
Chapter 7

Deep Learning-based Approaches

for Segmentation, Detection and

Classification of Parasite Eggs

from Microscopic Images

Deep learning (DL)-based methods represent the cutting edge in solving the major-

ity of computer vision problems. These techniques utilize complex neural network

architectures to automatically learn hierarchical representations of data, making

them highly effective for tasks such as image segmentation, classification, and

object detection. Convolutional Neural Networks (CNNs), a type of deep learn-

ing architecture specifically designed for processing visual data, become particu-

larly prominent in this domain. Researchers across various fields have extensively

utilized different CNN-based techniques and models to tackle a wide range of

challenges related to image analysis. From medical imaging to autonomous driv-

ing, CNNs have demonstrated remarkable performance in accurately segmenting

images, classifying objects, and detecting specific features within them. In the

following sections, the applications of CNN-based algorithms are explored for au-

tomatic detection and identification of parasite eggs, highlighting the adaptability

and effectiveness of these techniques in solving problems in biomedical imaging

and diagnostics.
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7.1 Segmentation of Parasite Egg Images using

CNN-based Models

The literature indicates that among the several CNN-based models designed for

semantic segmentation, U-Net [133] has been recognized as the preferred choice

for researchers. U-Net is well-known for its ability to outperform traditional seg-

mentation algorithms in a variety of computer vision applications, especially in

medical image analysis. During this research work, multiple experiments are per-

formed using UNet with various hyper-parameter configurations. The number of

layers, epochs, learning rate, loss function, and optimizer are carefully adjusted

to enhance performance. Further, various backbone networks, including VGG16,

VGG19, and ResNet50, are explored to determine the most suitable architecture

for our objective. The initial training approach consisted of treating segmenta-

tion as a binary classification task, with foreground objects labelled as white and

background as black. The dataset, as mentioned in chapter 3 is used to train and

validate the models. The dataset is divided into training and validation sets, as

shown in Table 7.1.

Table 7.1: Number of images used in UNet-based segmentation process

Class Training Im-
age

Validation/Test
Image

Roundworm or Ascaris 714 181
Hookworm or Necator 707 174
Whipworm or Trichuris 712 178
Total 2133 533

7.1.1 Training U-Net using Transfer Learning Approach

Initially, a U-Net architecture is trained using transfer learning, chosen due to

the limited availability of annotated data specific to parasite egg segmentation

tasks. By leveraging pre-trained weights from the models trained on large-scale

datasets, learnt features are incorporated into our segmentation task. Specifically,

pre-trained weights from VGG16, VGG19, and ResNet50 are used in this study.

From the image dataset prepared for this task, 80% is used for training and the

remaining 20% for testing and validation of the models. The hyper-parameter

configurations utilized in our study are detailed in Table 7.2, which are based on

both literature and our experimental findings.

The training is continued until the training loss falls below 0.1 and shows
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Table 7.2: Hyper-parameters used during the training of UNet using the transfer
learning technique

Parameter Value
Image size 512
Batch size 32
Learning rate Initial 0.005 and reduce by a factor of

0.1 every few epochs based on the vali-
dation loss stops improving

Optimizer Adam
Loss Function Cross-entropy loss
Maximum
Epochs

200

Classification
mode

Binary

no significant changes. Figure 7-1 illustrates how the training and validation losses

change over epochs for the UNet model with ResNet50. Test results obtained from

the models are recorded in terms of IoU, precision, recall, and F1 score, which are

represented in Table 7.3, while Figure 7-2 shows a few examples of output images

obtained from testing the models.

Figure 7-1: Training and validation loss of UNet using transfer learning with
ResNet50 for binary segmentation.

7.1.2 Training UNet with Random Weights

Further expansion of this research involves training a U-Net model from scratch

with random weights. The model is trained for a maximum of 350 epochs with

an initial learning rate of 0.002. Moreover, the experimentation also involves
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Table 7.3: UNet segmentation results as binary classification with different pre-
trained weights

Pre-Trained
Weights

IoU Precision Recall F1 Score

Vgg16 6.5 90.37 88.25 89.3
Vgg19 7.1 91.45 88.52 89.96
ResNet50 7.2 92.31 89.27 90.77

(a) Results obtained using Vgg19 as backbone network

(b) Results obtained using ResNet50 as backbone network

Figure 7-2: Validation result of Unet using transfer learning: input image (left),
ground truth (middle), and output segmented image (right)

varying the number of layers in the original U-Net model. This is done to identify

the optimal configuration that enables the U-Net model to achieve the highest

accuracy in segmenting parasite egg images. It is observed that reducing the

number of layers decreases performance, while increasing the number of layers

does not yield significant changes in the results. Table 7.4 presents the results

obtained from testing the original U-Net model trained from scratch, while a few

test images are shown in Figure 7-3.

