achieved

by various classifiers using different types of feature sets obtained after applying

LDA, while Table 6.13 displays the test results of the best-fitted models.
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Table 6.10: Highest training accuracy yielded by different classifiers using PCA
on different types of image moments

Moment Classifier No. of PCA
components

Accuracy Improvement
in accuracy

Legendre
Moment

ANN 10 93.4% 0.75%
SVM 8 94.5% 1.48%
kNN 23 90.9% 0.55%
Decision Tree 19 91.5% 1.42%
Random Forest 20 93.2% 0.54%
XGBoost 22 94.2% 1.38%

Chebyshev
Moment

ANN 10 94.7% 1.58%
SVM 9 95.2% 1.79%
kNN 22 91.0% 0.77%
Decision Tree 21 91.8% 1.53%
Random Forest 19 93.6% 0.85%
XGBoost 23 94.5% 1.16%

Krawtchouk
Moment

ANN 15 93.3% 1.29%
SVM 12 93.7% 2.24%
kNN 28 91.3% 1.53%
Decision Tree 22 91.7% 2.07%
Random Forest 23 91.9% 0.98%
XGBoost 27 93.2% 1.29%

Table 6.11: Highest test accuracy of different classifiers using moment-based fea-
tures and PCA analysis

Classifier Train Accuracy Test Accuracy
ANN 94.7 (Legendre Moment) 93.6
SVM 95.2 (Chebyshev Moment) 94.4
kNN 91.3 (Krawtchouk Moment) 89.8
Decision Tree 91.8 (Chebyshev Moment) 90.3
Random Forest 93.6 (Chebyshev Moment) 92.4
XGBoost 94.5 (Chebyshev Moment) 93.5

The performances of all the classifiers using both dimensionality reduction

methods are evaluated and compared for their effectiveness. Both the methods

perform nearly identically, although the analysis as shown in Figure 6-8 suggests

that PCA may be more beneficial than LDA when applied to the specified three

types of image moments.
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Table 6.12: Highest training accuracy yielded by different classifiers using LDA
on different types of image moments

Moment Classifier Accuracy Improvement
in accuracy

Legendre
Moment

ANN 93.8% 1.17%
SVM 94.1% 1.06%
kNN 90.9% 0.55%
Decision Tree 91.1% 0.99%
Random Forest 93.1% 0.43%
XGBoost 93.7% 0.85%

Chebyshev
Moment

ANN 94.1% 0.74%
SVM 94.3% 1.27%
kNN 91.5% 1.31%
Decision Tree 91.5% 1.20%
Random Forest 93.4% 0.64%
XGBoost 94.9% 1.58%

Krawtchouk
Moment

ANN 93.1% 1.07%
SVM 92.9% 1.40%
kNN 90.5% 0.66%
Decision Tree 91.3% 1.64%
Random Forest 91.9% 0.98%
XGBoost 92.8% 1.19%

Table 6.13: Highest test accuracy of different classifiers using moment-based fea-
tures and LDA analysis

Classifier Train Accuracy Test Accuracy
ANN 94.1 (Chebyshev Moment) 93.0
SVM 94.3 (Chebyshev Moment) 93.1
kNN 91.5 (Chebyshev Moment) 90.2
Decision Tree 91.5 (Chebyshev Moment) 89.6
Random Forest 93.4 (Chebyshev Moment) 91.7
XGBoost 94.9 (Chebyshev Moment) 93.2

6.1.2 Classification using Texture and Shape-based Fea-

tures

Texture and shape-based features are extracted from the segmented greyscale

images, as mentioned in Chapter 5. In Table 6.14, a summary is presented, showing

the overall training and testing accuracy achieved through the training of various

classifiers using the texture and shape-based feature set. For a more granular

insight into the classification performance, a detailed report of test accuracy for

each class is provided in Table 6.15. The experiments reveal that all classifiers

produce satisfactory results, surpassing the experiments of earlier sections. In

104



Figure 6-8: Performance analysis of different classifiers using three types of image
moments with PCA and LDA

general, SVM and XGBoost exhibit a slight edge over the other classifiers in

overall performance. The confusion matrix and classification report generated by

the testing process of both the models are shown in Figure 6-9.

