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Table S1: Swelling (%) and weight loss (%) of the polymer films over the 16-day study 
period, calculated based on initial weight (Wi), swelled-up weight (Ws) and final weight 
(Wf) (Experiment I). 
 
 

Day Wi (g) Ws (g) Wf (g) S % L % 
PP CF1 

Day 2 0.820 0.885 0.818 7.927 0.244 
Day 4 0.820 0.850 0.816 3.659 0.488 
Day 8 0.820 0.865 0.813 5.488 0.854 
Day 16 0.820 0.895 0.806 9.146 1.707 

PLA CF1 
Day 2 0.505 0.515 0.498 1.980 1.386 
Day 4 0.505 0.533 0.487 5.545 3.564 
Day 8 0.505 0.575 0.370 13.861 26.733 
Day 16 0.505 0.514 0.340 1.782 32.673 

PCL CF1 
Day 2 0.612 0.680 0.608 11.057 0.702 
Day 4 0.612 0.690 0.580 12.690 5.275 
Day 8 0.612 0.635 0.570 3.707 6.908 
Day 16 0.612 0.660 0.569 7.790 7.072 

PVOH CF1 
Day 2 0.330 0.385 0.326 16.667 1.212 
Day 4 0.330 0.430 0.313 30.303 5.152 
Day 8 0.330 0.595 0.310 80.303 6.061 
Day 16 0.330 0.800 0.280 142.424 15.152 

PP CF2 
Day 2 0.874 0.875 0.871 0.114 0.343 
Day 4 0.874 0.940 0.869 7.551 0.572 
Day 8 0.874 0.965 0.850 10.412 2.746 
Day 16 0.874 1.000 0.830 14.416 5.034 

PLA CF2 
Day 2 0.497 0.512 0.490 2.977 1.448 
Day 4 0.497 0.510 0.488 2.574 1.850 
Day 8 0.497 0.535 0.430 7.603 13.516 
Day 16 0.497 0.505 0.350 1.569 29.606 

PCL CF2 
Day 2 0.677 0.685 0.610 1.254 9.832 
Day 4 0.677 0.715 0.607 5.689 10.275 
Day 8 0.677 0.695 0.610 2.732 9.832 
Day 16 0.677 0.698 0.620 3.176 8.354 

PVOH CF2 
Day 2 0.370 0.430 0.364 16.252 1.591 
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Day 4 0.370 0.420 0.342 13.549 7.539 
Day 8 0.370 0.685 0.320 85.192 13.487 
Day 16 0.370 0.870 0.270 135.208 27.004 

 

 

 

 

 

Table S2. Measured weight of the polymer films in alkalised urine after heating at different 
temperatures, and corresponding weight loss (%) (Experiment I). 
 

PP (Concentration Factor 1) 
 Measured weight (g) Weight loss (%) 

Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 
20 0.885 0.85 0.865 0.895     

100 0.818 0.816 0.813 0.806 7.57 4.00 6.01 9.94 
200 0.442 0.415 0.403 0.408 50.11 51.18 53.47 54.47 
300 0.397 0.373 0.379 0.401 55.11 56.18 56.16 55.22 
400 0.040 0.037 0.039 0.040 95.50 95.62 95.51 95.51 
550 0.015 0.014 0.015 0.015 98.33 98.33 98.22 98.30 

         
PLA (Concentration Factor 1) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.515 0.533 0.575 0.514     
100 0.498 0.487 0.370 0.340 3.30 8.63 35.65 33.85 
200 0.308 0.318 0.300 0.285 40.29 40.34 47.83 44.55 
300 0.215 0.223 0.210 0.200 58.20 58.24 63.48 61.19 
400 0.062 0.053 0.075 0.048 88.06 90.06 86.96 90.76 
550 0.010 0.010 0.007 0.007 97.98 98.12 98.71 98.68 

         
PCL (Concentration Factor 1) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.68 0.69 0.635 0.66     
100 0.608 0.580 0.570 0.590 10.59 15.94 10.24 10.61 
200 0.204 0.193 0.162 0.127 70.00 72.00 74.54 80.73 
300 0.020 0.019 0.016 0.013 97.00 97.20 97.45 98.07 
400 0.009 0.009 0.007 0.006 98.65 98.74 98.85 99.13 
550 0.005 0.004 0.004 0.003 99.33 99.37 99.43 99.57 
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PVOH (Concentration Factor 1) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.385 0.43 0.595 0.8     
100 0.326 0.313 0.310 0.280 15.32 27.21 47.90 65.00 
200 0.180 0.165 0.155 0.140 53.25 61.63 73.95 82.50 
300 0.072 0.066 0.062 0.056 81.30 84.65 89.58 93.00 
400 0.014 0.013 0.012 0.011 96.26 96.93 97.92 98.60 
550 0.007 0.007 0.006 0.006 98.13 98.47 98.96 99.30 

