
Chapter 2

Literature Survey

Since the early 2000s, various works have been underway on automatic detection

and identification of parasite eggs. Researchers are actively working in this area,

to address various issues and challenges. In this chapter, an extensive review of

notable prior works is drawn by studying their methodologies and effectiveness

in detecting and identifying various types of parasite eggs in microscopic images.

The review work is divided into three sections: segmentation, feature extraction

and classification, and CNN-based object detection. These sections are described

as follows:

2.1 Parasite Egg Segmentation

There are many different types of image segmentation methods, such as threshold-

ing, edge detection, region-based, clustering-based, graph-based, etc., that can be

used in various computer vision applications. However, the literature shows some

common techniques that are employed for the segmentation of images containing

parasite eggs. A classification of these methods based on their working principles

is shown in Figure 2-1 and discussed about the same in the following subsec-

tions. These methods are used in various ways for segmenting different kinds of

microscopic images of parasite eggs.

17



Figure 2-1: Methods used for Parasite Egg Segmentation

2.1.1 Threshodling Based Approaches

Image thresholding is one of the most popular and simplest methods for digital

image segmentation [24]. The operation uses a threshold value to produce a bi-

nary image from the grayscale that represents the foreground objects. Normally,

pixel values higher than the threshold are considered as foreground objects and

others represent background. Depending on the way of choosing the threshold

value, the image thresholding method can be divided into two subgroups, namely

global thresholding and local thresholding [23]. In global thresholding, a constant

threshold value is selected, which is applied for the entire image [23, 31]. The

process of global thresholding can be defined as shown in equation 2.1.

O(x, y) =

1, if I(x, y) > T

0, if I(x, y) ≤ T
(2.1)

Where, I(x, y) is the function of pixel intensity values of an input image and O(x,

y) is the output image [24]. Threshold value T can be chosen manually from the

prior knowledge of pixel intensity distribution or the grayscale intensity histogram

of the input image. Several methods can be used to automatically calculate the

threshold value from images. Among all of them, Otsu’s method is considered

one of the most effective, and it is commonly used in many segmentation tasks

[23]. In contrast with the global thresholding technique, local thresholding uses

multiple threshold values for the different parts of an image [23, 31]. An entire

image is divided into multiple sub-images, and a threshold value is calculated for

each sub-image to perform the thresholding process. The threshold value for a

local region can be calculated manually or automatically based on the intensity

distribution of that region.

In 2001, Y. S. Yang et al. [9] used the global thresholding method to

segment seven different species of human helminth parasite eggs in digital micro-
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scopic images of fecal matter. They choose the threshold value as 35% of the

maximum pixel intensity level of an input image. This threshold value was de-

termined using the intensity histograms which have bimodal distribution in most

of the cases and their valley points co-occur at that level [9]. After thresholding,

some unwanted objects were eliminated from the resultant binary images based on

the minimum size of the parasite eggs. Finally, the internal holes of the remaining

objects were filled using a method called multi-directional inward region growing

[9]. Image thresholding technique was also used by Cesar A. B. Castanon et al.

[32] for the segmentation of microscopic images containing seven types of para-

site eggs. In their experiment, they used only the images that contained a single

parasite egg with no other impurities. These images were cropped manually from

the larger microscopic images containing multiple eggs. Hence, they used only the

binary thresholding method with the threshold value calculated manually from

each input image. E. Dogantekin et al. [33] also applied global thresholding to

perform the segmentation of sixteen types of human parasite egg images. Image

noise was reduced using median filtering, and contrast was enhanced before the

segmentation process so that the thresholding operation performed better [33].

In their work, the midpoint of the gray-level histogram of an input image was

chosen as the threshold value. After the thresholding, a few morphological oper-

ations, such as erosion, dilation, and filling holes, were applied to remove some

unwanted patterns and fill the holes in the segmented parasite eggs. Derya Avci

et al. [34] used a similar segmentation approach with some pre-processing steps

such as noise reduction and enhancement of image contrast. Alicia Alva et al. [35]

also used contrast enhancement and reduction of background noise operations on

the microscopic images of stool samples containing eggs of Taenia sp., Fasciola

hepatica, Diphyllobothrium latum, and Trichuris trichiura. Then the global bina-

rization method was applied to perform the segmentation task on these images.

Since the images contain only a single parasite egg, it was sufficient to use only

the global binarization or thresholding process. However, border smoothing, ex-

clusion of boundary objects, and filling holes were used as post-processing steps

for better output. Johan. M. Bruun et al. [36] used a fixed threshold value of 135,

to perform segmentation of Trichuris suis parasite eggs in bright field microscopic

images. The authors stated that their entire image acquisition process was per-

formed with controlled illumination, and hence a fixed threshold value works best

on the effect of image content in the segmentation process. S. M. Sulong et al.

[37] also performed global thresholding on the microscopic images containing As-

caris lumbricoides parasite eggs with the threshold value calculated using Otsu’s

method [38].
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In many cases, only the thresholding operation is insufficient for proper

segmentation of the images. Depending on the appearance of different objects in

the images, some other operations may be required in addition to the thresholding

process. Md. A. E. Abdalla and H. Seker [39] applied the Moore-Neighbour Trac-

ing (MNT) method after global thresholding for segmentation of Eimeria parasite

eggs. The MNT method was used to accurately find the egg boundaries in the

binary images. In their work, the threshold value was calculated automatically

using Otsu’s algorithm [38] for all the images they used. In a recent work from S.

V. Inacio et al., [40] for automatic diagnosis of Canine Gastrointestinal parasites,

the thresholding method was used to segment four types of parasite eggs in mi-

croscopic fecal sample images of dogs. After the thresholding operation, an ellipse

fitting method was applied in the binary images to filter different objects based

on the area, pixel connectivity, symmetry, perimeter, and length of the major and

minor axes of the best-fitted ellipse with the objects. Various research works that

used the image thresholding process with different types of parasite egg images

are shown in Table 2.1.

Table 2.1: Parasite egg segmentation works that use Thresholding based method

Paper Type of Images Species of Parasite eggs

Y. S. Yang et al.

[9], 2001

Total 82 microscopic Fe-

cal sample images contain-

ing parasite eggs and debris

Helminth eggs: Ascaris

lumbricoides, Trichuris

trichiura, Capillaria,

Philippinensis, Clonorchis

sinensis, Paragonimus west-

ermani, Diphyllobothrium

latum Taneia

C. Castanon et

al. [32], 2017

3891 images that contained

only a single egg

Seven types of Eimeria

oocysts: E. Maxima, E.

brunetti, E. tenella, E.

necatrix, E. praecox, E. ac-

ervulina, E. mitis
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Table 2.1: (Continued)

Paper Type of Images Species of Parasite eggs

E. Dogantekin et

al. [33], 2008

Sixteen microscopic images

containing single eggs of 16

different types of parasites.

For experiment images were

rotated from 0 to 1650 in

steps of 150 with 15 differ-

ent scales

Fertilized Ascaris Lum-

bricoides, Unfertilized

Ascaris Lumbricoides,

Diphyllobotrium Latum,

Enterobius Vermicularis,

Fasciola Hepatica, Hy-

menolepsis Diminuta,

Hymenolepsis Nana, Kelli-

coti, Kellicoti, Schistosoma

Haematobium, Giardia

Lamblia, Schistosoma

Japonicum, Schistosoma

Mansoni, Schistosoma

Mansoni, Trichuris Trichura

and Hookworm

Derya Avci et al.

