
Chapter 4

Segmentation of Microscopic

Images of Parasite Eggs

Accurate segmentation of microscopic images is crucial for identifying different

types of parasite eggs. Recent advancements in computer vision and image pro-

cessing techniques have led to the development of several segmentation methods, as

discussed in Chapter 2. Several image segmentation techniques are explored, such

as thresholding, edge detection, active contour models, watershed algorithms, and

clustering-based segmentation, to accurately segment parasite egg images. This

chapter evaluates their effectiveness on our image dataset and presents. Based on

the evaluation, an optimized approach for segmenting the microscopic images of

fecal samples containing various types of parasite eggs is proposed.

4.1 Effectiveness of Traditional Methods for

Segmenting Parasite Egg Images

After exploring various traditional image segmentation methods, several advan-

tages and drawbacks associated with segmenting parasite egg images from fecal

samples are identified. These findings are summarized in Table 4.1.
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Table 4.1: Advantages and disadvantages of some well-known image segmentation
methods

Method Advantages Disadvantages

Thresholding It is a straightforward

method that is easy to

implement and computa-

tionally efficient, making it

suitable for real-time ap-

plications. Effective when

the intensity distribution

in the image is bimodal,

with a clear distinction

between foreground objects

(such as parasite eggs) and

background.

Thresholding is sensitive to

noise and variations in illu-

mination, which can lead to

inaccurate segmentation. It

struggles when the intensity

levels of the foreground and

background overlap or when

there are variations in stain-

ing and illumination.

Edge detection Edge detection methods

highlight boundaries ef-

fectively, making them

suitable for tasks where

accurate boundary delin-

eation is crucial. It works

well for eggs with irregular

shapes.

Sensitive to noise, which

may result in false positives

or incomplete segmentation.

Performance may depend

on parameter tuning, such

as adjustment of brightness

and contrast, which can be

challenging in varied imag-

ing conditions. May miss

the inner details of the ob-

jects, especially in the pres-

ence of noise.

Active Contour

Models (Snakes)

Active Contour Models are

adaptable to complex and

irregular shapes, making

them suitable for para-

site eggs with varying mor-

phologies. They can pro-

duce smooth and continu-

ous boundaries.

Performance is sensitive to

the initialization of the con-

tour. It can be computa-

tionally intensive, especially

for large images or extensive

contour evolution. Also,

the method may converge to

local minima and struggle

with concave shapes.
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Method Advantages Disadvantages

The Watershed

Algorithm

Effective in separating over-

lapping or touching objects,

which is beneficial for sce-

narios where parasite eggs

are closely situated. Gener-

ally, the method is robust to

noise in the image.

The method tends to over-

segment the image, espe-

cially in regions with sub-

tle intensity variations. The

performance of the method

can be sensitive to the

choice of parameters such

as marker type and value,

connectivity, gradient im-

age, etc. It may struggle

with irregular-shaped ob-

jects and may produce frag-

mented results.

Region-Based

Segmentation

The method is effective for

images where regions with

similar properties need to

be segmented, and it can

handle variations in staining

and illumination.

It struggles when the im-

age contains regions with

diverse properties and may

have difficulties with over-

lapping objects. Tuning of

parameters such as similar-

ity measure, maximum and

minimum region size, etc., is

important for better perfor-

mance.

Ellipse

Matching-Based

Methods

The method utilizes an el-

lipse model that can closely

match the shape of para-

site eggs. Its effectiveness

relies on well-defined object

shapes that can be approxi-

mated by ellipses.

This technique is less effec-

tive for parasite eggs with

irregular or complex shapes

and struggles with varia-

tions in size and orientation

of the ellipses.

Before evaluating any segmentation method, several image pre-processing

operations are implemented to achieve optimal results. These operations include

converting RGB images to grayscale, noise filtering, and enhancing brightness and

contrast. A detailed discussion of these operations is provided below:

1. Conversion into Grayscale Image: Generally, microscopic images of parasite
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eggs are taken in RGB (Red, Green, Blue) format. However, converting

them into grayscale involves several advantages, including:

• Uniform Representation of Information: Parasite eggs may vary in

colour due to staining or imaging conditions. Grayscale conversion

helps standardize the representation, making it easier to compare and

analyze intensity variations across the entire image.