         
PP (Concentration Factor 2) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.875 0.94 0.965 1     
100 0.871 0.869 0.850 0.830 0.46 7.55 11.92 17.00 
200 0.435 0.440 0.482 0.490 50.29 53.19 50.10 51.00 
300 0.392 0.413 0.433 0.420 55.26 56.06 55.10 58.00 
400 0.039 0.042 0.043 0.042 95.53 95.50 95.51 95.80 
550 0.016 0.018 0.017 0.017 98.15 98.11 98.24 98.34 

         
PLA (Concentration Factor 2) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.512 0.51 0.535 0.505     
100 0.490 0.490 0.430 0.350 4.30 3.92 19.63 30.69 
200 0.285 0.366 0.282 0.302 44.34 28.24 47.29 40.30 
300 0.200 0.256 0.197 0.211 61.04 49.76 63.10 58.21 
400 0.057 0.061 0.071 0.050 88.87 88.04 86.82 90.05 
550 0.010 0.010 0.009 0.007 98.09 98.08 98.39 98.61 

         
PCL (Concentration Factor 2) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.685 0.715 0.695 0.698     
100 0.610 0.570 0.610 0.620 10.95 20.28 12.23 11.17 
200 0.230 0.248 0.184 0.118 66.50 65.34 73.57 83.15 
300 0.023 0.025 0.018 0.012 96.65 96.53 97.36 98.32 
400 0.010 0.011 0.008 0.005 98.49 98.44 98.81 99.24 
550 0.005 0.006 0.004 0.003 99.25 99.22 99.41 99.62 
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PVOH (Concentration Factor 2) 

 Measured weight (g) Weight loss (%) 
Temp Day 2 Day 4 Day 8 Day 16 Day 2 Day 4 Day 8 Day 16 

20 0.43 0.42 0.685 0.87     
100 0.364 0.342 0.320 0.270 15.35 18.57 53.28 68.97 
200 0.185 0.185 0.160 0.135 56.98 55.95 76.64 84.48 
300 0.074 0.074 0.064 0.054 82.79 82.38 90.66 93.79 
400 0.015 0.015 0.013 0.011 96.56 96.48 98.13 98.76 
550 0.007 0.007 0.006 0.005 98.28 98.24 99.07 99.38 

 
         

 

Table S3: Degree of crystallinity (Xc) of various PLLA films obtained by PXRD, 
calculated by dividing area under peaks (Ac) by total area under the curve (At) of the PXRD 
spectra (Experiment II). 

 

 

Sample Number 
of peaks 

Area under 
peaks (Ac) 

Total area under 
the curve (At) 

Degree of crystallinity 
(Xc) Xc = Ac / At × 100% 

Virgin 0.05 mm 5 122209.3 274127.2 44.5 
0.05 mm at 20 °C 
in urine (Day 2) 4 80730.6 241524.9 33.4 

0.05 mm at 45 °C 
in urine (Day 2) 3 52872.7 155897.3 33.9 

0.1 mm at 20 °C in 
urine (Day 2) 7 200869.4 338559.8 59.3 

0.1 mm at 45 °C in 
urine (Day 2) 6 60047.5 154066.6 38.9 

0.25 mm at 20 °C 
in urine (Day 2) 7 168681.7 368789.7 45.7 

0.23 mm at 45 °C 
in urine (Day 2) 7 159667.4 368789.7 43.2 

0.05 mm at 20 °C 
in Milli-Q water 
(Day 8) 

6 98255.1 220931.3 44.4 

0.05 mm at 45 °C 
in Milli-Q water 
(Day 8) 

2 157230.2 244086.8 47.7 
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Table S4: Change in pH of NaOH stabilized urine over thirty-two days due to the release 
of KOH pellets from the polymer pouches in Concentration Factor 1 and Concentration 
Factor 10 urine (Experiment III). 