[34], 2009

Sixteen microscopic images

containing a single egg of

16 different types of human

parasites. For the exper-

iment images were rotated

from 00 to 1650 in steps of

150 with 10 different scales

Fertilized Ascaris Lumbri-

coides, Unfertilized Ascaris

Lumbricoides, Trichuris

Trichura, Diphyllobotrium

Latum, Enterobius Ver-

micularis, Schistosoma

Mansoni, Fasciola Hep-

atica, Giardia Lamblia,

Hymenolepsis Diminuta,

Hookworm, Kellicoti,

Paragonimus Westermani,

Schistosoma Haematobium,

Hymenolepsis Nana, Schis-

tosoma Japonicum, Taenia

Saginata

S. M. Sulong et

al. [37], 2012

Microscopic images contain-

ing parasite eggs and other

feces artifacts

Ascaris Lumbricoides
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Table 2.1: (Continued)

Paper Type of Images Species of Parasite eggs

Alicia Alva et al.

[35], 2017

Microscopic images of fe-

cal smears containing single

parasite egg

Taenia sp., Trichuris

trichiura, Diphylloboth-

rium latum, and Fasciola

hepatica

J. M. Bruun [36],

2014

100 microscopic images

containing multiple para-

site eggs, captured under

brightfield and darkfield in

liquid suspension and

Trichuris suis

S. V. Inacio et

al. [40], 2020

Microscopic fecal sample

images containing multiple

parasite eggs and cysts

Eggs of Canine Gastroin-

testinal parasite: Toxocara

spp., Ancylostoma spp.,

Trichuris spp., and Giardia

spp

A. E. Abdalla

[39], 2017

4402 images of only parasite

eggs of 7 Eimeria species

in chickens and 2902 of 11

Eimeria species in rabbits

E. Acervulina, E. Brunetti,

E. Maxima, E. Mitis, E.

Necatrix, E. Praecox, E.

Tenella, E. Coecicola, E.

Exigua, E. Flavescens, E.

Intestinalis, E. Irresidua, E.

Magna, E. Media, E. Per-

forans, E. Piriformis, E. Ve-

jdovskyi, E. Stiedai

2.1.2 Edge Detection Based Approaches

Edge detection of different objects in an image involves measuring the disconti-

nuity or sudden changes of pixel intensity in the image [25,41]. Edges of different

objects in an image are the local or regional change of pixel intensity [42]. Detec-

tion of edges helps in understanding the shape of the objects present in images.

Many applications like biometrics, medical image analysis, object detection, etc.,

use various edge detection methods for identifying meaningful patterns [25]. There

are many different types of edge detection approaches, but the effectiveness of a

method mostly depends on the applications and type of images being used. Usu-

ally, most edge detection techniques use thresholding or gradients of pixel intensi-
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ties to detect the edges [43]. Most of the classical methods apply two-dimensional

filters or operators that are sensitive to large gradients that convolve over the

entire image to detect the edges of various objects [44]. Among all the available

edge detectors, Sobel, Canny, Roberts, Prewitt, and Laplacian of Gaussian (LoG)

are the most commonly used operators [43–45]. These edge-detection methods

have been used in various research works related to the automatic segmentation of

parasite eggs in microscopic images, and it is found to be very effective. Various

works in this area that used edge detection-based methods are discussed below.

In 2012, R. S. Hadi et al. [2] used an edge detection method based on the

canny operator for the segmentation of microscopic images containing parasite

eggs namely Ascaris lumbricoides and Trichuris trichiura. The images used in

their work contained multiple parasite eggs as well as fecal impurities or non-egg

objects. The brightness, contrast, and sharpness of the images were enhanced

so that the edge detection process could effectively detect the edges of different

parasite eggs and other objects. This work was extended by K. H. Ghazali et

al. [46], where the authors analyzed the effectiveness of different edge detection

operators such as Canny, Sobel, Prewitt, Roberts, and LoG for segmentation of

the same two types of parasite eggs. They also analyzed the usefulness of different

pre-processing methods like noise reduction using a median filter, enhancement of

image contrast, and edge sharpness in the process of edge detection. K. Ray et

al. [47] also used the canny edge detection technique in the process of parasite

egg segmentation in microscopic images of fecal samples. To properly detect all

the parasite eggs and other objects in the images, two pre-processing steps, such

as noise removal and contrast enhancement, were applied. The final segmentation

process of the images was carried out by applying some morphological operations,

viz., dilation, erosion, and filling holes in the edge-detected images. Later, some

unwanted objects were eliminated based on their shape (circularity) and size in the

segmented images. Roxona Flores-Quispe et al. [48–50] mentioned that the Sobel

operator is less sensitive to image noise than other edge detection operators, and

hence, they used it to detect the edges of eight different types of human parasite

eggs. In this work, the operator was applied to the RGB images of parasite eggs

along the vertical and horizontal axes in each channel.

There are a few works that used some additional operations after the edge

detection process. Circular Hough Transformation (CHT) [51] is one of the most

commonly used operations among those operations. CHT helps in finding circular

objects, and it has been used successfully for detecting various types of parasite

eggs in the images. K. Ray et al. [10] used the Circular Hough Transformation
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[51] for segmentation of microscopic fecal sample images containing two types of

parasite eggs that were also used in [47]. In this work, the CHT operation was

applied to the edge-detected images produced by the Canny operator. Some pre-

processing steps, such as noise reduction, brightness, and contrast enhancement,

were also used before edge detection. It is observed that the CHT helped in de-

tecting the overlapped parasite eggs and other objects in the images, which cannot

be achieved using traditional segmentation methods. Oscar T. Nkamganga et al.

[52–54] also used CHT after applying canny edge detection operation for segmen-

tation of parasite egg images. In their work, they performed another operation

called Distance Regularized Level Set Evolution (DRLSE) for contour optimiza-

tion and extraction of the detected parasite eggs from the images.

2.1.3 Edge Detection using Wavelet Transform

A wavelet transform can also be used to detect the edges of different objects in

the images. The wavelet transform is the analysis of signals using a function that

has wave-like oscillation with a zero mean and exists for a finite duration, called

a wavelet [55, 56]. It has been found that the wavelet transform is very useful

in analyzing image contents as well as detecting edges effectively. An example

of an edge detection approach using a wavelet transform can be found in [56].

Classical gradient and Laplacian-based methods have some limitations, such as

complex computation, sensitivity to noise, and localization error on the curve

edges [56, 57]. The wavelet transform can overcome most of these limitations

and perform better edge detection [57]. There are a few works where wavelet

transform-based approaches are used for detecting the edges of various parasite

eggs in microscopic images.

In 2014, Daniel Tchiotsop et al. [55] developed a segmentation approach

using multiscale wavelet transform to detect the edges of parasite eggs in stool

microscopic images. First, the image smoothing was performed using the Gaus-

sian function, and wavelet transform was carried out in multiple scales to detect

various sizes of edges. During their experiment, they observed that the variation

of the threshold value and scaling factor in the wavelet transform yields various

structures of different sizes and shapes, like the cell nucleus, cytoplasm membrane,

operculum, etc. [55]. The authors stated that the proposed edge detection ap-

proach performed better than other classical methods like Canny, Sobel, Roberts,

and Prewitt on the parasite egg images in their database. B. S. Tchinda et al.

[58, 59] also used a multiscale wavelet transform-based technique to detect the
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edges of nine different species of human intestinal parasite eggs. After the edge

detection, the circular hough transform [51] was applied to detect the round-

shaped objects. Finally, an active contour model (ACM) [60] based on a gradient

vector flow was applied with the edges obtained by the CHT as initial contours.