Table 6.14: Overall classification accuracy of various classifiers using texture and
shape-based features

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

Training 95.8% 96.8% 94.5% 94.8% 95.3% 96.2%
Testing 94.7% 95.5% 93.2% 93.2% 94.3% 94.7%

Table 6.15: Classification accuracy (test) for each class using texture and shape-
based features

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

Round-
worm
(Ascaris)

96.22 96.76 94.20 94.20 95.95 95.01

Hook-
worm
(Neca-
tor)

90.87 93.22 91.01 90.59 91.15 92.39

Whip-
worm
(Trichuris)

95.24 95.11 94.16 96.20 94.70 96.20

Non-Egg 96.57 96.84 93.68 94.78 95.19 95.05

105



(a) (a) Confusion Matrix (c) (b) Classification report

Figure 6-9: Test result of SVM using Texture and Shape-based features

(a) (a) Confusion Matrix (c) (b) Classification report

Figure 6-10: Test result of XGBoost using Texture and Shape-based features

6.1.3 Classification using Pixel Intensity-based Features

Pixel intensity-based features, such as standard deviation, variance, maximum,

minimum, and mean pixel values, are computed by dividing segmented images into

multiple blocks of tiles and extracting features from each block, as discussed in

Chapter 5. In this study, the segmented images are resized to 120×120 pixels, and

experiments are performed using various block sizes for partitioning. The overall

classification accuracies of different classifiers are presented in Table 6.16. An

analysis is conducted to assess the impact of the block size or feature dimension on

classification accuracy, which can be visualised through Figure 6-11. It is observed

that the classification accuracy tends to decrease as the block size increases. It

suggests that smaller blocks provide more detailed information about the intensity

distribution. Extracting information from multiple smaller regions contributes to

the creation of a more robust feature vector. Conversely, larger block sizes cover a
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larger area, which leads to extracting less granular information. The test results of

the classifiers using 10 block-sized feature sets are presented in Table 6.17. Among

all the classifiers, ANN and SVM achieve the highest accuracy during the testing

process. The results of both classifiers can be visualised in the form of a confusion

matrix and classification report as shown in Figures 6-12 and 6-13.

Table 6.16: Training accuracy of different classifiers using Pixel intensity-based
features for Four Classes

Block
Size

Feature
Dimen-
sion

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

10× 10 720 95.3% 95.4% 92.5% 94.1% 94.7% 95.3%
20× 20 180 94.7% 94.6% 92.6% 92.9% 93.9% 94.9%
30× 30 80 92.6% 93.1% 91.3% 91.3% 92.3% 93.5%
40× 40 45 91.3% 91.8% 90.4% 90.7% 91.3% 91.6%
60× 60 20 88.8% 89.7% 87.8% 88.5% 89.0% 90.0%

Figure 6-11: Change of Classification Accuracy with Size of the Blocks or Di-
mension of Pixel-Intensity-based Feature set

The feature vector generated by 10× 10 block sizes has a high dimension

of 720, which may affect the performance of a classification algorithm. Therefore,

PCA analysis is applied to evaluate whether the accuracy improves or not. The

number of PCA components for each classification algorithm is determined empir-

ically as discussed in Section 6.1.1.3. This improves the results a little; however,

no significant improvement in the classification accuracy is found. The results of

PCA analysis are shown in Table 6.18. Test accuracy of each class of objects is

also recorded and provided in Table 6.19.
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Table 6.17: Test accuracy of different classifiers for each class using pixel intensity-
based features