DAY pH 
0 2 4 8 16 24 32 

CF 1/PH 11/1 
LAYER 11.29 11.21 12.43 12.22 12.24 12.19 12.17 
CF 1/PH 14/1 
LAYER 14.03 14.13 14.1 14.12 14.08 14.04 13.99 
CF 10/PH 11/1 
LAYER 11.22 12.55 12.42 12.33 12.18 12.16 12.17 
CF 10/ PH 14/1 
LAYER 14.37 14.41 14.33 14.3 14.24 14.22 14.26 
CF 1/PH 11/2 
LAYER 11.29 11.21 11.19 11.15 12.23 12.14 12.04 
CF 1/PH 14/2 
LAYER 14.03 13.84 14.14 14.04 14.02 13.96 13.88 
CF 10/PH 11/2 
LAYER 11.22 11.19 11.14 12.29 12.22 12.12 12.05 
CF 10/ PH 14/2 
LAYER 14.37 14.22 14.4 14.3 14.25 14.2 14.2 
CF 1/PH 11/3 
LAYER 11.29 11.19 11.16 11.11 11.07 12.09 12.03 
CF 1/PH 14/3 
LAYER 14.03 14.02 13.87 14.13 13.98 13.81 13.69 
CF 10/PH 11/3 
LAYER 11.22 11.25 11.14 11.09 12.16 12.01 11.99 
CF 10/ PH 14/3 
LAYER 14.37 14.21 14.11 14.28 14.21 14.13 14.02 
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Table S5: Change in K conc. in NaOH stabilized urine over thirty-two days due to the release 
of KOH pellets from the polymer pouches in Concentration Factor 1 and Concentration 
Factor 10 urine. The green colour denotes the days when there was a rise in K conc. due to 
the breakage of the pouches (Experiment III). 

K-Test (mg/L) 
DAY 0 2 4 8 16 24 32 
CF 1/PH 11/1 
LAYER 1671.10 1619.57 2997.14 2878.26 2878.03 2854.39 2799.56 
CF 1/PH 14/1 
LAYER 1671.10 3048.01 2969.63 2885.98 2872.09 2861.86 2812.43 
CF 10/PH 11/1 
LAYER 3172.53 5303.60 5284.16 5296.64 5194.17 5211.39 5144.67 
CF 10/ PH 14/1 
LAYER 3172.53 5397.09 5266.76 5106.57 5133.18 5128.43 5120.56 
CF 1/PH 11/2 
LAYER 1671.10 1609.13 1662.75 1697.99 2995.55 2887.70 2867.78 
CF 1/PH 14/2 
LAYER 1671.10 1657.33 3027.30 2897.34 2844.97 2877.49 2872.54 
CF 10/PH 11/2 
LAYER 3172.53 3108.00 3158.06 5270.39 5092.35 5098.77 5056.66 
CF 10/ PH 14/2 
LAYER 3172.53 3123.54 5308.92 5167.14 5082.64 4997.47 5011.34 
CF 1/PH 11/3 
LAYER 1671.10 1659.54 1677.84 1616.45 1613.98 2902.90 2945.45 
CF 1/PH 14/3 
LAYER 1671.10 1691.68 1623.90 3003.04 2806.32 2818.02 2809.65 
CF 10/PH 11/3 
LAYER 3172.53 3107.77 3108.22 3149.99 5257.76 5153.82 5153.65 
CF 10/ PH 14/3 
LAYER 3172.53 3152.31 3174.20 5273.57 5065.31 4995.30 5056.89 
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Table S6: Calculated Potassium concentration (K conc). Conc. of K (dosed) is the 
concentration of K in urine after 0.2 g of KOH is mixed in urine and conc. of K (treated) is 
the reduced concentration of K in urine due to the formation of KLa (Experiment III). 

K CONC (mg/L) [DOSED -TREATED] 

DAY 0 2 4 8 16 24 32 
CF 1/PH 11/1 LAYER 0.00 1434.82 57.25 176.13 176.36 200.00 254.83 
CF 1/PH 14/1 LAYER 0.00 6.38 84.76 168.41 182.30 192.53 241.96 
CF 10/PH 11/1 LAYER 0.00 300.00 319.44 306.96 409.42 392.20 458.93 
CF 10/ PH 14/1 LAYER 0.00 206.50 336.84 497.03 470.41 475.17 483.04 
CF 1/PH 11/2 LAYER 0.00 1445.26 1391.64 1356.40 58.84 166.69 186.61 
CF 1/PH 14/2 LAYER 0.00 1397.06 27.09 157.05 209.42 176.90 181.85 
CF 10/PH 11/2 LAYER 0.00 2495.60 2445.54 333.21 511.25 504.83 546.94 
CF 10/ PH 14/2 LAYER 0.00 2480.05 294.68 436.46 520.96 606.13 592.26 
CF 1/PH 11/3 LAYER 0.00 1394.85 1376.55 1437.94 1440.41 151.49 224.94 
CF 1/PH 14/3 LAYER 0.00 1362.71 1430.49 51.35 248.07 236.38 244.74 
CF 10/PH 11/3 LAYER 0.00 2495.83 2495.38 2453.60 345.84 449.77 449.95 
CF 10/ PH 14/3 LAYER 0.00 2451.28 2429.39 330.03 538.29 608.30 546.71 

 

 

Table S7: Amount of KLa formed calculated (Experiment III).  

