
Chapter 5

Extraction of Features from the

Segmented Objects

The extraction of effective features from the segmented images of parasitic eggs

is crucial for accurate identification. After segmenting the parasite eggs from

microscopic images, the next step is to extract features that accurately represent

the underlying structures and are robust to variations in imaging conditions and

species of parasite eggs. These features are key to developing classification models

that can accurately distinguish between different types of parasitic eggs and other

objects.

Robustness is a key factor in feature extraction, ensuring that the fea-

tures remain consistent and informative across diverse classes and datasets. Fea-

tures must endure variations in image quality, lighting conditions, and specimen

preparation techniques. Texture descriptors, such as Haralick features or local

binary patterns, are commonly used to capture spatial patterns and variations in

pixel intensities, providing valuable information about the surface characteristics

of parasitic eggs. Shape-based features, which focus on geometric properties like

circularity and compactness, also enhance the robustness of the feature sets.

Efficiency in feature extraction is crucial, especially with large-scale image

datasets. The computational demands require methods that are both accurate

and computationally efficient. Dimensionality reduction methods may speed up

computation by transforming the feature space into a lower-dimensional subspace

while preserving maximum variance. This not only accelerates classification al-

gorithms but also helps address the challenges associated with high-dimensional

data analysis.

77



After thoroughly exploring different types of features, six different types

of feature sets are extracted from the segmented objects. These include various

image moments such as Hu’s moments, Legendre moments, Chebyshev moments,

and Krawtchouk moments. These mathematical descriptors provide a deep under-

standing of the spatial distribution and shape characteristics within the images.

This work also incorporates texture features and shape-based features, enabling a

more detailed investigation of the objects’ surface patterns and geometric struc-

tures. Additionally, a grayscale pixel intensity-based feature set is included, offer-

ing insights into the objects’ shading differences and contrasts. Details of these

feature sets are discussed in the following sections.

5.1 Image Moment-Based Features

Image moments are mathematical features used in image processing to quantify

and characterize various properties of an image. These moments provide a com-

pact representation of the spatial distribution of pixel intensities, offering valuable

insights into the shape, structure, and other essential features of an image. The

general formula for computing moments of an image function f(x,y) is given by:

Mpq = ΣxΣyx
pyqf(x, y) (5.1)

where Mpq represents the pth order and qth order moments of the image. Two

commonly used moments include the first-order moment, or mean, and the cen-

tral moment. First-order moment, or Mean (Mpq), which is computed as the

summation of pixel intensities, weighted by their spatial positions, as mentioned

in equation 5.2. Normalized first-order moments, µpq, provide information about

the centre of mass of the image. Central moments, (ηpq), are normalized versions

of raw moments computed as shown in Equation 5.3, providing translational in-

variance. They are particularly valuable for characterizing the shape of objects in

an image.

µpq =
Mpq

M00

(5.2)

etapq =
Mpq

M
p+q
2

+1

00

(5.3)
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Higher-order moments, such as Hu moments [117], enhance robustness

against scale and rotation, making them valuable in pattern recognition and object

analysis. In general, image moments play an important role in feature extraction,

facilitating the development of effective algorithms for tasks like object recognition,

shape analysis, and machine learning across various computer vision applications.

After a thorough study of various types of image moments, four distinct sets of

moments are computed to prepare four types of feature vectors. These image

moments are outlined below:

5.1.1 Hu Moments

Hu moments, introduced by Ming-Kuei Hu [117], are a set of seven moments

widely used in image processing for shape analysis and pattern recognition. These

moments are invariant to translation, rotation, and scale, making them robust fea-

tures for various computer vision applications. The orthogonality of Hu moments

simplifies computations and enhances stability [47]. They offer a unique represen-

tation for each object and provide a compact feature set, which is advantageous in

applications with limited computational resources. The Hu moments are derived

from the central moments of an image. They offer a concise representation of

an object’s shape, enabling efficient and effective recognition. The equations for

calculating Hu moments are as follows:

Hu1 = η20 + η02

Hu2 = (η20 − η02)
2 + 4η211

Hu3 = (η30 − 3η12)
2 + (3η21 − η03)

2

Hu4 = (η30 + η12)
2 + (η21 + η03)

2

Hu5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

Hu6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

Hu7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]− (η30 − 3η12)(η21 + η03)

[3(η30 + η12)
2 − (η21 + η03)

2]

(5.4)

Here, η20 and η02 capture information about the shape’s elongation or

roundness. They are invariant to scale and rotation. η11 is a measure of the corre-

lation between x and y coordinates. It provides information about the orientation

of the shape and is invariant to rotation. η30 and η03 capture information about

the shape’s skewness and are invariant to scale, rotation, and reflection. η12 and
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η21 capture information about the shape’s tilt and are invariant to scale, rotation,

and reflection. Hu Moments offer a simplified and reliable representation of an ob-

ject’s shape in an image, making them useful for computer vision applications such

as image matching and object recognition where shape information is required.