Table 7.4: UNet segmentation results as binary classification with random weights

Architecture IoU Precision Recall F1 Score
Original UNet 6.8 90.65 88.72 89.67
UNet with two
new layers

6.9 91.41 88.78 90.07

UNet by reduc-
ing one layer

6.3 87.53 86.27 86.89
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(a) Image containing roundworm eggs

(c) Image containing hookworm eggs

(e) Image containing whipworm egg

Figure 7-3: Validation results of UNet training from scratch using random
weights: image (left), ground truth (middle), and output segmented image (right)

7.1.3 Training UNet using Multi-Class Object

The study is extended by training U-Net with multi-class masks, distinguishing

three classes of parasite eggs and single non-egg objects or debris. For this exper-

imentation, a lightweight backbone network, VGG19, is considered and trained

using transfer learning approach with the configuration as mentioned in Table 7.5.

The validation results obtained from this model are presented in Table 7.6. A few

examples of output segmented images of the model are also shown in Figure 7-4.

7.2 Classification of Parasite Eggs Using CNN

models

After the segmentation, the issue of accurately identifying different types of par-

asite eggs and non-egg objects is addressed using state-of-the-art Convolutional

Neural Network (CNN)-based classification techniques. At first, the transfer learn-

ing method is used, where a pre-trained CNN model is fine-tuned to fit our parasite

egg classification tasks. Secondly, a custom CNN architecture is designed, con-
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Table 7.5: Hyper-parameters used during the training of UNet using transfer
learning technique with multi-class objects

Parameter Value
Image size 256
Batch size 32
Learning rate Initial 0.001 and reduce by a factor of

0.1 every few epochs based on the vali-
dation loss stops improving

Optimizer Adam
Loss Function Dice loss
Maximum
Epochs

350

Classification
mode

Multi (three parasite eggs, one non-egg,
and background)

Table 7.6: UNet segmentation results as multi-classification with random weights

Object Class IoU Precision Recall F1 Score
Roundworm 7.1 90.42 88.17 89.28
Hookdworm 6.6 87.54 84.81 86.15
Whipdworm 6.8 89.16 87.53 88.31
Non-Egg 6.3 86.75 84.22 85.47
Average 6.7 88.47 86.18 87.21

(a) Image containing roundworm eggs

(b) Image containing whipworm egg

Figure 7-4: UNet multi-class segmentation output: input image (left), ground
truth (middle), and output segmented image (right)

figured, and trained to fit the specific requirements of our dataset. To enhance

the generalization capabilities of the models and strengthen their capacity for di-

verse data scenarios, data augmentation strategies are employed, as discussed in

Chapter 3. The training of the models are carried out by randomly dividing the

dataset into two parts: 80% for training and 20% for validation. During the train-

ing process, the 10-fold cross-validation method is used to evaluate and improve
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the model’s performance, aiming to produce a robust and reliable classification

model.

7.2.1 Training CNN model using Transfer Learning Tech-

nique

Training CNN Model with Four Classes of Image: In this approach, the

VGG16 network [134] is selected for its simple yet efficient architectural design,

which has proven effective across numerous classification tasks [135]. The original

classification layers of the model are replaced with new fully connected layers,

as shown in Figure 7-5. These newly connected classification layers provide the

class probabilities for four classes of objects, including three parasite eggs and one

non-egg object. The model is trained using pre-trained weights obtained from

ImageNet [136] with the configuration detailed in Table 7.7.

Figure 7-5: Modification of the VGG16 Model Used for Training Parasite Eggs
Using the Transfer Learning Approach

The change in classification accuracy with the number of epochs during

the training process is visualized in Figure 7-6. The model has achieved an overall

training accuracy of 99.47% and a validation accuracy of 98.15%. Detailed vali-

dation results for each class are presented in Table 7.8 and the summary of the

predicted and actual classification can be visualized through the confusion matrix

provided in Figure 7-7.