The parasite eggs were segmented out using the logical operation between the

segmentation masks obtained from the final step and the corresponding original

images. Various parasite egg segmentation works that used edge detection-based

techniques are recorded in Table 2.2.

Table 2.2: Parasite egg segmentation works that used Edge detection-based meth-
ods

Paper Type of Images Species of Parasite eggs

R. S. Hadi et al.

[2], 2012

200 microscopic fecal sam-

ple images containing para-

site eggs of each and debris

Ascaris lumbricoides ova

and Trichuris trichiura ova

K. H. Ghazali et

al. [46], 2013

200 microscopic fecal sam-

ple images containing para-

site eggs of each and debris

Ascaris lumbricoides ova

and Trichuris trichiura ova

R. F. Quispe

et al. [48–50],

2014, 2019

2053 microscopic images of

eight species of human par-

asite eggs. Each image only

has one single parasite egg

Ascaris, Enterobius-

Vermicularis, Uncinarias,

Taenia-Solium, Trichuris,

Dyphillobothrium-

Pacificum, Fasciola Hepat-

ica

K. Ray et al.

[10, 47], 2019,

2021

1000 microscopic images of

fecal samples of pigs con-

taining multiple types of

parasite eggs and fecal im-

purities

Ascaris lumbricoides, Neca-

tor americanus
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Table 2.2: (Continued)

Paper Type of Images Species of Parasite eggs

O. T. Nkam-

ganga et al.

[52–54], 2018,

2019

1240 microscopic images of

20 species of parasite eggs.

Each image contains a sin-

gle egg and debris

Entamoeba histolytica

cyst, Entamoeba coli cyst,

Clonorchis sinensis egg,

Trichuris trichura egg,

Balantidium coli cyst, Io-

damoeba butschlii tropho-

zoite, Diphyllobothrium

latum egg, Chilomastix

mesnili cyst, Hymenolepis

nana egg, Schistosoma

mansoni egg, Schisto-

soma haematobium egg,

Heterophyes heterophyes

egg, Ascaris lumbricoides

egg, Giardia lamblia Cyst,

Fasciola hepatica egg,

Blastocystis hominis egg,

Paragonimus westermani

egg, Entamoeba histolyt-

ica trophozoite, Taenia

solium egg, Ancylostoma

duodenale egg.

B. S. Tchinda et

al. [58], 2015

540 microscopic stool im-

ages containing nine types

of human intestinal parasite

eggs and some impurities

Balantidium Coli, En-

dolimax Nana, Enta-

moeba Coli, Entamoeba

Hartmanni, Entamoeba

Histolytica, Entamoeba

Polecki, Giardia Lam-

blia, Iodamoeba Butschlii,

Chilomastix Mesnili.
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Table 2.2: (Continued)

Paper Type of Images Species of Parasite eggs

B. S. Tchinda et

al. [59], 2019

1800 microscopic feces im-

ages of containing 15 types

of human helminthes eggs

and amoeba cysts and im-

purities

Nine types of protozoan

cysts: Giardia lamblia, En-

tamoeba hartmanni, Enta-

moeba polecki, Entamoeba

histolytica, Entamoeba

coli, Endolimax nana,

Balantidium coli, chilo-

mastix mesnili, Iodamoeba

Butschlii and six types of

helminthes eggs: Ascaris,

Tapeworm, Schistosoma

mansoni, Schistosoma in-

tercalatum, Schistosoma

japonicum, whipworm

2.1.4 Active Contour Model (ACM)-based Approaches

Active Contour Model (ACM) or Snake was introduced by Michael Kass et al.

[60] in 1988. Since then it has been widely used in various applications of com-

puter vision such as object tracking, edge detection, shape recognition, and stereo

matching [60]. ACM uses the principle of energy optimization to portray ob-

ject boundaries or edges in the images [61]. It is seen that many researchers are

actively using this model in various medical image segmentation processes. As

described in the work by Michael Kass et al. [60], the original ACM or snake uses

a user-defined initial contour position along with an energy function to perform

segmentation [61]. The energy function can be formulated from the internal and

external forces computed from the images. Then the segmentation process can be

achieved by moving the snake around the image domain by optimizing the energy

functions [61,62]. Details about the snake, its energy functions, and their working

principles can be broadly studied in [60, 61]. A few works that used the ACM in

parasite egg segmentation are mentioned below.

Rema M. and Madhu S. Nair [62] used a region-based Active Contour

Model for the segmentation of intestinal parasite eggs in bright field microscopic

images. The energy function for their proposed model was formulated using the lo-
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cal information of various regions in the input images. They stated that the active

contour models that use the energy functions computed from global image statis-

tics are not useful enough to segment objects with heterogeneous backgrounds.

This problem was handled by analyzing the local regions and constructing some

local energies [62]. The initial contours for the proposed ACMmodel were achieved

by thresholding the input images, followed by morphological opening operation.

The authors of this work mentioned that the threshold value calculated using

Otsu’s method yields poor binary images. Hence, they experimented using differ-

ent threshold values ranging from 0.20 (20%) to 0.55 (55%) of gray pixel intensity

level and selected the value of 0.40 (40%) that produced the best segmentation

result for all the images in their database. J. Zhang et al. [63] also used an ACM

for automatic segmentation of Schistosoma japonicum eggs in microscopic fecal

sample images. As the first step of the segmentation process, they enhanced the

boundaries of the eggs in the original images by the Random-Like Feature [64]

method. Then a threshold value (threas) was obtained from each of these images

using the Equation 2.2 and applied binary thresholding (B) on them as shown in

Equation 2.3.

threas = Tmin + (Tmax − Tmin)λ (2.2)

B =

1, if T > threas

0, if T ≤ threas
(2.3)

Where T represents an enhanced image, Tmax is the maximum intensity, Tmin is

the minimum intensity, λ is a ratio parameter for choosing the threshold value

[63] and B is the final binary image. The obtained segmented images were further

processed by thinning and connected component analysis to reduce noise and

unwanted structures. Then a method called Randomized Hough Transform [65]

was applied to these images to extract the boundaries of elliptical-shaped parasite

eggs. These ellipse edge points were used as initial points for the active contour

model to accurately segment the parasite eggs in the images. B. S. Tchinda et al.

[58, 59] also used an ACM-based approach for segmentation of different parasite

eggs where the edges of various objects are detected using wavelet transform and

CHT as discussed in the Section 2.1.3. Different types of parasite eggs and images

used in these works can be viewed in Table 2.3.
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Table 2.3: Parasite egg segmentation works that used ACM-based methods

Paper Type of Images Species of Parasite eggs

Rema M.

et al. [62],

2013

Bright-field microscopic im-

ages of fecal samples con-

taining human intestinal

parasite eggs and fecal im-

purities. The number of im-

ages used in the experiment

was not specified

Not specified

J. Zhang et

al. [63],

2014

116 microscopic images of

fecal samples containing

two types of parasite eggs

Schistosoma japonicum,

Clonorchis sinensis

B. S.

Tchinda et

al. [58, 59],

2015, 2019

1800 microscopic feces im-

ages containing 15 types of

human helminthes eggs and

amoeba cysts and impuri-

ties

Nine types of protozoan cysts:

Giardia lamblia, Entamoeba

polecki, Entamoeba histolytica,

Entamoeba hartmanni, Enta-

moeba coli, Balantidium coli,

Endolimax nana, Iodamoeba

Butschlii, Chilomastix mesnili

and six types of helminthes eggs:

Ascaris, Schistosoma mansoni,

Tapeworm, Schistosoma japon-

icum, whipworm, Schistosoma

intercalatum

2.1.5 Watershed Algorithm-based Segmentation

Watershed segmentation is a type of region-based method that uses morphological

characteristics of images [66]. After introducing an algorithm based on watershed

transform by Vincent and Soille in 1991, it has been widely used in various image

segmentation applications [67]. The concept of the watershed lies in the visual-

ization of image gray levels in a topographic representation where bright pixels

represent ridges and dark pixels as valleys [66–68]. Conceptually, there are two

notions viz: catchment basin that represent image regions or valleys and ridge

lines or watershed lines, which represent region boundaries. Suppose a hole is

punched at each of the local minima of the regions or valleys and pour water

through these holes, the water will slowly rise and fill the valleys, and eventually
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at a point water from two separate regions will merge. However, water from two

separate regions is not allowed to mix, and therefore the algorithm built a dam or

watershed line between two catchment basins or regions [66]. The algorithm con-

tinues flooding the entire image until it segments the whole surface into multiple

different catchment basins separated by watershed lines. Here we have discussed

a few segmentation approaches that used watershed-based methods in automatic

parasite egg detection-related works.