In general, Hu moments for an image are computed from the entire im-

age. However, in many cases, it is seen that the parasite egg is not centred in the

segmented image. Extracting features from the whole image may include redun-

dant information, which can lead to misclassification. To extract features solely

from the parasite egg and avoid background, an approach utilizing the binary-

segmented images as a mask is applied. The steps involved in the process are

given below:

Step 1: Determine the boundary pixel coordinates of the object in the segmented

image.

Step 2: Match the pixel coordinates with the corresponding grayscale image.

Step 3: Extract the pixel values that are inside the boundary of the object in

grayscale

Step 4: Use only these pixels to extract the feature.

5.1.2 Legendre Moments

Legendre moments are a set of mathematical descriptors used for representing

the shape and structure of functions or signals. They are introduced by Michael

Reed Teague [118], using the Legendre polynomials, which are a family of or-

thogonal polynomials defined on the interval [-1, 1] [118–120]. These orthogonal

moments are robust in the presence of noise and invariance to rotation and scale

transformations, allowing them to be used in a variety of computer vision and

image processing applications. Legendre moments of order (m+n) are defined as

equation 5.5[119,120]:

λmn =
(2m+ 1)(2n+ 1)

4

∫ 1

−1

∫ 1

−1

Pm(x)Pn(y)f(x, y)dxdy; [m,n] ∈ [−1, 1]

(5.5)

The pth order Legendre polynomials can be defined as in Equation 5.6 [47,119,121]:

Pp(x) =
(−1)p

22p!
(
d

dx
)p[(1− x2)p] (5.6)
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For a discrete image of size M × N pixels and intensity function f(i, j)

where i ≤ M and j ≤ N , the Legendre moments (λmn) can be approximated as

below [47,120]:

λmn =
(2m+ 1)(2n+ 1)

(M − 1)(N − 1)

M∑
i=1

N∑
i=1

Pm(x)Pn(x)f(xi, yj) (5.7)

where xi =
2i−M−1
M−1

and yj =
2j−N−1
N−1

.

Instead of using this approximation, an efficient way, proposed by Simon

X. Liao and Miroslaw Pawlak is used as shown in Equation 5.8 [120,122].

˜λmn =
(2m+ 1)(2n+ 1)

(M − 1)(N − 1)

M∑
i=1

N∑
i=1

hmn(xi, yj)f(xi, yj) (5.8)

where,

hmn(xi, yj) =

∫ xi+∆x/2

xi−∆x/2

∫ yj+∆y/2

yj−∆y/2

Pm(x)Pn(y)dxdy; (5.9)

where, ∆x = 2
M−1

and ∆y = 2
N−1

5.1.3 Chebyshev Moments

The Chebyshev moments are derived from the discrete Chebyshev polynomials

and play a significant role in image processing and pattern recognition. One of

the major advantages of the Chebbyshev moment is its ability to efficiently capture

image characteristics with fewer coefficients, resulting in a compact representation.

Chebyshev moments are particularly useful in scenarios where computational effi-

ciency is crucial. Moreover, these moments possess desirable orthogonality prop-

erties, making them robust against noise and ensuring reliable feature extraction.

Given an image of sizeNXN pixels and an intensity function f(x, y) where

x and y are the pixel coordinates, the Chebyshev moments Cpq of order (p + q)

can be computed as follows [119,123]:

Cpq =
1

ρ(p,N)ρ(q,N)

N−1∑
x=0

N−1∑
y=0

tp(x)tq(y)f(x, y) (5.10)
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where ρ(p,N) is calculated as equation 5.11

ρ(p,N) =
N(1− 1

N2 )(1− 22

N2 )(1− 32

N2 )...(1− p2

N2 )

2p+ 1
(5.11)

The scaled Chebyshev polynomials tp(x) are calculated using the recur-

rence relation as Equation 5.12 [124]:

tp(x) =
(2p− 1)t1(x)tp−1(x)− (p− 1){1− (p−1)2

N2 }tp−2(x)

p
, p > 1 (5.12)

where t0(x) = 1 and t1(x) =
2x+1−N

N
. As p rises, the value of ρ(p,N) approaches

zero. Thus, when either p or q is large, Equation 5.10 yields very large values [119].