7.2.2 Training a custom CNN model

Training CNN Model with Four Classes of Image: Inspired by the Vgg16

network, a smaller CNN model is designed in our work by incorporating convo-
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Table 7.7: Values of Different Parameters Used in Training Using Transfer
Learning Approach

Parameter Value
Number of Class 4
Classes Roundworm egg, Hook-

worm egg, Whipworm egg,
and Non-Egg

Total Images/samples 14,650
Training Images 11720 (80%)
Validation Images 2930 (20%)
Input Image Size 120× 120 (RGB)
Loss Function Categorical Cross-Entropy
Optimizer Adaptive Moment Estima-

tion (Adam)
Activation function ReLU (Rectified Linear

Unit)
Batch size 32
Maximum Epoch 300
Initial learning Rate 0.001

Figure 7-6: Change of Training and Validation Accuracy of Transfer Learning
Approach - four classes

lutional, pooling, and fully connected layers. The generalized architecture of our

model, showing the convolutional, pooling, and fully connected layers, is demon-

strated in Figure 7-8. A convolutional kernel of size 3 × 3 is used with the same

padding scheme in the architecture. Dropout or L2 regularization are also used

to prevent overfitting and improve generalization. The model is trained with a

maximum of 500 epochs and nearly similar hyper-parameters configurations as
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Table 7.8: Validation result of CNN model using transfer learning - four classes

Class Precision Recall F1-Score Accuracy
Ascaris 0.98 0.99 0.99 98.78%
Necator 0.99 0.97 0.98 96.95%
Trichuris 0.98 0.99 0.98 98.63%
Non-Egg 0.98 0.98 0.98 98.24%
Average 0.98 98.16%

Figure 7-7: Confusion Matrix from validation of CNN classification model using
transfer learning—four classes

those used in the previous section.

Figure 7-8: A summarised view of the custom CNN model designed for the
classification of parasite eggs

Upon training, the model achieves an overall validation accuracy of 98.88%

and a training accuracy of 99.16% using four classes of objects. The change in

training versus validation accuracy during the training process is shown in Figure

7-9, while validation results are presented in Table 7.9 and can be visualized
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through Figure 7-10.

Figure 7-9: Change of Training and Validation Accuracy of Custom CNN Model
- Four classes

Table 7.9: Validation result using a custom CNN model - Four classes

Class Precision Recall F1-Score Accuracy

Ascaris 0.98 1.00 0.99 99.58%
Necator 0.99 0.97 0.98 97.37%
Trichuris 0.99 0.99 0.99 99.44%
Non-Egg 0.99 0.99 0.99 99.08%
Average 0.99 98.88%

Figure 7-10: Confusion Matrix from validation of own CNN classification model
- Four classes

133



Training CNN model with multiple classes of non-egg objects:

Additionally, the model is trained to classify six classes of objects, including three

types of parasite eggs and three types of non-egg objects. Here, the training epoch

is set to 400. The model achieves 97.10% of training and 95.35% of validation

accuracy. Change of training and validation accuracy is shown in Figure 7-11,

while the validation results are presented in Table 7.10 and in the form of a

confusion matrix as depicted in Figure 7-12.

Figure 7-11: Change of Training and Validation Accuracy of Custom CNNmodel
- Six classes

Table 7.10: Validation result using a custom CNN model - Six classes

Class Precision Recall F1-Score Accuracy
Ascaris 0.97 1.00 0.98 99.73%
Necator 0.95 0.98 0.96 98.20%
Trichuris 0.94 0.99 0.97 99.44%
Non-Egg-1 0.95 0.91 0.93 90.72%
Non-Egg-2 0.96 0.93 0.94 92.91%
Non-Egg-3 0.96 0.91 0.94 90.97%
Average 0.95 95.35%

7.2.3 Analysis of Classification Results

Based on the above experiments, it is observed that training the CNN model

with a single class of non-egg objects yields higher overall accuracy compared to

training with multiple classes. However, a detailed analysis of the accuracy for
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Figure 7-12: Confusion Matrix of the Validation Process of Custom CNN Model
- Six classes

each type of parasite egg is performed, and it reveals an improvement in identi-

fication rates for hookworm eggs. The analysis is depicted in Figure 7-13. The

model’s overall accuracy is lower when trained with multiple non-egg classes, but

it remains acceptable since our primary goal is to correctly identify the parasite

eggs. Therefore, despite the reduced overall accuracy across the six classes, this

classification process aligns with the primary objective of identifying parasite eggs.