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

Round-
worm

96.36% 94.47% 92.12% 93.26% 95.11% 94.94%

Hook-
worm

91.29% 92.81% 89.25% 90.15% 91.52% 90.93%

Whip-
worm

95.11% 95.79% 90.84% 92.44% 93.36% % 95.36

Non-Egg 94.09% 93.41% 91.15% 92.78% 92.85% % 94.72
Overall
Accuracy

94.23% 94.12% 90.84% 92.16% 93.21% 93.98%

(a) (a) ANN (c) (b) SVM

Figure 6-12: Test result of ANN using pixel intensity-based features

6.1.4 Classification Using Combinations of Different Fea-

ture Sets

The classification results presented in the previous sections show that the tex-

ture and shape-based and pixel intensity-based features are better choices for any

classifier compared to image moment-based features. Although satisfactory test

results are achieved using these feature sets, further experimentation is conducted

to improve the performance of the classifiers by combining different types of fea-

ture sets. In this work, two or more distinct feature vectors are combined to

create a single feature vector. As the Chebyshev, Legendre, and Krawtchouk

moments produced varying results with different moment orders, the feature sets

that yielded the highest accuracy through PCA analysis are utilized. Similarly,
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(a) (a) ANN (c) (b) SVM

Figure 6-13: Test result of SVM using pixel intensity-based features

Table 6.18: Classification accuracy for different classifiers using PCA analysis on
pixel intensity-based features

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

PCA Com-
ponent

16 13 24 23 24 18

Train Ac-
curacy

96.2 96.0 93.4 94.9 95.8 96.4

Test Accu-
racy

94.2 94.9 92.3 92.5 93.9 94.4

Improvement
rate
(Train)

0.94% 0.62% 0.96% 0.84% 1.15% 1.14%

Improvement
rate (Test)

0.74% 0.96% 0.66% 0.84% 0.85% 0.1%

Table 6.19: Classification accuracy (Test) for each class using pixel intensity-based
features using PCA

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

Round-
worm (As-
caris)

94.47 96.22 93.12 93.39 95.28 95.28

Hook-worm
(Necator)

92.67 92.95 90.46 90.18 91.84 92.95

Whip-worm
(Trichuris)

95.24 95.38 93.75 94.97 94.29 95.24

Non-Egg 94.37 95.05 92.03 91.35 93.96 94.23
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for the pixel intensity-based feature set, the feature vector obtained using PCA

analysis is also used. Table 6.20 shows overall training accuracy obtained by var-

ious classifiers using different combinations of features. Based on the results, the

highest classification results achieved by the different classifiers are summarized in

Table 6.21. It is observed that a combination of Hu moments, pixel intensity, and

texture and shape-based features achieves the highest results with the majority

of classifiers. An analysis is conducted to visualise the improvement in accuracy

of different classifiers compared to the highest results from previous experiments,

as illustrated in Figure 6-14. The analysis shows a little improvement in overall

classification results using a combined feature set.

Table 6.20: Training classification accuracy using combinations of different feature
sets

Feature Combina-
tion

ANN SVM kNN Decision
Tree

Random
Forest

XGBoost

Hu + Pixel intensity 94.8 95.9 93.0 94.6 93.6 95.4
Hu+Texture 95.7 96.1 93.1 94.1 95.3 96.3
Legendre + Pixel in-
tensity

95.4 95.6 92.6 93.8 93.8 94.8

Legendre + Texture 94.7 95.8 92.6 93.7 93.8 95.6
Chebyshev + Pixel in-
tensity

95.2 95.7 92.4 91.1 94.7 95.9

Chebyshev + Texture 93.6 94.9 92.9 93.3 95.1 95.2
Krawtchouk + Pixel
intensity

93.3 93.8 93.2 91.8 92.8 92.9

Krawtchouk + Tex-
ture

94.2 93.7 92.3 89.4 91.7 94.3

Pixel intensity + Tex-
ture

95.9 96.7 94.5 95.6 95.8 96.3

Hu + Pixel intensity
+ Texture

96.1 96.8 94.4 95.7 95.8 96.8

Table 6.21: Highest classification results of the classifiers with combination of
different features