The issue can be solved using the orthonormal form of the moments proposed in

[124]. The orthonormal Chebyshev polynomials are calculated by the recurrence

relation as given below [119]:

t̃p(x) = α(2x+ 1−N)t̃p−1(x) + βt̃p−2(x); p = 0, 1, ..., N − 2;x = 0, 1, ..., N − 1

(5.13)

where,

α =

√
4p2−1

p
√

N2−p2
, β = − (p−1)

√
2p+1

√
N2−(p−1)2

p

√
2p−3

√
N2−p2

The initial conditions for Equation 5.13 are as follows:

t̃0(x) = N−1/2 (5.14)

t̃1(x) =

√
3(2x+ 1−N√
N(N2 − 1)

(5.15)

To reduce the impact of any numerical errors, the polynomials provided

in Equation 5.13 can be re-normalized as follows:

t̃p(x) =
t̃p(x)√∑N−1

x=0 (t̃p(x))
2

(5.16)

The orthonormal Chebyshev polynomials are calculated using the recur-

rence relation given below [119]
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Cpq =
N−1∑
x=0

N−1∑
y=0

t̃p(x)t̃q(y)f(x, y); p, q = 0, 1, 2, ...., N − 1 (5.17)

For an image of size M × N , the above equation can be represented as

follows:

Cpq =
M−1∑
x=0

N−1∑
y=0

t̃p(x)t̃q(y)f(x, y); p = 0, 1, 2, ....,M − 1; q = 0, 1, 2, ...., n− 1

(5.18)

In this study, the normalized orthonormal Chebyshev form is used. In the

discrete domain of image coordinate space, the basis functions of Chebyshev mo-

ments are orthogonal, which means no discrete approximation is needed for their

implementation. This also removes the need for coordinate space normalisation.

The Chebyshev moments are computed directly using Equations 5.17 and 5.18.

5.1.4 Krawtchouk moments

The Krawtchuk moments are mathematical features employed in image processing

and pattern recognition to analyze and represent spatial patterns within images.

These moments are derived from the Krawtchuk polynomials, originally introduced

by Pew-Thian Yap [125,126]. These polynomials are orthogonal and defined on a

finite domain, closely associated with the binomial distribution [126]. The (p+ q)-

th order Krawtchouk moments of an image with an intensity function f(x, y) can

be calculated as below: [126]:

Qpq =
N−1∑
x=0

N−1∑
y=0

K̄p(x; t1, N − 1)K̄q(y; t2, N − 1)f(x, y) (5.19)

where K̄p(x; t1, N − 1) is the pth order weighted Krawtchouk polynomial defined

as

K̄p(x; t1, N − 1) = Kp(x; t1, N − 1)

√
ω(x; t, N − 1)

ρ(p; t, N − 1)
(5.20)
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Here Kp(x; t1, N − 1) is the pth discrete Krawtchouk moments, which are defined

as follows:

Kp(x; t1, N − 1) =

p∑
k=0

ak, p, tX
k = 2F1(−p,−x, (N − 1);

1

t
)

x, p = 0, 1, 2, N − 1; N − 1 > 0; t ∈ (0, 1)

(5.21)

Where, 2F1 is known as a hyper-geometric function, which can be calculated as:

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)kz
k

(c)kk!
(5.22)

and ak is the Pochhammer symbol, defined as:

ak = a(a+ 1)...(a+ k − 1) =
Γ(a+ k)

Γ(a)
(5.23)

The set of Krawtchouk polynomials defined by Equation 5.21 forms an

entire set of discrete basis functions with a weight function as given below:

ω(x; t, N − 1) =

(
N − 1

x

)
tx(1− t)N−1−x (5.24)

For a M ×N -sized image, Equation 5.19 can be rewritten as follows:

M−1∑
x=0

N−1∑
y=0

K̄p(x; t1,M − 1)K̄q(t; t2, N − 1)f(x, y) (5.25)