Amount of KLA2 formed (mg/L) [(DOSED - TREATED) / 0.3] 

DAY 0 2 4 8 16 24 32 
CF 1/PH 11/1 LAYER 0.00 0.00 17.75 54.60 54.67 62.00 79.00 
CF 1/PH 14/1 LAYER 0.00 1.98 26.27 52.21 56.51 59.68 75.01 
CF 10/PH 11/1 LAYER 0.00 93.00 99.03 95.16 126.92 121.58 142.27 
CF 10/ PH 14/1 LAYER 0.00 64.02 104.42 154.08 145.83 147.30 149.74 
CF 1/PH 11/2 LAYER 0.00 0.00 0.00 0.00 18.24 51.67 57.85 
CF 1/PH 14/2 LAYER 0.00 0.00 8.40 48.69 64.92 54.84 56.37 
CF 10/PH 11/2 LAYER 0.00 0.00 0.00 103.29 158.49 156.50 169.55 
CF 10/ PH 14/2 LAYER 0.00 0.00 91.35 135.30 161.50 187.90 183.60 
CF 1/PH 11/3 LAYER 0.00 0.00 0.00 0.00 0.00 46.96 69.73 
CF 1/PH 14/3 LAYER 0.00 0.00 0.00 15.92 76.90 73.28 75.87 
CF 10/PH 11/3 LAYER 0.00 0.00 0.00 0.00 107.21 139.43 139.48 
CF 10/ PH 14/3 LAYER 0.00 0.00 0.00 102.31 166.87 188.57 169.48 
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Table S8: pH of urine dehydrated in circular (airtight) and linear alkaline urine dehydration 
setups using Potassium Polyacrylate (KPAc) and Sodium Polyacrylate (NaPAc) Super 
Absorbent Polymers. 50 g alkaline urine with 11.95 pH was dehydrated to concentration 
factors 1.25, 2, 2.5 and 5 in a circular and linear setup and the pH was measured (Experiment 
IV). 

 circular linear 
CF pH (KPAc) 
1 11.95 11.95 11.95 11.95 11.95 11.95 
1.25 11.92 11.93 11.91 11.52 11.61 11.55 
2 11.89 11.87 11.88 11.01 10.98 11.05 
2.5 11.85 11.82 11.81 10.67 10.57 10.53 
5 11.62 11.67 11.65 9.67 9.72 9.81 
 pH (NaPAc) 
1 11.95 11.95 11.95 11.95 11.95 11.95 
1.25 11.91 11.89 11.93 11.58 11.63 11.51 
2 11.85 11.85 11.86 11.12 11.02 10.93 
2.5 11.88 11.79 11.77 10.56 10.64 10.45 
5 11.73 11.69 11.63 9.56 9.78 9.61 

 

 

Table S9: Time taken for urine to dehydrate (min) and drying rate (kg/day/m2) of circular 
(airtight) and linear alkaline urine dehydration setups using Polyacrylate (KPAc) and 
Sodium Polyacrylate (NaPAc) Super Absorbent Polymers. 50 g alkaline urine was 
dehydrated to concentration factors 1.25, 2, 2.5 and 5 in a circular and linear setup and the 
time taken was measured (Experiment IV). 

CF Weight (g) Time taken (min) Drying rate (kg/day/m2) 
  KPAc 
  circular linear circular linear 
1 50 0 0 0 0 
1.25 40 105 45 0.001117709 0.001564792 
2 25 360 225 0.000814996 0.001029469 
2.5 20 465 330 0.000757158 0.000938875 
5 10 585 420 0.000802458 0.001043195 
  NaPAc 
1 50 0 0 0 0 
1.25 40 120 45 0.000977995 0.001564792 
2 25 375 225 0.000782396 0.001029469 
2.5 20 510 330 0.000690349 0.000938875 
5 10 615 420 0.000763313 0.001043195 
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Table S10: Moisture absorbed and water recycled from Potassium Polyacrylate (KPAc) and 
Sodium Polyacrylate (NaPAc) Super Absorbent Polymers during alkaline urine dehydration 
in a circular (airtight) setup. 50 g alkaline urine was dehydrated in 12-hour cycles eight times 
and the amount of moisture absorbed by the SAPs were weighed. Water was extracted from 
the SAPs using a rotary evaporator (Experiment IV). 