Classifier Feature Training
Accuracy

Test Accu-
racy

ANN Hu + Pixel intensity+Texture 96.1 94.7
SVM Hu + Pixel intensity+Texture 96.8 95.6
kNN Pixel intensity + Texture 94.5 93.1
Decision Tree Hu + Pixel intensity + Tex-

ture
95.7 94.2

Random Forest Pixel intensity + Texture 95.8 94.5
XGBoost Hu + Pixel intensity + Tex-

ture
96.8 95.3
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Figure 6-14: Analysis of test accuracy of different classifiers with individual vs
combined feature sets

6.2 Classification using Multiple Classes of Non-

Egg Objects

During the research, it is observed that many previous works do not consider the

classification accuracy of non-egg objects or exclude them from their classification

tasks. However, it is crucial to include non-egg objects to effectively distinguish

them from various types of parasite eggs. So far, this study uses only a single

class of non-egg objects obtained from the segmentation process. Since non-egg

objects lack the regular shape or texture of parasite eggs, assigning all non-egg

objects to a single class may increase the misclassification rate, especially with the

introduction of new species of parasite eggs in the future. Moreover, it is observed

that the identification rate of Hookworm eggs is relatively lower than the other two

types of parasite eggs. To address these issues, the non-egg objects are divided into

multiple classes. In order to do so, clustering methods, including K-means and the

Gaussian Mixture Model (GMM) are used using pixel intensity and texture-shape-

based features. These features are chosen due to their robustness, as observed in

the previous sections. The results are then analyzed to determine the optimal

number of clusters for the non-egg objects based on the silhouette score. Figures

6-15 and 6-16 show the change in silhouette scores with respect to the number of

clusters for K-Means and Gaussian Mixture Model, respectively.

The analysis of silhouette scores indicates that the optimal number of clus-

ters falls between two and three, as suggested by both methods. In this study,

all segmented images of Non-Egg objects from the preceding sections are used.

In the case of two clusters, Cluster-1 comprises 2218 images, while Cluster-2 en-
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(a) (a) Silhouette score Vs number
of clusters using KMeans with Tex-
ture and Shape-based features

(c) (b) Silhouette score Vs num-
ber of clusters using KMeans with
Pixel Intensity-based feature sets

Figure 6-15: Analysis of Silhouette score for finding optimum number of clusters
using KMeans

(a) (a) Silhouette score Vs number
of clusters using GMM with Tex-
ture and Shape-based features

(c) (b) Silhouette score Vs number
of clusters using GMM with Pixel
Intensity-based features

Figure 6-16: Analysis of Silhouette score for finding optimum number of clusters
using Gaussian Mixture Model

compasses 1505 images. For three clusters, the distribution is: 1008 images for

Cluster-1, 1256 images for Cluster-2, and 1449 images for Cluster-3. A few images

of different clusters are shown in Figures 6-17, 6-18 and 6-19. To increase the

number of samples in each class, a few data augmentation techniques are applied.

These include horizontal and vertical flipping, rotation, and blurring. Following

the data augmentation, some augmented images that looked similar to the original

images, such as those containing air bubbles and round-shaped objects, are care-

fully discarded. Finally, a total of 18,117 segmented objects, including parasite

eggs and non-egg objects are selected while considering two clusters of non-egg

objects. In the three-cluster approach, the total number of objects used in classi-
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fication is 21,717. Table 6.22 presents the distribution of objects across each class

for classification tasks.