Recurrence relations are useful in computing Krawtchouk polynomials to

prevent overflow when dealing with mathematical functions such as Equation 5.22

and gamma functions. The recursive relation for the weighted Krawtchouk poly-

nomials is provided as follows [126]:

K̄p+1(x; t, N − 1) =
A((N − 1)t− 2pt+ p− x)

t(N − 1− p)
K̄p(x; t, N − 1)− Bp(1− t)

t(N − 1− p)
K̄p−1(x; t, N − 1),

p = 1, 2, 3, ..., N − 2

(5.26)
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where, A =
√

t(N−1−p)
(1−t)(p+1)

, and B =
√

t2(N−1−p)(N−p)
(1−t)2(p+1)p

, with K̄0(x; t, N − 1) =√
ω(x; t, N − 1) and K̄1(x; t, N − 1) = (1− x

t(N−1)
)(
√

t(N−1)
1−t

)
√

ω(x; t, N − 1)

Similarly, the weight function as provided in Equation 5.24 can also be

computed using the following recursive relation:

ω(x+ 1; t, N − 1) = (
N − 1− x

x+ 1
)

t

1− t
ω(x; t, t, N − 1) (5.27)

where, ω(0; t, N − 1) = (1− t)N−1

Using the symmetry property for the specific scenario t1 = t2 = 0.5 can

greatly reduce the computation time of the Krawtchouk moments. The weighted

Krawtchouk polynomial’s symmetry relation is provided by the equation [126].

K̄p(x; t1, N − 1) = (−1)pK̄p(N − 1− x; t, N − 1) (5.28)

Krawtchouk moments have base functions that are orthogonal in the

discrete domain of the image coordinate space, much like Chebyshev moments.

Coordinate-space normalization and discrete approximation are therefore not nec-

essary for the execution of these moments.

5.2 Texture and Shape-based Features

Image texture features refer to the patterns and variations in intensity within an

image, providing crucial information about the spatial arrangement of pixel values.

Texture features capture properties like smoothness, coarseness, and regularity,

enabling the characterization of various patterns and objects within an image. In

the field of parasite egg identification in microscopic images, texture features play

a crucial role. Microscopic images of parasite eggs often exhibit distinct textural

patterns that are indicative of the specific parasite species. Analyzing the texture

features helps in differentiating between various egg types based on their surface

characteristics, allowing for more accurate and efficient identification.

Haralick features, also known as GLCM (Gray-Level Co-occurrence Ma-

trix) features, are a well-known set of features widely used in image analysis.
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Developed by Robert M. Haralick et al. [127] in the 1970s, these features are

significant for their ability to quantify complex texture patterns within images.

In this work, Haralick features and the GLCM framework are used to analyze

the internal patterns of various parasite eggs and non-egg objects in microscopic

images of fecal samples.

5.2.1 Grey-Level Co-occurrence Matrix

Gray-Level Co-occurrence Matrix or Gray-level Spatial Dependence Matrix is a

statistical method for examining texture based on the spatial relationship of pixels

in a gray-scale image [128]. The GLCM works by examining how frequently certain

pairs of pixels appear in a picture, considering their specific values and their

relative positions. Based on this information, it constructs a matrix from which

statistical metrics are subsequently extracted to quantify and describe the textural

properties of the image.

The GLCM of a grayscale image I, which is normalized in n-dimensional

Euclidean space Zn, can be defined as a square matrix Gd of size N , where N

represents the total number of gray levels [129]. The value at position (i, j)th

in the matrix Gd indicates the frequency of occurrences of a pixel X, having

intensity value i, located at a specific distance k from another pixel Y with an

intensity value j in a given direction d. Where k is a positive integer value and d

is defined as: d = (d1, d2, d3, ..., dn); di ∈ {0, k,−k},∀i = 1, 2, 3, ..., n.