C. T. N. Suzuki et al. [27,69] applied an Image Foresting Transform (IFT)-

based watershed algorithm for segmentation of fifteen different types of human

helminth parasite eggs, protozoan cysts, and larvae from microscopic images of

fecal samples. Global thresholding operation was performed on the images using

manually determined threshold values as the initial step of their segmentation

process. Here, two threshold values were selected: one for the images of cysts and

larvae, and another for the eggs. Then an ellipse matching method was applied to

extract the elliptical-shaped objects from the thresholded binary images. Internal

and external markers were created using erosion and dilation operations on the

detected elliptical-shaped objects. These markers were then used by the IFT-

based watershed algorithm to produce the final segmentation masks. A similar

kind of approach was adopted by D. Osaku et al. [70] where they also used an

IFT-based watershed algorithm with only binary thresholding for segmentation of

fifteen common species of human intestinal parasite eggs.

B. Jimenez et al. [71] used a watershed algorithm with distance field trans-

form to separate the overlapping objects in the segmentation process of helminth

eggs from microscopic images of wastewater samples. The authors applied some

pre-processing steps such as image smoothing using a low pass filter and contrast

enhancement. Detection of various objects in the images was performed using

median filtering, histogram equalization, edge detection, distance transformation,

and watershed algorithm [71]. Subsequently, they developed two modified versions

of their proposed approach to improve performance. The segmentation method

in the final version starts with calculating the average gray-level profiles of vari-

ous objects and the mean gray value of the image background. Then a threshold

value was calculated from the mean gray value of the background and the stan-

dard deviation as shown in equation 2.4 [71]. In the thresholding operation, a

pixel was considered part of an object only if the value of that pixel was lower

than the threshold value. Finally, the distance transform followed by the water-

shed algorithm was applied to separate the overlapping objects and improve the

identification rate. The Table 2.4 present the type of images and parasite eggs
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that used watershed algorithm for segmentation.

Threshold = Backgroundmean − StdBackground (2.4)

Where Backgroundmean represents the mean gray level value of background and

StdBackground is the background standard deviation, calculated as the equations

2.5 and 2.6.

Backgroundmean =
1

N

N∑
i=majoraxis

Paverage(i), (2.5)

StdBackground =
1

N

N∑
i=majoraxis

(Paverage(i)−Backgroundmean)
2 (2.6)

In the above equations, Paverage represents the average gray-level profile of an

object.

Table 2.4: Parasite egg detection works that used Watershed-based methods

Paper Type of Images Species of Parasite eggs

C. T. N. Suzuki

et al. [27, 69],

[62], 2013

Bright field microscopic

images of 15 types of hu-

man intestinal parasite

eggs with fecal impurities

Ascaris lumbricoides, Ancy-

lostomatidae, Enterobius ver-

micularis, Trichuris trichiura,

Hymenolepis diminuta, Hy-

menolepis nana, Taenia spp.,

Strongyloides stercoralis lar-

vae, Schistosoma mansoni,

Cysts: Entamoeba histolyt-

ica/E.dispar, Entamoeba

coli, Giardia duodenalis, En-

dolimax nana, Blastocystis

hominis, Iodamoeba butschlii
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Table 2.4: (Continued)

Paper Type of Images Species of Parasite eggs

D. Osaku et al.

[70], 2020

Microscopic images of fe-

cal samples containing 15

different types of parasite

eggs and fecal impurities

Strongyloides stercoralis, Hy-

menolepis nana, Hymenolepis

diminuta, Ancylostomatidae,

Enterobius vermicularis, As-

caris lumbricoides, Trichuris

trichiura, Schistosoma man-

soni, Taenia spp., Entamoeba

coli, Entamoeba histolyt-

ica / E. dispar, Endolimax

nana, Giardia duodenalis,

Iodamoeba bütschlii, Blasto-

cystis hominis

B. Jimenez et al.

[71], 2016

720 microscopic im-

ages of seven species of

helminth eggs obtained

from the samples of

wastewater, sludge, and

excreta.

Ascaris lumbricoides-fertilized

and unfertilized, Toxocara ca-

nis, Trichuris trichiura, Taenia

saginata, Hymenolepis dimin-

uta, Hymenolepis nana and

Schistosoma mansoni

2.1.6 Clustering-based Segmentation Approaches

Clustering-based algorithms are used to make groups of different data points that

have similar properties or features [72]. This characteristic of clustering algorithms

can be used in the image segmentation process, where pixels belonging to similar

objects can be grouped and separated them from others. It is seen that in many

cases, clustering-based image segmentation methods produce better results than

classical techniques such as binary thresholding and edge detection [73]. Although

there are many different clustering algorithms, such as Fuzzy-C means, DBSCAN,

Agglomerative Clustering, Gaussian Mixture Model, etc, it is seen that K-means

is the most commonly used clustering algorithm for image segmentation [72, 73].

K-means clustering method partitioned the available data points into K number

of clusters. The algorithm chooses K number of cluster centers and calculates the

distance of each data from those centers. A data point is assigned to that cluster

center from which the distance is minimal.
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Although the clustering-based image segmentation method is popular in

many applications, there are only a few works that used this method in the area

of parasite egg segmentation. It is found that Norhanis A. A. Khairudin et al. in

[74, 75] used the K-means clustering-based method for segmentation of parasite

egg images. 100 Microscopic images of two types of human intestinal parasite

eggs namely Ascaris Lumbricoides and Trichuris Trichiura were used in their ex-

periment. The authors mentioned that each of the images contains a single egg

with no other significant impurities or non-egg objects. They also segmented the

same images using binary thresholding with Otsu’s [38] threshold value and it is

observed that the results were very similar to the clustering-based method.

2.1.7 Ellipse Matching-based Approaches

A study shows that most of the parasite eggs are nearly round or elliptical. Hence,

many researchers applied different ellipse matching methods to effectively detect

various types of parasite eggs from microscopic images that are elliptical. An

ellipse matching method can be used on binary images after performing some

classical image segmentation operations such as thresholding, edge detection, etc.

In many cases, it has been seen that ellipse matching methods are applied directly

to grayscale images to detect elliptical-shaped objects. Several works used this

method effectively to detect various types of parasite eggs in different kinds of

images, and below we have discussed some of those works.