Cycle 
no 

Drying 
time 
(h) 

Total urine 
dehydrated 
(g) 

Moisture absorbed 
Absorption 
rate 
(kg/day/m2) 

Water extracted 

1 2 Average 1 2 Average 
KPAc 
1 12 46 45.2 45.6 45.4 0.004486 44.8 45.1 44.95 
2 12 46 44.8 44.7 44.75 0.004421 44.6 44.4 44.5 
3 12 46 44.9 44.3 44.6 0.004406 44.1 43.3 43.7 
4 12 46 43 44.1 43.55 0.004303 42.6 42.1 42.35 
5 12 46 36 38.2 37.1 0.003665 35.6 36.9 36.25 
6 12 46 33.3 36.2 34.75 0.003433 33.1 34.7 33.9 
7 12 46 31.7 33.6 32.65 0.003226 31.2 31.6 31.4 
8 12 46 31.9 32.5 32.2 0.003181 31.6 31.1 31.35 
NaPAc 
1 12 46 44.6 44.3 44.45 0.004392 43.2 43.1 43.15 
2 12 46 43.3 43.8 43.55 0.004303 42.1 42.6 42.35 
3 12 46 40.9 42.4 41.65 0.004115 39.8 41.1 40.45 
4 12 46 38.7 40.1 39.4 0.003893 37.6 38.2 37.9 
5 12 46 38.1 37.7 37.9 0.003745 36.6 35.9 36.25 
6 12 46 35.5 33.5 34.5 0.003409 32.4 30.6 31.5 
7 12 46 33.8 34.1 33.95 0.003354 30.1 30.3 30.2 
8 12 46 31.8 32.2 32 0.003162 27.8 29.4 28.6 
1:1 (KPAc+NaPAc) 
1 12 46 44.6 43.9 44.25 0.004372 44.1 42.9 43.5 
2 12 46 43.6 44.2 43.9 0.004337 42.9 42.4 42.65 
3 12 46 43.4 42.9 43.15 0.004263 42.7 40.9 41.8 
4 12 46 42.3 41.8 42.05 0.004155 41.1 40.8 40.95 
5 12 46 40.8 41.2 41 0.004051 38.9 40.2 39.55 
6 12 46 37 37.8 37.4 0.003695 35.7 36.1 35.9 
7 12 46 31.8 34.3 33.05 0.003265 28.9 30.3 29.6 
8 12 46 27.8 32.1 29.95 0.002959 24.7 29.1 26.9 
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Table S10: Complete list of Organic Metabolites tested for in urine and water extracted 
(Experiment IV). 

Superclass Class Sub-class Metabolites 

Benzenoids Phenols Methoxyphenols 3-Methoxytyramine 

Benzenoids phenols benzenediols Dopamine 

Benzenoids phenols benzenediols Epinephrine 

Benzenoids Phenols Benzenediols Norepinephrine 

Benzenoids Benzene and 
substituted 
derivatives 

Phenethylamine
s 

Phenylethylamine 

benzenoids Benzene and 
substituted 
derivatives 

Phenethylamine
s 

Tyramine 

Benzenoids Benzene and 
substituted 
derivatives 

Phenylacetic 
acids 

2-Hydroxyphenylacetic 
acid 

Benzenoids Phenols 1-hydroxy-4-
unsubstituted 
benzenoids 

3-Hydroxyphenylacetic 
acid 

Benzenoids Benzene and 
substituted 
derivatives 

Benzoic acids 
and derivatives 

4-Hydroxybenzoic acid 

Benzenoids Phenols 1-hydroxy-2-
unsubstituted 
benzenoids 

4-Hydroxyphenylacetic 
acid 

Benzenoids Benzene and 
substituted 
derivatives 

phenylpyruvic 
acid derivatives 

4-
Hydroxyphenylpyruvic 
acid 

Benzenoids Benzene and 
substituted 
derivatives 

Benzoic acids 
and derivatives 

Benzoic acid 

Benzenoids Benzene and 
substituted 
derivatives 

Benzoic acids 
and derivatives 

Hippuric acid 
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Benzenoids Phenols Methoxyphenols Homovanillic acid 

Benzenoids Benzene and 
substituted 
derivatives 

N/A Phenylacetic acid 

Benzenoids Benzene and 
substituted 
derivatives 

Benzoic acids 
and derivatives 

p-Hydroxyhippuric 
acid 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C14:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C16:1 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C16:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C17:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C18:2 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C18:1 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C18:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C20:4 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C20:3 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C24:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C26:1 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C26:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C28:1 
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lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

LysoPC a C28:0 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM(OH) C14:1 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM C16:1 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM C16:0 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM(OH) C16:1 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM C18:1 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C32:2 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM C18:0 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM C20:2 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC ae C36:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C36:6 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C36:0 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM(OH) C22:2 

lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM(OH) C22:1 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C38:6 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

Pc aa C38:0 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

Pc ae C40:6 
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lipids and lipid-like 
molecules 

Sphingolipids Phosphosphingo
lipids 

SM(OH) C24:1 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C40:6 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C40:2 

lipids and lipid-like 
molecules 

Glycerophospholip
ids 

Glycerophospho
cholines 

PC aa C40:1 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C2 L-Acetylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C3:1 
Propenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C3 Propionylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C4:1 Butenylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C4 Butyrylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C3OH 
Hydroxypropionylcarni
tine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C5:1 Tiglylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C5 Valerylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C4OH 3-
Hydroxybutyrylcarniti
ne  