Let’s consider a grayscale image in Z3 space with intensity values 0, 1,

2, and 3. The image can be represented as a three-dimensional matrix of size

3× 3× 3, where each of the three slices can be illustrated as follows [129]:

0 0 1

0 1 2

0 2 3


1 2 3

0 2 3

0 1 2


1 3 0

0 3 1

3 2 1



The 3-D co-occurrence matrix Gd for the given image along the direction

d = (1, 0, 0) can be represented as a 4× 4 matrix, as illustrated below:
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Gd =


1 3 1 1

0 0 3 1

0 1 0 3

1 1 1 0



The Haralick texture features are derived from the normalized GLCM,

representing various characteristics of the gray-level distribution within the image

[130]. Normalized GLCM can be defined as follows [129]:

GNd =
1

N
Gd(i, j) (5.29)

Where, N represents the total number of co-occurrence pairs in Gd and is defined

as follows:

N =
∑
i,j

Gd(i, j) (5.30)

The value at position (i, j) in GNd represents the joint probability of pixels

with intensity i and j appearing together at a distance k in a specified direction

d.

5.2.2 Haralick Texture Features

Haralick et al. [127] described fourteen types of texture features that can be

extracted using normalized gray-level co-occurrence matrices. These features and

the corresponding equations used to compute them are listed below:

1. Angular second moment:

f1 =
∑
i

∑
j

p(i, j)2 (5.31)

2. Contrast:

f3 =

Ng∑
i=1

Ng∑
j=1

(i− j)2p(i, j) (5.32)

3. Correlation:

f3 =

∑Ng

i=1

∑Ng

j=1(ij)p(i, j)− µxµy

σxσy

(5.33)
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where µx, µy are means and σx, σy are the standard deviations of px and py.

4. Sum of squares: Variance:

f4 =

Ng∑
i=1

Ng∑
j=1

(i− µ)2p(i, j) (5.34)

5. Inverse Difference Moment:

f5 =

Ng∑
i=1

Ng∑
j=1

1

1 + (i− j)2
p(i, j) (5.35)

6. Sum Average:

f6 =

2Ng∑
i=2

ipx+y(i) (5.36)

7. Sum Variance:

f7 =

2Ng∑
i=2

(i− f8)
2px+y(i) (5.37)

8. Entropy:

f9 = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log(p(i, j)) (5.38)

9. Sum Entropy:

f9 = −
2Ng∑
i=2

px+y(i) log(px+y(i)) (5.39)

10. Difference Variance:

f10 =
N−1∑
k=0

(k − µx−y)
2px−y(k) (5.40)

11. Difference Entropy:

f11 = −
Ng−1∑
i=0

px−y(i) log(px−y(i)) (5.41)

12. Information Measure of Correlation-1:

f12 =
HXY −HXY 1

max(HX,HY )
(5.42)
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13. Information Measure of Correlation-2:

f13 =
√

1− exp[−2(HXY 2−HXY )] (5.43)

14. Maximal Correlation Coefficient:

f14 = (Second largest eigenvalue of Q)2 (5.44)

Where Q(i, j) =
∑

k
p(i,k)p(j,k)
px(i)py(k)

.

The above equations use various terms and notations, such as p(i), p(y),

HX, HY , etc., which are defined as follows:

• p(i, j) = P (i,j)
R

is the co-occurrence probability matrix.

• px(i) =
∑Ng

j=1 p(i, j) is the ith entry in the marginal-probability matrix ob-

tained by summing the rows of p(i, j).

• py(j) =
∑Ng

i=1 p(i, j) is the jth entry in the marginal-probability matrix ob-

tained by summing the columns of p(i, j).

• px+y(k) =
∑Ng

i=1

∑Ng

j=1 p(i, j), where k = 2, 3, ..., 2Ng.

• px−y(k) =
∑Ng

i=1

∑Ng

j=1 p(i, j), where k = 0, 1, ..., Ng − 1.

• HX = −
∑

i px(i) log(px(i)) is entropy of px.

• HY = −
∑

j py(j) log(py(j)) is entropy of py.

• HXY = −
∑

i

∑
j p(i, j) log(p(i, j))

• HXY 1 = −
∑

i

∑
j p(i, j) log(px(i)py(j)).

• HXY 2 = −
∑

i

∑
j px(i)py(j) log(px(i)py(j)).

5.2.3 Shape-based Descriptors

Along with the texture features, four simple shape-based features, viz., area,

perimeter, circularity, and accept ratio are also incorporated to make the feature

vector more robust and effective. These shape features are calculated as follows:
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• Area: It represents the total number of the object’s pixels that belong to the

specified object. The area of a segmented object of size M ×N is calculated

using the binary-segmented mask of the object as follows:

Area =
M∑
i=1

N∑
j=1

I(xij = 1) (5.45)

where, I is the indicator function that is used to include the pixels xij that

are equal to 1 (white pixel) and 0 (dark pixel) otherwise.