As mentioned in Section 2.1.4, J. Zhang et al. [63] used a randomized

hough transform [65] based ellipse matching method to detect the edges of various

elliptical-shaped parasite eggs and other similar objects in the images. The original

microscopic images were segmented using the binary thresholding method, and the

ellipse matching method was applied to the output binary images. The contours

of various objects obtained from the ellipse matching were further used for an

active contour model for accurate segmentation of the parasite eggs. In another

work from C. T. N. Suzuki et al., [27], an ellipse matching method was also

applied to the binary thresholded images containing various types of parasite eggs

and non-egg objects. The ellipse matching method produced markers that were

used in the watershed algorithm for the final segmentation of the objects. J.

M. Burrn et al. [76] also used an ellipse matching method by constructing an

elliptical filter based on the width and length of Trichuris suis eggs in bright field

microscopic images. They applied the method directly to the grayscale images of

the mentioned parasite eggs. Zhxiun Li et al. [77] mentioned an approach for the
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detection of six types of human parasite eggs using the ellipse matching method.

Their segmentation pipeline consists of several steps, as follows: Otsu’s binary

thresholding was performed on the original images to separate the foreground and

background objects. A morphological operation was applied to the thresholded

images to remove the unwanted objects or debris. Then a phase consistency [78]

and zero crossing method-based frequency domain model were applied to detect

the boundary edges of the parasite eggs. Finally, an ellipse fitting method was

employed to extract the actual oval-shaped parasite eggs and separate them from

other non-egg objects in the images. Types of parasite eggs and images used by

these works are mentioned in Table 2.5.

Table 2.5: Works that used Ellipse matching-based methods

Paper Type of Images Species of Parasite eggs

J. M.

Burrn et

al. [76],

2012

24 bright field and dark field

microscopic images contain-

ing multiple parasite eggs

Trichuris suis eggs.

J. Zhang et

al. [63],

2014

116 microscopic image of fe-

cal samples containing two

types of parasite eggs

Schistosoma japonicum,

Clonorchis sinensis.

C. T. N.

Suzuki et

al. [27],

2013

Bright-field microscopic im-

ages of 15 different types

of human intestinal parasite

eggs with fecal impurities

Ascaris lumbricoides, Enterobius

vermicularis, Trichuris trichiura,

Ancylostomatidae, Hymenolepis

nana, Taenia spp., Hymenolepis

diminuta, Schistosoma mansoni,

Strongyloides stercoralis larvae,

Cysts: Entamoeba histolyt-

ica/E.dispar, Giardia duodenalis,

Entamoeba coli, Endolimax

nana, Iodamoeba butschlii,

Blastocystis hominis.

Zhxiun Li

et al. [77],

2015

1179 images of fecal samples

containing multiple parasite

eggs and fecal impurities

Blood fluke, liver fluke, Pinworm,

Whipworm, fertilized and non-

fertilized roundworm.
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2.1.8 Segmentation using Convolutional Neural Network

(CNN) models

The recent advancement of different techniques in computer vision led the re-

searchers to use convolutional neural network (CNN) based methods in various

applications of classifications, object detection, and image segmentation. CNN

was primarily developed for image classification and was later employed in seman-

tic segmentation. In recent years, researchers have used CNN to develop various

semantic and instance segmentation models that have proven effective in a variety

of applications such as robotics, self-driving cars, and so on. Among the various

approaches, Fully Convolutional Network (FCN) [79], U-net [80], and encoder-

decoder [81, 82] are the most popular that used in various image segmentation

applications such as medical image analysis, scene understanding, and remote

sensing. FCN was introduced by Jonathon Long et al. [79] for semantic segmen-

tation of images by utilizing only the convolutional layers of a CNN architecture.

Encoder-decoder-based architecture is introduced by Hyeonwoo Noh et al. [82]

using de-convolution or transposed convolution layers. The architecture consists

of an encoder part that uses convolution layers and a decoder part which is a mir-

rored version of the encoder part. The encoder generates multidimensional feature

maps using convolution, pooling, and rectification operations. The decoder part

consists of multiple de-convolution, un-pooling, and rectification layers that gen-

erate the object segmentation mask from the features generated by the encoder.

Another popular model named U-net was introduced by Olaf Ronneberger et al.

[80] biomedical image segmentation. Similar to FCN architecture, U-net also con-

sists of only fully convolutional layers that produce segmentation masks from an

input image. It also contains a contracting or down-sampling path that captures

the context information and an expanding or up-sampling path for localization

of the objects [80]. Some of the major works on parasite egg detection that used

CNN-based segmentation methods are discussed below.

Adedotun Akintayo et al. [83, 84] mentioned an approach called convolu-

tional selective autoencoder which was based on the encoder-decoder architecture

for the detection of Soybean Cyst Nematode (SCN) eggs in microscopic images of

soil samples. The images used in their experiment contain multiple SCN eggs along

with other non-egg objects, and hence the model is trained with multiple labeled

patches of smaller sizes that are extracted from the original images. The encoder

part of the model captures some meaningful features from the input images using

the convolutional layers, and the decoder part reconstructs the patterns of interest

(only the SCN eggs) in the output segmentation masks [84]. The developed model

35



scans each patch one by one and discards those where an SCN egg is not fully

present and centered on it. This way, they selected only the positive patches that

contained a full SCN egg for training the classifier. Patryk Najgebauer et al. [85]

applied an FCN-based architecture for the segmentation and detection of four dif-

ferent types of parasite eggs. Images used in their work are annotated with seven

classes of objects that include four types of parasite eggs and three classes of other

objects such as air bubbles, backgrounds, and pollution. These annotated ground

truths are used for training the FCN model, which outputs colour segmentation

masks indicating the different objects and parasite eggs.

A U-net-based model is used by Marc Górriz et al. [86] for segmentation

of leishmania parasites. The images are annotated, indicating seven classes of

objects: amastigote, promastigote, adhered parasite, cytoplasm, nucleus, back-

ground, and unknown. The patches of size 224 × 224 pixels are extracted from

the original training images, which are used to train the U-net model. The work

used overlapping patches in the training to detect some overlapping objects in the

images. To address the issue of high-class imbalance during training, a two-stage

non-uniform sampling strategy is adopted for selecting the different patches. The

first few training iterations used patches with at least 40% pixels belonging to

any of the three classes, namely amastigote, promastigote, or adherent, while the

remaining iterations utilized a uniform sampling strategy over all patches [86].

Yaning Li et al. [87] also used a U-net-based model to segment five different

types of parasite eggs, viz., Trichuris spp., Strongyle, Toxocara spp., Isospora,

and Eimeria in microscopic images of animal fecal samples. The authors modified

the original U-net design by rearranging several convolutional and max-pooling

layers according to their requirements. Ideal Oscar Libouga et al. [88] applied a

similar approach for the segmentation of Ascaris Lumbricoides, Schistosoma man-

soni, Trichuris Trichiura, and Oxyure eggs. They trained the model with colour

images so that it could take advantage of the colour information and yield better

output. As a result, it detected the various parasite eggs with an overall accuracy

of 99.8%. Prosper Oyibo et al. [89] used a two-stage approach for the segmenta-

tion of S. haematobium parasite eggs in microscopic images of urine samples. The

first stage utilized a deep CNN model named DeepLabv3-MobilNetev3 that per-

forms semantic segmentation on the images, while the next stage uses the ellipse

fitting method to detect elliptical-shaped objects as well as overlapping parasite

eggs. The proposed approach showed 93.75% sensitivity, 93.94% specificity, and

93.75% precision in detecting the mentioned parasite egg.
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Table 2.6: Parasite egg segmentation/detection works that applied Convolutional
Neural Network-based methods

Paper Type of Images Species of Parasite eggs

A. Akintayo et

al. [84], 2018

644 microscopic soil sample

images containing parasite

eggs and non-egg particles

Soybean Cyst Nematode

eggs

M. Górriz et al.

[86], 2018

45 bright field microscopic

images obtained from

macrophage infection of

RAW cells with Leishma-

nia infantum, Leishmania

major and Leishmania

braziliensis that shows the

shape of parasites before

and after infecting the cells

Leishmaniasis Parasite

Yaning Li et al.