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C6:1 2-
Hexenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C6 Hexanoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C5:1DC 
Glutaconylcarnitine 
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Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C5DC 
Glutarylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C8 Octanoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C5MDC 3-
Methylglutarylcarnitin
e 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C9  2,6 
Dimethylheptanoyl 
carnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C7DC Pimelylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C10:2 (3,8)-
Decadienoylcarnitine 
& (2,7)-
Decadienoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C10:1 9-
Decenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C10 Decanoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C12:1 trans-2-
Dodecenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C12 
Dodecanoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C14:2 3, 5-
Tetradecadiencarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C14:1 cis-5-
Tetradecenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C14 
Tetradecanoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C14:2OH  3-Hydroxy-
5,8-
tetradecadienoylcarniti
ne 
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Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C14:1OH   3-Hydroxy-
cis-5-
tetradecenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C16:2 9,12-
Hexadecadienoylcarnit
ine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C16:1 9-
Hexadecenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C16 Palmitoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C16:2OH 3-
Hydroxyhexadecadien
oylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C16:1OH   3-Hydroxy-
9-
hexadecenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C16OH  3-
Hydroxyhexadecanoyl
carnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C18:2   Linoleyl 
carnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C18:1 Elaidic carnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C18 Stearoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters C18:1OH   3-Hydroxy-
9Z-
octadecenoylcarnitine 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters 2-Hydroxy-2-
methylbutyric acid 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters 2-Hydroxy-3-
methylvaleric acid 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acid esters 2-Hydroxyisovaleric 
acid 
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Lipids and lipid-like 
molecules 

Fatty acyls Fatty alcohols 3-Deoxyglucosone 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acids and 
conjugates 

3-Hydroxyisovaleric 
acid 

Lipids and lipid-like 
molecules 

Fatty acyls Fatty acids and 
conjugates 

3-Methyladipic acid 

Lipids and lipid-like 
molecules  

Fatty Acyls Fatty acids and 
conjugates  

Caproic acid 

Lipids and lipid-like 
molecules  

Fatty Acyls Fatty acids and 
conjugates  

Caprylic acid 

Lipids and lipid-like 
molecules  

Fatty Acyls Fatty acids and 
conjugates  

CMPF 

Lipids and lipid-like 
molecules  

Fatty Acyls Fatty acids and 
conjugates  

Ethylmalonic acid 

Lipids and lipid-like 
molecules  

Fatty Acyls Fatty acids and 
conjugates  

Isovaleric acid 

Lipids and lipid-like 
molecules + organic 
acids and derivatives 

Fatty Acyls + 
Carboxylic acids 
and derivatives 

Fatty acids and 
conjugates + 
Carboxylic 
Acids 

Butyric acid + 
Isobutyric acid 

N/A N/A N/A C5OH 
Hydroxyvalerylcarnitin
e 

Nucleosides, 
nucleotides, and 
analogues 

pyrimidine 
nucleosides 

N/A 5-Methyluridine 

nucleosides, 
nucleotides, and 
analogues 

purine nucleosides N/A Adenosine 

Nucleosides, 
nucleotides, and 
analogues 

Purine nucleosides Purine 2´-
deoxyribonucleo
sides 

Cytosine 

Nucleosides, 
nucleotides, and 
analogues 

Pyrimidine 
nucleosides 

pyrimidine 2´-
deoxyribonucleo
sides 

Deoxyadenosine 
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Nucleosides, 
nucleotides, and 
analogues 

Purine nucleosides Purine 2´-
deoxyribonucleo
sides 

Deoxyguanosine 

Nucleosides, 
nucleotides, and 
analogues 

Purine nucleosides Purine 2´-
deoxyribonucleo
sides 

Deoxyinosine 

Nucleosides, 
nucleotides, and 
analogues 

Pyrimidine 
nucleosides 

pyrimidine 2´-
deoxyribonucleo
sides 

Deoxyuridine 

Nucleosides, 
nucleotides, and 
analogues 

Purine nucleosides N/A Guanosine 

Nucleosides, 
nucleotides, and 
analogues 

Purine nucleosides N/A Inosine 

nucleosides, 
nucleotides, and 
analogues 

Pyridine 
nucleotides 

Nicotinamide 
nucleotides 

Nicotinamide ribotide 

Nucleosides, 
nucleotides, and 
analogues 

Pyrimidine 
nucleosides 

pyrimidine 2´-
deoxyribonucleo
sides 

Thymidine 

Nucleosides, 
nucleotides, and 
analogues 

Pyrimidine 
nucleosides 

N/A Uridine 

Nucleosides, 
nucleotides, and 
analogues 

Purine nucleotides Cyclic purine 
nucleotides 

cAMP 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

5-Hydroxylysine 

Organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

α-Aminobutyric acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

amino acids, 
peptides, and 
analogues 

Asymmetric 
dimethylarginine 
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organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Alanine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

alpha-Aminoadipic 
acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Arginine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Asparagine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Aspartic acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