Figure 7-13: Comparison of classification accuracy of parasite eggs using CNN
models with single and multiple Non-egg classes

A comparison of the performance between machine learning (ML) and

CNN-based classification models is also conducted. The comparison of overall
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classification accuracy between ML-based models and the CNN-based models us-

ing four classes of data is illustrated in Figure 7-14. For this analysis, SVM and

XGBoost classifiers, trained with texture and shape-based features, are consid-

ered, as they achieve overall better results. The comparative analysis of overall

accuracy when using multiple non-egg classes is presented in Figure 7-15.

Figure 7-14: Comparison of classification accuracy of ML-based and CNN-based
models - four classes

Figure 7-15: Comparison of classification accuracy of ML-based and CNN-based
models - six classes

The analysis shows that CNN-based classification models outperform ma-

chine learning classifiers in accurately identifying different types of parasite eggs.

One of the primary reasons for the higher performance of CNN models is their

ability to learn hierarchical feature representations from raw input images. CNNs

automatically learn features starting from low-level features like edges and tex-

tures and progressively capture more complex patterns from the images. In

contrast, ML-based classifiers rely on handcrafted features, which may not be

sufficient for effectively identifying all images in a dataset. Additionally, RGB
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images are used with CNNs, while the ML-based methods utilizes features ex-

tracted from grayscale images. Converting higher-dimensional RGB images to

lower-dimensional grayscale images results in the loss of information, which may

contribute to the lower performance of ML-based models.

7.2.4 Comparison of Classification Result with Previous

Works

A comparative analysis is conducted to evaluate the results of the CNN-based

classification approach in identifying different types of parasite eggs against some

well-known works in this field. The comparison, shown in Table 7.11 reveals that

our work successfully competes with previous studies and is capable of identifying

various types of parasite eggs effectively, even with a limited amount of unique

data.

Table 7.11: Comparison of results with the works that used CNN for classification
of parasite eggs

Work Parasite Egg Class Classification Re-
sult

N. Butploy et al., 2021 [94] 1 93.33%
F. Grijalva et al., 2022 [137] 6 98.66%
T. Suwannaphong et al.
2023 [95]

4 98.25%

V. Savitha et al. 2023 [138] 5 99.72%, 98.20%,
99.51%, 99.47%,
99.46%

Our work 3 99.73%, 98.20%
and 99.44%

7.3 CNN-based Object Detection Technique for

Parasite Egg Detection

Convolutional Neural Networks (CNNs) have emerged as a basis in object detec-

tion due to their remarkable ability to learn hierarchical representations of visual

data. CNN-based object detection techniques typically involve multiple stages,

beginning with a convolutional backbone network such as VGG, ResNet, or Effi-

cientNet, which extracts high-level features from the input image. These features

are then fed into a detection head comprising layers responsible for localization and
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classification. One of the pioneering architectures in this domain is the Region-

based Convolutional Neural Network (R-CNN) [3] family, including Faster R-CNN

[139] and Mask R-CNN. R-CNN introduced a two-stage approach to object detec-

tion. In its first stage, it generates a set of region proposals by selective search,

effectively identifying potential object locations in the image. These proposals

are then passed through a convolutional neural network, typically pre-trained on

ImageNet, to extract fixed-length feature vectors. Finally, these features are fed

into support vector machines (SVMs) for classification and regression to refine the

bounding boxes. The process of detecting objects using R-CNN can be visualized

in Figure 7-16.

Figure 7-16: Working principle of R-CNN [3]

Faster R-CNN, introduced by Shaoqing Ren et al. [139], addresses the

computational bottleneck of R-CNN by integrating the region proposal step into

the network itself. It introduces the Region Proposal Network (RPN), which shares

convolutional features with the subsequent object detection network. The RPN

generates region proposals directly from the feature maps, allowing for efficient

region proposal generation without the need for external algorithms. By integrat-

ing the region proposal network with the convolutional backbone, Faster R-CNN

achieves remarkable performance improvements over its predecessor. Additionally,

Faster R-CNN introduces anchor boxes, which serve as reference bounding boxes

to predict object locations and sizes, further enhancing detection accuracy.

In this study, faster-RCNN technique with the Inception-V2 as a backbone

network is utilized to detect the parasite eggs in the images of our database. The

size, aspect ratio, number of anchor boxes, maximum number of bounding box

proposals, NMS threshold, and other training parameters of the original model

are fine-tuned accordingly to fit the shape and size of the parasite eggs in the im-

ages. To provide training ground truths, all three classes of parasite eggs as well as

several non-egg objects that resemble parasite eggs are annotated, as mentioned

in chapter 3. The number of training epochs is set to 30,000, but the training

is carried out for 24,790 epochs until the overall loss dropped to less than 0.01.
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Changes of various loss functions, such as classification loss, bounding box regres-

sion loss, detection loss, and overall or total loss, are recorded during the training

process, which can be visualized in Figure 7-17.