[87], 2019

951 microscopic images of

fecal samples of animals

containing parasite eggs as

well as debris

Trichuris spp. (monkey),

Strongyle (sheep), Toxocara

spp. (dog), Isospora (dog),

Eimeria (cow) and Eimeria

(sheep)

P. Najgebauer et

al. [85], 2019

465 images that contain

four classes of parasite eggs

along with fecal impurities

Whipworms, Visceral

worms, Pinworm, Hook-

worm

Ideal Oscar Li-

bouga et al. [88],

2022

Image dataset contains 320

microscopic images of four

types of intestinal parasite

eggs. Each image has sin-

gle or multiple parasite eggs

and fecal impurities

Ascaris Lumbricoides,

Schistosoma mansoni,

Trichuris Trichiura, and

Oxyure

Prosper Oyibo

et al. [89], 2023

Dataset contains 12,051 im-

ages with 17,799 annotated

S. haematobium parasite

eggs in 2997 images. The

dataset consists of images

with and without artifacts

such as air bubbles, glass

debris, etc.

S. haematobium eggs
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It is notable that, medical imaging often faces challenges such as noise

and varying illumination, which can degrade the quality of diagnostic informa-

tion. These challenges can obscure key pathological details, leading to misdiag-

nosis or reduced diagnostic confidence, particularly in modalities like microscopy

and X-ray imaging, where fine details are crucial. Effective handling of these is-

sues ensures that diagnostic algorithms can extract meaningful features, even in

suboptimal imaging conditions, thus enhancing their performance across diverse

clinical scenarios. Recent studies have explored methods such as deep learning-

based denoising models, which are particularly effective for removing electrical and

environmental noise from medical images. For instance, a study demonstrated how

these models could enhance spectral contrast in optoacoustic imaging, significantly

improving image clarity and diagnostic capabilities [90].

Dealing with varying illumination conditions is equally important. Mod-

els that incorporate adaptive learning mechanisms and multi-scale features have

been developed to address this issue, ensuring that critical details are preserved

despite inconsistent lighting. Furthermore, combining these methods with neural

networks like U-Net or GAN-based frameworks has proven to enhance robustness

against artifacts and variations, as demonstrated in recent advancements in tumor

segmentation and other diagnostic tasks [90,91].

2.2 Feature Extraction and Classification of Par-

asite Egg

Many different types of image features, such as shape, size, texture, etc., can be

extracted from the images and used in a classification algorithm for the identifi-

cation of different types of parasite eggs. There are several well-known machine

learning-based classifiers, including ANN, SVM, KNN, Decision Tree, etc., that are

used in different works in this field. In this section, we have discussed the features

and classification algorithms used in some major works on automatic detection

and identification of parasite eggs in microscopic images.

Yang et al. [9] used a two-stage artificial neural network (ANN) approach

to automatically identify the seven species of human helminth eggs from micro-

scopic images of stool samples. The detected objects are first classified by ANN-1

as either parasite eggs or non-egg artifacts. In the second stage, the identified

parasite eggs are classified into their respective classes. The work used four image
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features based on three characteristics, such as size, shape, and eggshell. These

features are calculated as follows:

1. F1 = min(r(θ))/max(r(θ))

Where r(θ) is the radial distance of the object’s boundary, which is normal-

ized by its mean value [9].

2. F2 =
∑π/4

0 |R(ω)|∑π
π/4 |R(ω)| ; the ratio of low-frequency components to high-frequency

components from the magnitude of discrete Fourier transform of r(θ) and

|R(ω)| [9].

3. F3 = σr; the standard deviation of r(θ).

4. F4 = Total number of pixels in an object.

Dogantekin et al. [33] used Hu’s seven invariant moments-based features

to identify sixteen different types of human parasite eggs. They used an adaptive

network-based fuzzy interface system (IM-ANFIS) for their classification stage,

which combines the concepts of fuzzy logic systems with artificial neural networks.

The model consists of an ANN learning algorithm and if-then rules. Hu’s seven

invariant moments were also used in a similar work by Avci and Varol [34], where

they adopted a multi-class support vector machine (MC-SVM) classifier for the

identification of sixteen types of parasite eggs.

Bruun et al. [76] stated a vision-based method for identifying Trichuris

suis parasite eggs in bright field microscopic images. The work extracted two

numerical features, longitudinal anisotropy and mean scattering intensity, from

the segmented images. Longitudinal anisotropy is the measure of the ”linearity”

of the egg contents along the length of the egg vs. across the egg [76]. It is

calculated as the ratio of the intensities of the longitudinal and transverse auto-

correlations of the egg content. Mean scattering intensity is calculated as the

average grayscale pixel intensity of the egg contents under dark field illumination

[76]. They used two classification methods: Linear Discriminant Analysis (LDA)

and Quadratic Discriminant Analysis (QDA).

Hadi et al. [2,46] extracted the area, length, width, size of boundary, and

circularity of object as features automatically identifying Ascaris lumbricoides and

Trichuris trichiura eggs. A logical classification method known as the threshold

with logical classification method (TLCM) was employed for the classification task.

The method works in such a way that objects that do not fall within the range of

each feature type are eliminated at each iteration.
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To automatically identify fifteen different types of human intestinal par-

asite eggs in microscopic images of fecal samples, Celso T. N. Suzuki et al. [27]

analyzed the results of three classification methods: ANN, SVM, and Optimum-

Path Forest (OPF). They used twelve different features, namely: 1) Ellipticity,

a measure of how similar an object is to an elliptical shape, is calculated by di-

viding the area of the best-fitted ellipse by the area of the candidate object; 2)

Geodesic distance ratio, which is derived by dividing the length of the longest

geodesic path through the object by the length of the shortest geodesic path; 3)

Curvature variance; 4) Salience variance, which is defined as the largest area be-

tween the internal and external regions of object’s contour; 5) Red texture, which

is the total number of pixels of an area calculated from a closing operation; 6) Red

average value, which is average pixel value in the red bend; 7) Average number of

regional minima in the gradient image inside the object; 8) Object’s perimeter; 9)

Object area; and 10) Second, third, and fourth-order image moments represent-

ing variance, skewness (symmetry), and kurtosis. In their other work [69], object

area, perimeter, symmetry, major and minor axes of the best-fit ellipse within the

object, the difference between the ellipse and the object, energy, entropy, variance,

and homogeneity of the co-occurrence matrix are used as features along with the

OPF classifier for identifying fifteen types of ectoparasites found in Brazil.

Gökhan Şengül [92] used texture-based features computed from a gray-

level co-occurrence matrix (GLCM) [29] and a kNN classifier for the identification

of fourteen types of human parasite eggs. A GLCM, the matrix computed from

a gray-scale image and then converted to a row vector with a size of 1 × (M ×
N), which is directly used as the feature set for the respective image. GLCM

texture-based features, along with a few shape-based features, are also used by

Zhixun Li et al. [77] for identifying six different types of human parasite eggs.