Figure 6-17: Non-Egg objects in cluster-1 with 3 optimal clusters

Figure 6-18: Non-Egg objects in cluster-2 with 3 optimal clusters

Figure 6-19: Non-Egg objects in cluster-3 with 3 optimal clusters

Table 6.22: Number of segmented images in each class for classification task using
multiple non-egg classes

Class → Round-
worm

Hook-
worm

Whip-
worm

NonEgg-
1

NonEgg-
2

NonEgg-
3

Two cluster-
ing approach

3655 3618 3644 3600 3600 x

Three cluster-
ing approach

3655 3618 3644 3600 3600 3600

Using two classes of Non-Egg objects: The highest training classifi-

cation results from our experimentation with five classes of objects are shown in

Table 6.23. Based on the results, an analysis of the classification results of different

classifiers with various feature sets is performed as shown in Figure 6-20. From the

analysis, it is observed that the texture and shape-based feature set yields better

classification results than the others. The test results of various classifiers with

the texture-based feature set are presented in Table 6.24. The confusion matrix
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Table 6.23: Training results of various classifiers using Two classes of Non-eggs
and Three parasite eggs

Classifier
/ Feature

ANN SVM kNN Decision
Tree

Random
Forest

XGBoost

Legendre
Moments

86.2 85.5 78.8 76.5 82.3 85.7

Chebyshev
Moments

85.1 86.2 77.5 75.8 81.6 86.5

Krawtchouk
Moments

82.1 83.3 80.2 76.0 81.3 81.8

Hu Mo-
ments

85.7 82.8 84.3 77.1 81.2 83.6

Pixel In-
tensity

89.1 85.5 85.1 78.6 88.2 90.2

Texture
and Shape

89.3 91.3 84.6 82.5 89.6 90.8

Table 6.24: Test accuracy for each class using texture and shape-based features
while trained for five classes of objects

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

Round-
worm

92.62 95.49 87.16 85.79 93.44 94.13

Hook-worm 90.06 93.23 85.22 84.53 91.44 93.09
Whip-worm 92.46 95.06 86.56 84.36 93.55 94.79
Non-Egg 1 82.92 83.75 78.89 75.14 83.19 84.17
Non-Egg 2 80.64 83.98 76.46 76.04 81.89 82.31
Overall Ac-
curacy

87.77 90.34 82.86 81.17 88.74 89.73

and classification report, indicating precision, recall, and F1 score for each class,

obtained from SVM and XGBoost, are shown in Figures 6-21 and 6-22.

Using three classes of Non-Egg objects: Training results of various

classifiers using six classes of objects: three parasite eggs and three non-eggs,

are presented in Table 6.25. Similar to the previous experimentation, analysis of

classification accuracies shows that the texture and shape-based feature set also

yields better performance when using six classes of objects. The test results of

all the classifiers are tabulated in Table 6.26. It is observed that all the classifiers

performed equally, with ANN, SVM, and Random Forest showing slight advan-

tages. Examples of confusion matrices and classification reports for two models

are shown in Figures 6-23 and 6-24, respectively.

A comparison of the overall classification results of the classifiers when
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Figure 6-20: Analysis of classification accuracy of different classifiers with dif-
ferent features while using two classes of non-eggs and three parasite eggs

(a) SVM (c) XGBoost

Figure 6-21: Confusion matrix obtained from testing SVM and XGBoost models
using five classes of objects

(a) SVM (c) XGBoost

Figure 6-22: Classification report obtained from testing SVM and XGBoost
models using five classes of objects
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Table 6.25: Training results of various classifiers while using three classes of Non-
eggs and three parasite eggs

Classifier
/ Feature

ANN SVM kNN Decision
Tree

Random
Forest

XGBoost

Legendre
Moments

83.2 82.3 80.8 76.5 83.3 84.2

Chebyshev
Moments

84.1 84.2 81.9 81.8 82.8 85.4

Krawtchouk
Moments

80.7 81.5 79.1 82.1 80.1 84.8

Hu Mo-
ments

83.3 82.7 79.4 80.6 82.2 79.5

Pixel In-
tensity

89.4 90.2 88.3 87.5 88.3 88.6

Texture
and Shape

91.4 91.3 89.5 90.3 91.3 90.9

Table 6.26: Test accuracy for each class using texture and shape-based features
while trained for six classes of objects