• Intensity-Based Information: The parasite eggs can show different

shades or colors in the images due to staining or lighting. Convert-

ing the image to grayscale preserves these variations in brightness and

darkness, which is often important for segmentation.

• Reduction in Data Dimensionality: Converting to grayscale reduces

data dimensionality, simplifies image processing and segmentation

tasks, and allows the use of computationally more efficient algorithms.

• Compatibility with Traditional Image Processing Techniques: Many

traditional image processing techniques and filters are designed for

single-channel grayscale images. Converting the parasite egg images

to grayscale enables the use of various methods, including threshold-

ing, edge detection, and morphological operations.

Among the various methods for converting a colour image to grayscale, the

luminosity method and the weighted average method are the most commonly

used. The luminosity method assigns weights to each channel to reflect hu-

man colour perception, as shown in Equation 4.1 [107]. The weighted aver-

age method is similar but uses different weight values, as shown in Equation

4.2 [107]. This work adopts the second method, as it is proven to be more

effective, according to the literature.

Y = 0.2126×R + 0.7152×G+ 0.0722×B (4.1)

Y = 0.299×R + 0.587×G+ 0.114×B (4.2)

2. Noise Filtering: Microscopic images, particularly those acquired in biologi-

cal and medical contexts, often suffer from various types of noise that can

degrade their quality and clarity. In images of fecal samples, common noise

types include Gaussian noise, salt-and-pepper noise, quantization noise, tem-

poral noise, and colour noise. Within our dataset, salt-and-pepper noise

is frequently observed, and we addressed this using the median filtering

method. This approach substitutes each pixel’s value with the median value
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of its neighbouring pixels, effectively reducing salt-and-pepper noise without

blurring edges and preserving details better than alternative filters.

3. Brightness Enhancement: Brightness enhancement involves modifying pixel

intensity values in an image to enhance its visual appeal or improve its

quality for further processing. To enhance the brightness of microscopic

images of parasite eggs in our dataset, adjustments are made to both the

darkest and brightest areas of the pictures. The steps for this process are

mentioned below.

(a) Identify the lowest and highest brightness levels in the image based on

the lowest and highest pixel intensities in the grayscale image.

(b) Calculate the average brightness or average pixel intensity of the image.

(c) Adjustment:-

i. For the darkest areas: Increase the brightness using histogram

equalization based on the intensity distribution of the complete

image.

ii. For the brightest areas: Decrease brightness using the gamma cor-

rection technique with a gamma value of 0.45.

4. Contrast Enhancement: Contrast enhancement is an important step aims at

improving the visual clarity of different objects or structures within an image.

In the context of segmenting microscopic parasite egg images, where accurate

detection of objects is essential, contrast enhancement plays a crucial role.

Among various techniques, histogram equalization and CLAHE (Contrast

Limited Adaptive Histogram Equalization) are commonly used techniques

for enhancing image contrast. Histogram equalization redistributes pixel

intensities across a wider range to improve the visibility of details, especially

effective when pixel values are concentrated within a specific range. CLAHE

(Contrast Limited Adaptive Histogram Equalization) is an advanced form of

histogram equalization designed to adjust to local variations in contrast. It

segments the image into smaller regions and applies histogram equalization

independently to each region. This approach restricts the enhancement of

contrast within each region to prevent excessive noise amplification, thereby

enhancing local contrast. Here, CLAHE is applied to our parasite egg images

to improve overall contrast.
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4.1.1 Analysis of Thresholding-Based Segmentation

Method

This work applied the thresholding method using Otsu’s threshold value, which

automatically calculates an optimal threshold by considering the pixel intensity

distribution in the image [38]. Otsu’s approach is an automatic thresholding algo-

rithm that aims to determine the ideal threshold value by maximizing the variance

between two groups of pixels. This technique is widely used in image processing

for optimal image segmentation. The algorithm begins by computing the normal-

ized histogram p(i), which represents the distribution of pixel intensities in the

grayscale image. Subsequently, the cumulative distribution function (CDF) is cal-

culated as the cumulative sum of the normalized probabilities up to each intensity

level, formulated as follows:

P (i) =
i∑

k=0

p(k) (4.3)

The mean intensity of the image, denoted as µ, is computed using the

histogram and CDF as:

µ =
255∑
i=0

i · p(i) (4.4)

The global variance (σ2
global) is calculated by evaluating the squared differ-

ence between each intensity value and the mean intensity as shown in Equation

4.5.