Texture features included in their work are contrast, energy, identity, relevance,

gray mean, variance, and entropy. Shape-based features include circularity or

roundness, average normalized radial length that represents the distance between

the points on the edge and center of the egg, needle-like degree (Spicu), which is

computed as F2 from the work of Yang et al. [9], number of bulges in parasite

egg using local maxima and minima, and elliptic normalized skeleton, which is the

number of points on the contour [77]. They trained an SVM classifier using the

extracted features to categorize the parasite eggs. B. Jimenez et al. [71] proposed

a system to identify seven species of human helminth eggs in microscopic images

of wastewater. In their work, they used a Naive Bayesian classifier with shape-

based features of parasite eggs, including area, perimeter, eccentricity, and texture

features such as energy, mean grey level, contrast, correlation, and homogeneity.
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They divided their work into three phases, called version 1, version 2, and version

3. In version 1, they considered four classes of parasite eggs, namely Ascaris

lumbricoides, Trichuris Trichura, Toxocara canis, Taenia saginata, while in the

later two versions, they used three other types of parasite eggs, viz., Hymenolepis

nana, Hymenolepis diminuta, Schistosoma mansoni.

Similar kinds of features, including object area, perimeter, major axis

length, minor axis length of the best-fitted ellipse, and symmetry, were used by

Sandra Valéria Inácio et al. [93] for automatic identification of four types of canine

intestinal parasite eggs. They also used co-occurrence matrix-based features such

as energy, variance, and homogeneity and trained them using an SVM classifier.

Raw pixel intensity-based features are used in a work by Mohamed A.

E. Abdalla and Huseyin Seker [39] for the identification of Eimeria parasites.

They extracted three features for every image of size M × N based on the mean

pixel values. The column feature (CF) set is computed from the columns as

CF = [cf1, cf2, cf3, ...], cfm], where cfm =
ΣN

i=1Pi,m

N
. The row feature (RF) set

is computed from the row of the image as RF = [rf1, rf2, rf3, ...], rfm], where

rfm =
ΣM

i=1Pn,i

M
and the third set CRF combines both row and column features.

Relieff algorithm is used in the extracted feature set to reduce the feature size.

For classification, ANN and kNN are used in their work.

Beaudelaire Saha Tchinda et al. [58, 59] stated a method based on prob-

abilistic neural networks (PNN) and principal component analysis (PCA) for the

identification of nine types of human parasite cysts in microscopic stool images.

The feature vector is extracted using the pixel values of segmented images of size

12× 12. PCA analysis is to reduce the feature dimension, and the first two PCA

components were considered to be used in the classification algorithm. Oscar

Takam Nkamgang et al. [52] used a Histogram of Oriented Gradients (HOG)

features with Linear Discriminant Analysis (LDA) and a neuro-fuzzy classifier

for automatic identification of various types of human intestinal parasite eggs in

microscopic images of fecal samples. LDA was used to reduce the dimension of

the extracted HOG features, which were near a thousand, and to select the most

prominent features.

41



Table 2.7: Various types of Features and Classification algorithms used in Auto-
matic Identification of Parasite Eggs

Article Types of Features Classification

algorithm

Number

of Classes

Obtained

Results

Yang et al.

[9], 2001

Object area, standard

deviation, ratio of

minimum to maxi-

mum trajectory of

radial distance, ra-

tio of low-frequency

to high-frequency

components (Fourier

Transform)

Two-stage Ar-

tificial Neural

Network

7 90.3%

Dogantekin

et al. [33],

2008

Hu’s seven invariant

moments

Adaptive

network-based

fuzzy inter-

face system

(IM-ANFIS)

16 95%

Avci and

Varol [34],

2009

Hu’s seven invariant

moments

Multi-Class

SVM

16 97.7%

Bruun et

al. [76],

2012

Longitudinal

anisotropy, mean

scattering intensity

Linear Discrim-

inant Analysis

and Quadratic

Discriminant

Analysis

2 93%

Hadi et

al. [2, 46],

2012, 2013

Area, length, width,

boundary size, circu-

larity

Threshold with

logical classifi-

cation method

(TLCM)

2 93% and

94%
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Table 2.7: (Continued)

Article Types of Features Classification

algorithm

Number

of Classes

Obtained

Results

Celso T.

N. Suzuki

et al. [27],

2013

Ellipticity, geodesic

distances, curvature

variance, salience

variance, red texture,

red average value,

average number of

regional minima,

perimeter, area,

variance, skewness,

kurtosis

ANN, SVM,

Optimum-Path

Forest (OPF)

15 Sensitivity

= 90.38%,

Specificity

= 98.32%,

Efficiency

= 98.19%

Celso T.

N. Suzuki

et al. [69],

2013

Object area, perime-

ter, symmetry, ma-

jor and minor axes of

best-fit ellipse, differ-

ence between ellipse

and object, energy, en-

tropy, variance, homo-

geneity

Optimum-Path

Forest (OPF)

15 Sensitivity

= 93.00%,

Specificity

= 99.17%

Gokhan

Şengul

[92], 2016

Texture-based fea-

tures from GLCM

K-Nearest

Neighbor

14 99%

Zhixun Li

et al. [77],

2015

Energy, identity, rel-

evance, gray mean,

variance, entropy;

shape-based features:

circularity, average

normalized radial

length, needle-like

degree, number of

bulges, number of

contour points

SVM 6 95%
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Table 2.7: (Continued)

Article Types of Features Classification

algorithm

Number

of Classes

Obtained

Results

B. Jimenez

et al. [71],

2016

Area, perimeter,

eccentricity, texture

features: energy,

mean grey level,

contrast, correlation,

homogeneity

Naive Bayes 7 Specificity

= 99%,

Sensitivity

= 80% to

90%

Mohamed

A. E. Ab-

dalla and

Huseyin

Seker [39],

2017

Pixel-based features:

column features (CF),

row features (RF),

combined CF and RF

(CRF)

ANN, kNN 7 (chick-

ens), 11

(rabbit)

96.6%

(chicken),

91.9%

(rabbit)

Oscar

Takam

Nkamgang

et al. [52],

2018

HOG features with

LDA

Neuro-Fuzzy

Classifier (fuzzy

system + ANN)

20 100%

Beaudelaire

Saha

Tchinda et

al. [58, 59],

2015, 2019

PCA projection of

pixel values

Probabilistic

Neural Networks

(PNN)

9, 15 100%,

100%

Sandra Va-

leria Inácio

et al. [93],

2020

Object area, perime-

ter, major axis length,

minor axis length of

best-fitted ellipse,

symmetry, energy,

variance, homogeneity

SVM 4 Kappa co-

efficient =

0.76
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2.3 CNN-based Classification and Object Detec-

tion methods used in Parasite Egg Identifi-

cation

Narut Butploy et al. [94] used CNN for the recognition of Ascaris Lumbricoides

eggs in microscopic images of stool samples. The proposed optimal CNN archi-

tecture for the classification of three categories of A. lumbricoides eggs, such as

infertile eggs, fertile eggs, and decoricate eggs. They trained the model with 200

images of each class and obtained an overall accuracy of 93.33%.

Thanaphon Suwannaphong et al. [95] also proposed a CNN-based model

by applying a transfer learning strategy for the classification of four types of

parasite eggs in low-quality microscopic images. The approach used a patch-based

and sliding window technique to locate the parasite eggs in the images. To locate

the parasite eggs, the patch size was set to 100×100 pixels with a patch overlapping

ratio of 4:5. To train the classifier, they used 97 images and labelled the patches

as egg patches and backgrounds. Data augmentation is applied to increase the

size of training samples and eliminate the class imbalance problem. The training

process utilized the transfer learning method with fine-tuned hyper-parameters

of pre-trained networks, including AlexNet and ResNet50. The author concluded

that ResNet50 outperforms AlexNet in the overall recognition of parasite eggs

and background. The highest accuracy achieved by AlextNet with patch-based

training is 96.93% while ResNet50 achieved 98.25%. However, true positive rate

of each class of parasite eggs is not that satisfactory, which ranges from around

56% to 73%.