• Perimeter: We approximated the perimeter by counting the number of

boundary pixels of the segmented objects as follows [131]:

Perimeter =
N−1∑
i=1

|xi − xi+1| (5.46)

where, N is the total number of boundary pixels.

• Circularity: Circularity is a shape descriptor that indicates how close an

object’s shape is to that of a perfect circle. The following equation is used

to calculate the circularity of a segmented object [132]:

Circularity =
4π × Area

Perimeter2
(5.47)

• Accept Ratio: The aspect ratio is a measure of how elongated or stretched

an object is. The aspect ratio of an object in a binary image can be calculated

by determining the ratio of its major axis length to its minor axis length as

follows:

AspectRatio =
Major Axis Length

Minor Axis Length
(5.48)

5.2.4 Pixel Intensity-based Feature

In image analysis, pixel intensity-based features offer valuable information about

the grayscale and colour distribution of an image. Features like mean and median

pixel intensity, standard deviation, and minimum and maximum intensity, among

others, are commonly extracted to characterize the overall intensity properties.

However, focusing solely on these features from entire segmented images of parasite

eggs may overlook important local patterns such as edge thickness and internal

textures of objects like parasite eggs. To obtain more detailed information, the

segmented grayscale images are divided multiple into uniformly sized blocks, and

90



features are extracted from each block, as illustrated in Figure 5-1. The final

feature vector is then constructed by combining the values from all the blocks.

To evaluate the effectiveness of the feature set, several experiments using

different block sizes: 20× 20, 30× 30, 40× 40, and 60× 60 pixels, are conducted.

Each block size generates a distinct feature set, which is evaluated individually

during the classification stage to determine the optimal block size for image divi-

sion. This block-wise, pixel intensity-based feature set provides a detailed char-

acterization of the segmented object’s grayscale properties and allows to capture

local variations within the object. In this study, the following five intensity-based

features are extracted:

• Mean Intensity: The mean intensity represents the average pixel value

within the segmented object and is calculated as:

Mean Intensity =

∑N
i=1 Ii
N

(5.49)

• Maximum Intensity: The maximum intensity represents the highest pixel

value within the segmented object and is calculated as:

Maximum Intensity =
N

max
i=1

Ii (5.50)

• Minimum Intensity: Conversely, the minimum intensity represents the

lowest pixel value within the segmented object and is calculated as:

Minimum Intensity =
N

min
i=1

Ii (5.51)

• Variance: Variance measures the spread or dispersion of pixel intensities

within the segmented object and is calculated as:

V ariance =

∑N
i=1(Ii −Mean Intensity)2

N
(5.52)

• Standard deviation: Standard deviation quantifies the degree of deviation

of individual pixel intensities from the mean intensity and is calculated as:

Standard Deviation =

√∑N
i=1(Ii −Mean Intensity)2

N
(5.53)
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Figure 5-1: Process of Extracting Pixel Intensity-based Features. Here, f1, f2,
f3, f4, and f5 represent mean, maximum, minimum pixel intensity, variance, and
standard deviation, respectively.

5.3 Conclusion

In this chapter, the detailed process of feature extraction from segmented images

of parasite eggs and non-egg objects is discussed. Different types of feature sets

are carefully selected and extracted with the aim of effectively classifying parasite

eggs and distinguishing them from non-egg objects. The key contributions of the

chapter include:

• Selection and extraction of feature sets: Based on the extensive literature

review, six feature sets are selected and extracted from the segmented ob-

jects.

• Utilization of various image moments-based features: Four different kinds

of image moments, namely: Hu’s invariant moments, Legendre moments,

Chebyshev moments, and Krawtchuk moments, are extracted from the seg-

mented grayscale object images.

• Extraction of texture-based features: From the Gray Level Co-occurrence

Matrix (GLCM), of the images, fourteen texture features are extracted.

These texture feature are then combined with a few shape-based features,

including area, perimeter, circularity, and aspect ratio, for optimal classifi-

cation results.

• Extraction of pixel intensity-based features: This chapter proposes a method

for extracting basic pixel intensity values such as mean, maximum, minimum

intensity, variance, and standard deviation from segmented objects to create

an effective feature set for classification of parasite eggs.
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