β-Alanine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Betaine 

organic acids and 
derivatives 

peptidomimetics hybrid peptides Carnosine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

cis-4-Hydroxyproline 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Citrulline 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Creatine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Creatinine 
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organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Cystathionine 

organic acids and 
derivatives 

carboximidic acids 
and derivatives 

carboximidic 
acids 

Diacetylspermine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

DOPA 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

γ-Aminobutyric acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Glutamine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Glutamic acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Glycine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Histidine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Homocitrulline 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Isoleucine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Leucine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Lysine 
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organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Methionine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Methionine Sulfoxide 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Methylhistidine 

organic acids and 
derivatives 

Carboximidic 
acids and 
derivatives 

Carboximidic 
acids 

N1-Acetylspermidine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N2-Acetyl-Ornithine 

organic acids and 
derivatives 

Carboximidic 
acids and 
derivatives 

Carboximidic 
acids 

N-Acetylputrescine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Nitro-Tyrosine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Ornithine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Phenylalanine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Proline 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Sarcosine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Serine 
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Organic Acids and 
derivatives 

Organic sulfonic 
acids and 
derivatives 

Organosulfonic 
acids and 
derivatives 

Taurine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Threonine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Total Dimethylarginine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

trans-4-
Hydroxyproline 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Tyrosine 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Valine 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Tricarboxylic 
acids and 
derivatives 

C12DC 
Dodecanedioylcarnitin
e 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Alpha hydroxy 
acids and 
derivatives 

2-Hydroxybutyric acid 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

short-chain 
hydroxy acids 
and derivatives 

2-hydroxyglutaric acid 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Alpha hydroxy 
acids and 
derivatives 

2-Hydroxyisobutyric 
acid 

Organic acids and 
derivatives 

Keto acids and 
derivatives 

Medium-chain 
keto acids and 
derivatives 

2-oxoadipic acid 

Organic acids and 
derivatives 

Keto acids and 
derivatives 

short-chain keto 
acids and 
derivatives 

2-oxoisocaproic acid 
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Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Beta hydroxy 
acids and 
derivatives 

3,4-Dihydroxybutyric 
acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

3-Aminoisobutyric 
acid 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Beta hydroxy 
acids and 
derivatives 

3-Hydroxybutyric acid 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Beta hydroxy 
acids and 
derivatives 

3-Hydroxyisobutyric 
acid 

organic acids and 
derivatives 

organic sulfuric 
acids and 
derivatives 

Arylsulfates 4-Ethylphenyl sulfate 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

5-Oxoproline 

organic acids and 
derivatives 

Keto acids and 
derivatives 

Short-chain keto 
acids and 
derivatives 

Acetoacetic acid 

organic acids and 
derivatives 

Keto acids and 
derivatives 

Gamma-keto 
acids and 
derivatives 

alpha-Ketoglutaric acid 

organic acids and 
derivatives 

Keto acids and 
derivatives 

Short-chain keto 
acids and 
derivatives 

alpha-Ketoisovaleric 
acid 

organic acids and 
derivatives 

carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Argininic acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Tricarboxylic 
acids and 
derivatives 

cis-Aconitic acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Tricarboxylic 
acids and 
derivatives 

Citric acid 
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Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Dimethylglycine 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Dicarboxylic 
acids and 
derivatives 

Fumaric acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Dicarboxylic 
acids and 
derivatives 

Glutaric acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Guanidoacetic acid 

organic acids and 
derivatives 

Organic sulfuric 
acids and 
derivatives 

Arylsulfates Indoxyl sulfate 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Tricarboxylic 
acids and 
derivatives 

Isocitric acid 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Alpha hydroxy 
acids and 
derivatives 

Lactic acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Dicarboxylic 
acids and 
derivatives 

Maleic acid 

Organic acids and 
derivatives 

Hydroxy acids and 
derivatives 

Beta hydroxy 
acids and 
derivatives 

Malic acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Dicarboxylic 
acids and 
derivatives 

Malonic acid 

Organic acids and 
derivatives 

Carboxylic acids 
and derivatives 

Dicarboxylic 
acids and 
derivatives 

Methylmalonic acid 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N1-Acetyl-Lysine 
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Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N6-Acetyl-Lysine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Alanine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Arginine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Asparagine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Aspartic acid 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Glutamine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Glutamic 
acid 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Glycine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Histidine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Isoleucine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Leucine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Methionine 
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Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Proline 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Serine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Tryptophan 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Tyrosine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