(a) Classification loss: Loss for the clas-
sification of detected objects into vari-
ous classes

(b) Localization loss: Loss of the
Bounding Box regressor for the Region
Proposal Network (RPN)

(c) Objectness Loss: Loss of the Clas-
sifier that classifies if a bounding box is
an object of interest or background

(d) Total Loss: Overall loss of the clas-
sification and bounding box regression

Figure 7-17: Visualization of different Losses from the training of Faster-RCNN
model

A few test results obtained from the model are shown in Figure 7-18. The

results of the evaluation process are recorded in terms of mean average precision

at different IoU, and average recall, which are provided in Table 7.12.

Table 7.12: Validation results of Faster-RCNN objects detection model

Class Precision Recall mAP (IoU=0.5:0.95) mAP (IoU=0.5) mAP (IoU=0.75) F1 Score
Roundworm 0.90 0.87 0.85 0.90 0.88 0.88
Hookworm 0.88 0.85 0.83 0.88 0.86 0.86
Whipworm 0.89 0.87 0.86 0.91 0.88 0.88
Non-Egg 0.88 0.84 0.82 0.86 0.83 0.86
Average 0.89 0.86 0.84 0.88 0.86 0.87
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(a) Output image detecting Ascaris
egg

(b) Output image detecting Ascaris egg
and Non-Egg objects

(c) Output image detecting Necator
egg and Non-Egg objects

(d) Output image detecting Ascaris
and Trichuris egg

Figure 7-18: Examples of detecting various objects in images using the object
detection model.

7.3.1 Comparison of Object Detection Result with Previ-

ous Works

A comparison is made between the results of the CNN-based object detection

model and some well-known works in this field as depicted in Table 7.13.

Table 7.13: Comparison of our result with the previous works that used CNN-
based object detection models for the detection of parasite eggs.

Work Method Parasite Egg
Class

Result

Nago Q. Viet et
al. [96], 2019

Faster-RCNN 8 mAP = 0.9767

A. Kitvimonrat
et al. [97], 2020

Faster-RCNN,
RetinaNet, and
CenterNet

2 mAP = 0.793,
0.674, and 0.50
respectively

Satish Kumar et
al. [99], 2023

YOLOv5 5 mAP = 97%
(Approx)

Our work Faster-RCNN Three parasite
eggs and One
non-egg class

mAP = 0.88

From the comparative analysis, it is observed that our method achieves

slightly lower mean average precision compared to several previous works, mainly
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due to the smaller and less diverse dataset used.

7.4 Conclusion

This chapter presents the application of deep learning for the segmentation, clas-

sification, and detection of parasite eggs. Key contributions and insights of the

chapter include:

• Effective Semantic Segmentation with U-Net: The U-Net architecture

shows promising results in distinguishing parasite eggs from image back-

grounds. However, further improvement is needed through diverse image

datasets and better annotations. The binary segmentation mode outper-

forms multi-class segmentation in speed and accuracy, likely due to class

imbalances of different objects and parasite eggs.

• Transfer Learning in Binary Segmentation: Achieves the highest In-

tersection over Union (IoU) of 7.2 and F1 score of 90.65 using a transfer

learning approach in binary segmentation mode. Addressing overlapping ob-

jects remains a challenge, which is potentially solvable with post-processing

methods such as the circular Hough transform and watershed algorithm.

• High Accuracy in Classification: CNN-based classification models, in-

cluding transfer learning with VGG16 and a custom CNN architecture,

achieve nearly 99% accuracy. This highlights the potential of CNNs over

traditional machine learning methods for classifying various types of para-

site eggs.

• Promising Object Detection with Faster-RCNN: The Faster-RCNN

architecture shows acceptable performance in object detection, particularly

in terms of mean average precision (mAP) and recall. However, improved

detection accuracy is obtainable using higher computational resources, a

larger image dataset, and more precise annotations.

• Enhancing Parasitic Egg Analysis and Diagnostics: The application

of deep learning techniques significantly enhances the accuracy of para-

site detection in microscopic images. Despite the need for improvements

in dataset diversity, sample quantity, and annotation quality, the research

highlights the potential of deep learning in medical diagnostics.
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