ANN SVM kNN Decision
Tree

Random
Forest

XG-
Boost

Round-
worm

96.57 97.53 94.65 93.28 96.57 96.42

Hook-worm 94.06 95.72 92.04 92.44 94.34 94.78
Whip-worm 95.90 96.72 93.30 94.39 96.31 96.71
Non-Egg 1 83.61 81.67 83.01 82.19 82.08 81.33
Non-Egg 2 86.25 85.28 84.03 85.97 86.39 86.27
Non-Egg 3 82.78 83.61 81.53 81.53 83.89 83.11
Overall Ac-
curacy

89.89 90.12 88.12 88.33 89.95 89.80

utilizing single, two, and three non-egg classes of objects is made and shown in

Figure 6-25. Experimenting with multiple non-egg classes reveals that the overall

accuracy of the classifiers decreases compared to the previous experiments using

a single non-egg class. However, a comparative analysis of the identification rates

of various classes of parasite eggs indicates an improvement in the identification

rate of hookworm eggs. The difference in the identification rate of each class of

parasite egg while using single and multiple non-egg classes is illustrated in Table

6.27.
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(a) Random Forest (c) SVM

Figure 6-23: Confusion matrix obtained from testing Random Forest and SVM
using six classes of objects

(a) Random Forest (c) SVM

Figure 6-24: Classification report obtained from testing Random Forest and
SVM using six classes of objects

Figure 6-25: Analysis of classification accuracy of different classifiers using single
and multiple non-egg classes of objects
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Table 6.27: Classification accuracy of different classes of parasite eggs with single
and multiple non-egg classes

Parasite Egg Highest accuracy us-
ing a single Non-Egg
class

Highest accuracy us-
ing multiple Non-Egg
class

Roundworm 96.76 97.53
Hookworm 93.22 95.72
Whipworm 96.20 96.72

6.3 Result Analysis and Discussion

The performances of the classifiers with different feature sets are analyzed and

illustrated in Figure 6-26. The analysis shows that, among all the classifiers,

SVM and XGBoost demonstrated marginally superior performance. It is observed

that texture and shape-based features yield the highest test accuracy with SVM.

Moreover, combining Hu moments, texture and shape features, and pixel intensity-

based features results in a slightly higher accuracy with SVM and XGBoost.

Figure 6-26: Analysis of classification accuracy of different classifiers using a
single non-egg object and three parasite eggs

The incorporation of multiple non-egg classes in classification tasks reveals

a decrease in overall classification accuracy. However, it notably enhances the

classifier’s ability to identify parasite eggs, particularly in the case of hookworms.

A comparison of the classification accuracy of each parasite egg class when using

multiple non-egg classes versus a single non-egg class is made as shown in Figure

6-27. This comparative analysis focuses on the results obtained by SVM and
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XGBoost, as these classifiers demonstrate superior performance using texture and

shape-based features.

(a) The classification accuracy of various
parasite egg classes achieved by SVM us-
ing single and multiple non-egg classes

(b) The classification accuracy of various
parasite egg classes achieved by XGBoost
using single and multiple non-egg classes

Figure 6-27: A comparison of the classification accuracy of different parasite egg
classes using single and multiple non-egg classes

This decline in classifier accuracy using multiple non-egg classes is likely

due to the irregular properties of non-egg objects, which vary widely in size, shape,

colour, and texture. However, the findings suggest that instead of grouping all

non-egg objects into a single class, dividing them into two or more classes may

improve the classification accuracy of parasite eggs.

6.4 Comparison with Previous Works

The classification accuracy obtained from this study is compared with several well-

known works in this field. Table 6.28 shows the results of the various previous

works and the findings from our study.

Table 6.28: Comparison of results with similar works in the past

Article Number

of

Classes

Classifier Result Remarks

Yang et al.

(2001) [9]

7 ANN 90% Only a small number of im-

ages were used in the exper-

iment
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Dogantekin

et al.