σ2
global =

255∑
i=0

(i− µ)2 · p(i) (4.5)

Otsu’s method then iterates through possible threshold values. For

each threshold k, the algorithm computes the class probabilities for background

(w0(k) = P (k)) and foreground (w1(k) = 1 − w0(k)). Class means (µ0(k) and

µ1(k)) for background and foreground are calculated as follows:

µ0(k) =

∑k
i=0 i · p(i)
w0(k)

and µ1(k) =

∑255
i=k+1 i · p(i)
w1(k)

(4.6)

The between-class variance (σ2
between(k)) is then computed using the class
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probabilities and means as mentioned in the Equation 4.7.

σ2
between(k) = w0(k) · w1(k) · (µ0(k)− µ1(k))

2 (4.7)

The optimal threshold (k∗) is determined by selecting the threshold value

that maximizes the between-class variance (k∗ = argmaxk σ
2
between(k)). Finally,

the original image is thresholded using k∗ to obtain a binary image, where pixels

below the threshold belong to the background (0) and those above belong to the

foreground (1), as shown in Equation 4.8.

Binary Image(x, y) =

0 if Original Image(x, y) ≤ k∗

1 if Original Image(x, y) > k∗
(4.8)

Image thresholding using Otsu’s threshold value is sensitive to variations

in pixel intensities and can adapt to different lighting conditions and contrasts,

which makes it suitable for the segmentation of parasite egg images. Figure 4-1

displays some of the best results achieved through multiple experiments using this

segmentation approach with different combinations of pre-processing operations.

Input Image Segmented Image

(a)

(b)

(c)

Figure 4-1: Examples of input and thresholded output images: (a) Image con-
taining parasite eggs with a little load of debris, (b) with moderate load of debris,
and (c) with high load of debris

From the experiments, it is observed that the thresholding method per-
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forms effectively when parasite eggs are clearly distinguishable from the back-

ground, free from debris or overlapping eggs, and with minimal impurities. How-

ever, as the amount of debris in the images increases, the method struggles to

accurately segment objects, despite employing various combinations of image pre-

processing operations.

4.1.2 Analysis of Edge-Detection-Based Segmentation

In image processing, edge detection can be achieved using various methods, such

as the Sobel operator, the Prewitt operator, the Robert operator, and the Canny

Edge Detector. These operators or masks are used to calculate the gradient of the

image, which represents the rate of change of intensity for each pixel. Based on

the gradient image, the edges of different objects can be determined. Let’s denote

an input image as I(x, y), where x and y are the spatial coordinates. The gradient

magnitude G(x, y) and orientation θ(x, y) at each pixel can be computed as in

equations 4.9 and 4.10 [108]:

G(x, y) =
√

Gx(x, y)2 +Gy(x, y)2 (4.9)

θ(x, y) = arctan(
Gx(x, y)

Gy(x, y)
) (4.10)

Where, Gx and Gy are the gradients in the horizontal and vertical directions

respectively, obtained by convolving the image with the derivative masks. Once

the gradient magnitude and orientation are computed, edges can be detected by

thresholding the gradient magnitude [109].

Each operator has its own unique characteristics, and the choice of a spe-

cific operator depends on the application requirements and the characteristics of

the images being processed. Sobel, Prewitt, and Roberts operators are sensitive

to noise, which makes them less suitable for noisy images [110]. The Canny Edge

Detector includes Gaussian smoothing in its pre-processing stage, which helps re-

duce noise and increases its robustness. The Sobel and Prewitt operators highlight

edges in both horizontal and vertical directions separately, while the Roberts oper-

ator focuses on diagonal edge detection. In contrast, the Canny Edge Detector can

detect edges in multiple directions by utilizing gradient magnitude and orientation

information. Therefore, Sobel and Prewitt operators are commonly used in scenar-
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ios where the image contains well-defined edges, while Canny is often considered

the gold standard for edge detection due to its robustness, accurate localization,

and adaptability to various image conditions [111]. However, edge detection using

the Canny operator is computationally expensive and time-consuming compared

to other methods [108,111].