Convolutional neural network-based object detection models such as

Faster-RCNN, YOLO (You Only Look Once), and SSD (Single Shot Detection) are

also used in some of the recent works on parasite egg detection. A Faster-RCNN

model is used by N. Q. Viet et al. [96] for the detection of eight different types

of parasite eggs in microscopic stool images. The authors fine-tuned the hyper-

parameters of the original region proposal and classification network of the model

and trained it with the annotated parasite egg images. A. Kitvimonrat et al. [97]

performed experiments using three different object detectors, viz., Faster-RCNN,

CenterNet, and RetinaNet for the detection of two types of parasitic eggs, namely

Opisthorchis Vivertini and Minute Intestinal Flukes. The work used ResNet as

the backbone network, in all three object detectors with pre-trained weights from

ImageNet (for faster RCNN and RetinaNet) and the MS COCO dataset (for Cen-
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terNet). Qiaoliang Li et al. [98] used a CNN model called FecalNet to automate

the detection of various objects and parasite eggs such as intestinal mucosal ep-

ithelial cells, erythrocytes, leukocytes, eggs of whipworms, and Ascaris in fecal

microscopic images. They used ResNet152 as the backbone network for their

model and a Feature Pyramid Network (FPN) module for the generation of region

proposals. Table 2.6 lists the different types of images and parasite eggs used in

these works. Satish Kumar et al. [99] used the YOLOv5 object detection algo-

rithm for the detection of five different parasite cysts of size 416×416. The model

is trained with 3657 images for 100 epochs and tested with 850 images. Their

work achieved approximately 97% mean average precision (mAP) with an average

time of 8.8 ms per image.

Table 2.8: Parasite egg Classification and Detection works that applied Convolu-
tional Neural Network-based Approaches

Article Approach Type of Im-

ages and

Dataset Size

Species of Par-

asite eggs

Results

Thanaphon

Suwan-

naphong et

al. [95], 2023

Transfer

learning

with CNN

on patches

162 images of

size 640 × 480

pixels

Ascaris lum-

bricoides,

Hymenolepis

diminuta, Fas-

ciolopsis buski,

Taenia spp.

Accuracy

=

98.25%

Satish Kumar

et al. [99],

2023

YOLOv5

for object

detection

5393 images of

size 416 × 416

pixels

Hookworm,

Hymenolepsis

nana, Tae-

nia, Ascaris

lumbricoides,

Fasciolopsis

buski

mAP =

97%

Narut But-

ploy et al.

[94], 2021

CNN

based clas-

sification

600 images of

stool samples

(200 each type)

Ascaris (in-

fertile, fertile,

decorticate)

Accuracy

=

93.33%
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Table 2.8: (Continued)

Article Approach Type of Im-

ages and

Dataset Size

Species of Par-

asite eggs

Results

A. Kitvimon-

rat et al. [97],

2020

Faster-

RCNN,

CenterNet,

RetinaNet

2654 micro-

scopic images

Opisthorchis

Vivertini,

Minute In-

testinal Fluke

mAP:

FRCNN

=

0.7394,

Reti-

naNet

=

0.6741,

Center-

Net =

0.5000

Ngo Q. Viet

et al. [96],

2019

Faster-

RCNN

246 microscopic

stool images

Ascaris, Di-

phyllobothrium,

Enterobius,

Hookworm,

Metagonimus,

Schistosoma,

Taeniarhynchus,

Trichuris

mAP =

97.67%

Recent advancements in deep learning have introduced Vision Transform-

ers (ViTs) as a groundbreaking approach in medical imaging. Vision Transformers,

initially proposed by Dosovitskiy et al. [100], leverage self-attention mechanisms

to capture long-range dependencies in images, demonstrating exceptional perfor-

mance in various computer vision tasks, including medical diagnostics. Unlike

convolutional neural networks (CNNs), which rely on fixed receptive fields, ViTs

divide images into patches and treat them as sequences, enabling the network to

learn complex relationships between different parts of the image. This capability

is particularly advantageous in medical diagnostics, where subtle differences in

visual patterns can indicate critical anomalies.

In the context of parasite egg detection, the adaptability of ViTs to varied

shapes, sizes, and noisy backgrounds offers significant potential. Recent studies,

such as Liu et al. [101], have demonstrated the superiority of ViTs over traditional
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CNNs in biomedical imaging tasks, including histopathology and radiology, where

precise identification of irregular structures is crucial. Moreover, ViTs have shown

remarkable robustness in working with heterogeneous datasets, making them well-

suited for the challenges posed by fecal sample microscopy, which often involves

images with debris and artifacts.

Limited labeled datasets have long been a challenge in medical imaging,

particularly in tasks such as parasite egg detection, where acquiring annotated

data is time-consuming and resource-intensive. Self-supervised learning (SSL) has

emerged as a transformative solution to this problem by leveraging unlabeled data

to pretrain models on pretext tasks such as image reconstruction or contrastive

learning. This approach allows the models to learn robust feature representations,

which can be fine-tuned for specific applications. Chen et al. [102] demonstrated

that SSL techniques significantly enhance feature extraction in medical imaging,

even when labeled data is scarce. Synthetic data generation using Generative

Adversarial Networks (GANs), introduced by Goodfellow et al. [103], further

addresses these challenges by creating realistic and diverse synthetic images to

augment datasets. Studies like Yi et al. [104] have shown that GAN-generated

data helps improve model performance by tackling data scarcity and class im-

balances. Combining SSL with GAN-based augmentation presents a promising

approach for enhancing parasite egg detection in challenging scenarios involving

small datasets.

2.4 Conclusion

In this chapter, we present a review of literature related to the automatic detection

and identification of parasite eggs in microscopic images. Key insights of the review

work are as follows:

• Sample Preference: Fecal samples are predominantly used in majority of

researches over blood, urine, and tissue samples.

• Common Species of Parasite Eggs: Among the various types of parasite

eggs, roundworms, hookworms, whipworms, pinworms, and tapeworms are

commonly used in many research studies.

• Traditional Segmentation Methods:
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– Common techniques include binary thresholding, Canny edge detection,

and watershed.

– Single methods are often inadequate due to challenges like debris and

overlapping objects; combining multiple methods may improve perfor-

mance.

– A robust segmentation approach applicable to various types of parasite

egg images is required for better results.

• Features and Classification Methods:

– The most commonly used features include circularity, object area, ratio

of major and minor axis length, Hu moments, and texture features such

as energy, entropy, contrast, homogeneity, and mean pixel intensity.

– SVM, ANN, KNN are the commonly used classifiers for classification

of parasite eggs.

• Deep Learning Advances:

– CNN-based classification has been used in several recent work and

achieved satisfactory results in identifying different types of parasite

eggs.

– The U-Net has also been employed for segmentation in a few recent

studies and has shown effectiveness

– Faster R-CNN is a popular choice for object detection, yielding good

results.

– These models’ performance depends on extensive training samples, pre-

cise annotations, and significant computing power.

• Challenges and Opportunities:

– Limited availability of diverse microscopic images restricts research.

– Many studies use small, homogeneous datasets.

– There is a need for improved segmentation, feature extraction, and

classification methods to effectively detect and identify a wide range of

parasite eggs.
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