(2008) [33]

16 Adaptive

network-based

fuzzy interface

system

93.5% It is not clear how many

unique images are used by

the authors to train the

classifier. Datasets for

training and testing are cre-

ated by rotating the images

from 00 to 1650 in the steps

of 150

Avci and

Varol

(2009) [34]

16 SVM 97% It is not clear how many

unique images are used by

the authors to train the

classifier. Datasets for

training and testing are cre-

ated by rotating the images

from 00 to 1650 in the steps

of 150, which produced 120

images for each type of par-

asite egg.

Bruun et

al. (2012)

[76]

2 Linear Discrim-

inant Analysis

(LDA) and

Quadratic

Discriminant

Analysis (QDA)

92.7% 282 segmented images of a

single type of parasite egg

are used, where one class

contains 249 and the other

one contains 33 images.

Hadi et al.

(2012) [2]

2 Threshold with

Logical Classifi-

cation Method

93% and

94%

100 images for each type of

parasite egg are used.

Zhang et

al. (2014)

[63]

3 SVM 83.3%

Li et al.

(2015) [77]

6 95% It is not clear how many im-

ages are used for training,

but the article mentioned

that images from 20 cases

for each of the two types of

parasite eggs and impurities

are used.
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Abdalla

and Sekar

(2017) [39]

11 ANN 96.6% Two datasets are used,

where one contains 4402 im-

ages of 7 species of Eime-

ria and the other contains

2902 images of 11 species

of Eimeria. However, it is

observed that both datasets

are not well balanced for

each class.

N. A.

Khairudin

et al.

(2020) [74]

2 Logical if-else

method based

on area and size

84% and

76%

50 images of each type of

parasite egg are used in clas-

sification.

Sandra

Valeria

Inacio et

al. (2020)

[93]

4 SVM Kappa

index =

0.7636

The study used a sufficient

number of images, which is

10.699. However, the collec-

tion has a significantly low

amount of parasite egg im-

ages. Almost 70% of the

samples are fecal impurities,

and the rest contain images

of three types of parasite

eggs.

Our study

(with a sin-

gle non-egg

class)

4 (3

parasite

eggs

and 1

non-egg

)

SVM Overall

accuracy

96.8%

The dataset contains a sat-

isfactory quantity of images

that are balanced for each

class by using various data

augmentation techniques.
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Our study

(with three

non-egg

classes)

6 (3

parasite

eggs

and 3

non-egg

)

SVM 97.5%,

95.7%

and 96.7%

respec-

tively for

the three

different

types of

parasite

eggs

The dataset has a satis-

factory quantity of images,

which is balanced for each

class by using various data

augmentation techniques.

6.5 Conclusion

In this chapter, the feasibility and effectiveness of several machine-learning algo-

rithms for classifying parasite eggs in noisy microscopic images of fecal samples

from pigs are discussed. Various classifiers are examined, and their effectiveness

is analyzed using different feature sets. The key contributions and observations of

the chapter are outlined below:

• Several classifiers, including ANN, SVM, kNN, Decision Tree, Random For-

est, and XGBoost are examined using diverse feature sets and dimensionality

reduction methods such as PCA and LDA.

• Various comparative analysis are conducted, assessing both overall accuracy

and individual class accuracy. The analysis shows the importance of feature

selection in improving the classification accuracy of different types of parasite

eggs.

• The experimentation shows that texture- and shape-based feature sets out-

perform other types of feature sets. Pixel intensity-based features also pro-

duce promising results. Specifically, SVM achieves nearly 96.5% accuracy

with texture- and shape-based features and 95% accuracy with the pixel

intensity-based features.

• An experiment is conducted by merging multiple different types of feature

122



sets together. SVM achieves 96.8% overall accuracy with combined texture-

shape and pixel intensity-based features.

• The non-egg objects are divided into multiple classes using clustering meth-

ods. This approach is proposed to improve the identification rate of hook-

worm eggs and reduce the overall misclassification rate of parasite eggs.

In summary, this chapter provides valuable insights into using machine

learning classifiers for parasite egg classification and highlights the effectiveness of

various features. The methodologies and findings presented can serve as a foun-

dation for further exploration and enhancement of machine learning techniques in

this field.
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