Laplacian of Gaussian (LoG) edge detection method identifies edges by

combining the principles of Gaussian smoothing and Laplacian filtering [112]. The

process starts with applying a Gaussian filter to the input image, followed by the

application of the Laplacian operator [108, 111]. The result of the LoG operation

is an image that highlights edges and identifies zero-crossings. Zero-crossings

indicate significant changes in intensity and occur when the sign of pixel values

changes, highlighting the presence of an edge. [112].

The effectiveness of all the methods is evaluated on the microscopic im-

ages containing parasite eggs in our dataset. Before applying any edge detection

method, we performed a few pre-processing operations similar to those used in

thresholding-based segmentation. An example of the final segmented images pro-

duced by various edge detection methods is shown in Figure 4-2.

Based on the experimental outcomes, it is observed that the Canny oper-

ator slightly outperforms others in detecting the boundary edges of parasite eggs

across most images. The Sobel operator also showed effectiveness; however, in

several cases, it is noticed that it tends to over-segment objects or detect unneces-

sary edges. The LoG method also yielded effective results, but in some images, it

fails to detect certain parasite eggs that are successfully identified by the Canny

edge detection method.

4.1.3 Analysis of watershed-based segmentation

A watershed segmentation method is also employed that utilizes the distance trans-

form to identify regional minima, which are then used as markers for the watershed

algorithm. The distance transform, calculated using the Euclidean distance as de-

fined in Equation 4.11, assigns each pixel a value that indicates its distance to the

nearest zero-value pixel (the object boundary) [113]. Subsequently, a threshold is

applied to the distance transform to identify significant regional minima, which

serve as markers for the watershed algorithm.
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(a) Original Input Image (b) Canny Edge Detected Image

(c) Sobel Edge Detected Image (d) Prewitt Edge Detected Image

(e) Roberts Edge Detected Image (f) LoG Edge Detected Image

Figure 4-2: Segmentation result of various edge detection methods

dEuclidean([i1, j1], [i2, j2]) =
√
(i1 − i2)2 + (j1 − j2)2 (4.11)

where [i1, j1] and [i2, j2] are two pixels in a digital image.

A few examples of segmented images resulting from the watershed-based

segmentation method are shown in Figure 4-3. The watershed segmentation is

effective in capturing natural object boundaries; however, it may produce over-

segmentation, especially in areas with sudden intensity variations or noise. More-

over, determining the markers is a very challenging task for the microscopic images

of parasite eggs having large amounts of debris or sample impurities. The obser-

vations suggested that the method’s effectiveness in segmenting the parasite eggs

primarily depends on the quality of the thresholding outcomes. It often struggles

to accurately segment objects when the images contain a high level of debris or

impurities in the sample.
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(a) Images containing hookworm eggs

(b) Images containing roundworm eggs

Figure 4-3: Output Images from the Distance Transform-based Watershed Seg-
mentation Method

4.1.4 Analysis of Clustering-Based Segmentation

The K-means clustering method groups each pixel of a grayscale image as fore-

ground or background. A few segmentation results from the K-means-based

method are illustrated in Figure 4-4. The k-means segmentation method is easy

and simple to implement, but it is sensitive to the initial placement of cluster cen-

troids. Different initializations may lead to different final segmentation outcomes,

and finding the optimal initialization can be challenging.

Figure 4-4: A few examples of output images using K-means segmentation
method
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4.2 Proposed Segmentation Approach

After thoroughly examining the images, the performances of various segmentation

methods are evaluated as discussed in the preceding sections. These evaluations

enabled us to identify the strengths and weaknesses of the various methods in

segmenting the parasite egg images. Based on these findings, this research work

proposes an optimal segmentation approach aiming at improving the overall seg-

mentation results. The steps involved in the proposed segmentation approach are

outlined below, and they can also be visualised in Figure 4-5.

Algorithm 1: Steps involved in the proposed segmentation approach

Data: Image in RGB format
Result: Segmented images of various objects

1 Convert image into grayscale;
2 Reduce image using Median filtering;
3 Enhancement of image brightness;
4 Enhancement of image contrast;
5 Enhancement of sharpness;
6 Canny edge detection operator;
7 Apply morphological dilation;
8 Apply morphological erosion;
9 Circular object detection using CHT;

10 Convert the detected circles into bounding boxes using the radius and
pixel coordinates of the circle’s perimeter;

11 Project the detected circles into the color image;
12 Apply the Non-Maximum suppression method to eliminate the

overlapping detection;
13 Count the number of bounding boxes;
14 while There exists detected bounding boxes do
15 Crop the object out using the bounding box coordinates;
16 end

Figure 4-5: Proposed Segmentation Approach
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4.2.1 Pre-Processing and Edge Detection

Before applying the segmentation method to the images, several pre-processing op-

erations are performed. These include noise filtering, enhancement of brightness,

contrast, and edge sharpness. To reduce salt and pepper noise in the grayscale

images, a median filter with a 3×3 convolutional filter is applied. Gamma correc-

tion is utilized to enhance brightness, addressing images with inadequate lighting

conditions and those that are overly bright. The contrast of the image is en-

hanced using the CLAHE method, and the Gaussian high-pass filtering method is

employed to sharpen the object’s edges.

The segmentation process involves applying the Canny edge detection

method, which outlines the edges of foreground objects using white pixels against

a black background. The higher threshold value for the edge detection process

is determined using Otsu’s method, which automatically calculates the threshold

based on the image intensity distribution. The lower threshold value is set at 45%

of the higher threshold value. This coefficient is determined empirically based on

observations from multiple outputs.

4.2.2 Post-Processing

After completing the edge detection, two popular morphological operations are

applied, namely dilation and erosion. Dilation expands or thickens the boundaries

of objects in a segmented image. For each pixel in the image, the dilation operation

replaces the pixel value with the maximum value within the neighbourhood defined

by a structuring element such as a circle or square. A square kernel of size 5× 5

is used to perform dilation with the aim of connecting disjointed pixels of the

edges, bridging the small gaps between edges, and improving the continuity of the

detected edges.

Following the morphological operations, the Circular Hough Transform

(CHT) method [51] is applied to detect circular and elliptical-shaped objects in

the images. Since the parasite eggs typically exhibit oval shapes, this method

proves effective in detecting them, even when partially covered in debris. It also

helps in the detection of touching and overlapping objects.

The method represents circles using the parameters (h, k) for the centre

and r for the radius, as mentioned in Equation 4.12 [114]. The parameter space

is a 3D array, often referred to as the accumulator array, with dimensions cor-
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responding to h, k, and r. For each edge pixel at coordinates (x, y), vote for

possible circles by considering potential centres (h, k) and varying the radius r

to accumulate votes in the parameter space. The accumulator array stores votes

for different circle parameters. Then it identifies the peaks in the accumulator

array that indicate potential circle parameters. To eliminate false positives and

filter out weak detection, a threshold value is applied to the accumulator array

[115]. The choice of threshold value is important in the case of parasite egg de-

tection, as parasite eggs have a regular shape and size compared to other non-egg

objects in the images. The threshold values, such as the radius and circularity of

objects, are determined empirically to detect objects within a range of circularity

and radius. We set the minimum circularity value to 0.5 to detect both circular

and elliptical-shaped parasite eggs, including those that are partially covered with

debris or touching other objects. It is observed that applying the CHT directly to

the grayscale image results in the detection of numerous unnecessary objects and

significantly increases processing time. Therefore, to address this issue and speed

up processing, I applied the method to the binary edge-detected image.

(x− h)2 + (y − k)2 = r2 (4.12)

The Circular Hough Transform process produces several overlapping cir-

cles around the same object. To eliminate them, the circles are converted into

bounding boxes, and the Non-Maximum Suppression (NMS) method is applied.

The NMS is generally used in object detection tasks to refine the results of a de-

tection algorithm by eliminating redundant or multiple overlapping bounding box

predictions. In this work, the NMS method as mentioned in [116] is used, with

a few modifications to remove the multiple overlapping detections of the same

object.

The Non-Maximum Suppression (NMS) method involves sorting bound-

ing boxes based on a confidence score. Since the segmentation approach does not

include ground truth data, the confidence score for the bounding boxes is deter-

mined from the parameters of the Circular Hough Transform (CHT) operation,

as shown in Equation 4.13. This score indicates how confident the model is that

an object exists within each bounding box. The method then iterates through the

sorted list, keeping boxes with the highest confidence scores and removing overlap-

ping boxes that have significant intersection over union (IoU). This ensures that

only the most confident and non-overlapping bounding boxes remain, effectively

preventing multiple detections of the same object.
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Confidence Score = 0.5 ∗ Circularity + 0.5 ∗ Size Confidence (4.13)

Where the size confidence score is calculated as follows:

Size Confidence =
Size of the detected object

Average of all detected objects
(4.14)

4.3 Results and Discussion

The proposed segmentation approach is evaluated using our image dataset. Figure

4-6 shows example output images produced at various stages of the segmentation

process.

(a) Input image (b) Pre-processed image (c) Edge-detected image

(d) Circular Hough
Transform result

(e) Circles are converted
into bounding boxes and
projected to RGB image

(f) Output image after
applying NMS

Figure 4-6: Input and output images of different stages of the proposed segmen-
tation approach

The effectiveness of the segmentation method is assessed by visually ex-

amining the output images. A few examples of edge-detected images produced

by the segmentation method, along with their respective ground truth masks, are

shown in Figure 4-7.

While the approach successfully detects parasite eggs in most images, it

also segments numerous debris or non-egg objects. This complicates the direct

comparison of the segmented images with our prepared ground truth masks dis-

cussed in Chapter 3, to calculate the quantified result of the segmentation process.

74



Original RGB Image Ground Truth Mask

Edge Detected
Image

Figure 4-7: Comparison of original ground truth masks and edge-detected im-
ages.

Following are the key reasons why this work cannot provide quantified results for

the proposed segmentation approach:

• The segmentation masks are created for training CNN-based semantic seg-

mentation models by annotating parasite eggs and a few similar objects.

However, the proposed image processing-based segmentation approach de-

tects several debris or non-egg objects that make the direct comparison with

the masks difficult. Without the ground truth for all the structures present

in the segmented images, it is difficult to meaningfully apply metrics such

as IOU, precision, recall, and F1-score.

• In the masks, object boundaries are precisely outlined with object pixels

marked in white. In contrast, our segmentation approach employs an edge

detection method that detects only the object boundaries. Some of these

boundary edges may not be fully connected, making it difficult to accurately

fill the pixels within the object for comparison.

• In many images, parasite eggs are covered by sample impurities or come

into contact with other objects. The segmentation method sometimes fails

to effectively separate the eggs from the impurities, resulting in segmentation

that includes these impurities. In contrast, the ground truth masks clearly

distinguish the eggs from debris or impurities.
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4.4 Conclusion

In this chapter, various techniques for segmenting microscopic images of parasite

eggs are explored, and an effective approach is proposed to address the chal-

lenges associated with analyzing microscopic images from fecal samples. The

study primarily focused on three types of parasite eggs: Roundworm (Ascaris

lumbricoides), Hookworm (Necator americanus / Ancylostoma duodenale), and

Whipworm (Trichuris trichiura). Following are the key contributions and insights

of the chapter:

• Explores various segmentation techniques and evaluates their effectiveness

on segmenting the microscopic parasite egg images from fecal samples.

• Proposes an integrated approach combining Canny Edge Detection and Cir-

cular Hough Transform methods, supported by some crucial image pre-

processing and post-processing steps.

• Implements Non-Maximum Suppression to address challenges such as over-

lapping detections from the Circular Hough Transform.

• Despite challenges like sample impurities and varying image conditions, the

proposed method achieves promising results within our dataset.

In conclusion, this chapter highlights the importance of addressing key

challenges in image segmentation for the automatic detection and identification of

parasite eggs in microscopic images of fecal samples.
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