N-Acetyl-Valine 

organic acids and 
derivatives 

organic sulfuric 
acids and 
derivatives 

Arylsulfates p-Cresol sulfate 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Phenylacetylglutamine 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Amino acids, 
peptides, and 
analogues 

Pipecolic acid 

Organic Acids and 
derivatives 

Carboxylic acids 
and derivatives 

Carboxylic 
Acids 

Propionic acid 

Organic acids and 
derivatives 

Keto acids and 
derivatives 

Alpha-keto 
acids and 
derivatives 

Pyruvic acid 

organic nitrogen 
compounds 

Organonitrogen 
compounds 

Amines 1,3-Diaminopropane 

organic nitrogen 
compounds 

organonitrogen 
compounds 

guanidines Agmatine 

organic nitrogen 
compounds 

organonitrogen 
compounds 

quaternary 
ammonium salts 

Choline 
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organic nitrogen 
compounds 

organonitrogen 
compounds 

Amines Dimethylamine 

organic nitrogen 
compounds 

organonitrogen 
compounds 

Amines Ethanolamine 

Organic nitrogen 
compounds 

Organonitrogen 
compounds 

Amines Histamine 

Organic nitrogen 
compounds 

Organonitrogen 
compounds 

Amines Methylamine 

organic nitrogen 
compounds 

organonitrogen 
compounds 

Amines Putrescine 

organic nitrogen 
compounds 

organonitrogen 
compounds 

Amines Spermidine 

organic nitrogen 
compounds 

organonitrogen 
compounds 

Amines Spermine 

organic nitrogen 
compounds 

Organonitrogen 
compounds 

Aminoxides Trimethylamine N-
oxide 

organic nitrogen 
compounds 

organonitrogen 
compounds 

Amines Trimethylamine 

organic nitrogen 
compounds 

organonitrogen 
compounds 

quaternary 
ammonium salts 

C0 L-Carnitine 

Organic nitrogen 
compounds 

Organonitrogen 
compounds 

Guanidines Guanidinopropionic 
acid 

organic oxygen 
compounds 

Organooxygen 
compounds 

Carbonyl 
compounds 

Kynurenine 

Organic oxygen 
compounds 

organooxygen 
compounds 

Carbohydrates 
and 
carbohydrate 
conjugates 

Glucose 

organic oxygen 
compounds 

Organooxygen 
compounds 

Carbohydrates 
and 
carbohydrate 
conjugates 

Glyceric acid 

organic oxygen 
compounds 

Organooxygen 
compounds 

Carbohydrates 
and 

Indoxyl glucuronide 
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carbohydrate 
conjugates 

organic oxygen 
compounds 

Organooxygen 
compounds 

Carbohydrates 
and 
carbohydrate 
conjugates 

Indoxyl glucoside 

Organoheterocyclic 
compounds 

Pyridines and 
derivatives 

Pyridinecarboxy
lix Acids and 
derivatives 

1-Methylnicotinamide 

organoheterocyclic 
compounds 

Indoles and 
derivatives 

tryptamines and 
derivatives 

5-Methoxytryptamine 

organoheterocyclic 
compounds 

imidazopyrimidine
s 

Purines and 
purine 
derivatives 

7-Methylguanine 

organoheterocyclic 
compounds 

imidazopyrimidine
s 

Purines and 
purine 
derivatives 

Adenine 

organoheterocyclic 
compounds 

Azoles imidazoles Allantoin 

organoheterocyclic 
compounds 

Diazines pyrimidines and 
pyrimidine 
derivatives 

Cytidine 

organoheterocyclic 
compounds 

Imidazopyrimidine
s 

Purines and 
purine 
derivatives 

Guanine 

organoheterocyclic 
compounds 

imidazopyrimidine
s 

Purines and 
purine 
derivatives 

Hypoxanthine 

organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indoles Indole 

organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indoles Indole-3-acetamide 

organoheterocyclic 
compounds 

Pyridines and 
derivatives 

Pyridinecarboxy
lic acids and 
derivatives 

Nudifloramide 
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organoheterocyclic 
compounds 

Indoles and 
derivatives 

Tryptamines 
and derivatives 

Serotonin 

Organoheterocyclic 
compounds 

Diazines Pyrimidines and 
pyrimidine 
derivatives 

Thymine 

Organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indolyl 
carboxylic acids 
and derivatives 

Tryptophan 

organoheterocyclic 
compounds 

indoles and 
derivatives 

Tryptamines 
and derivatives 

Tryptamine 

Organoheterocyclic 
compounds 

Diazines Pyrimidines and 
pyrimidine 
derivatives 

Uracil 

Organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indolyl 
carboxylic acids 
and derivatives 

3-Indoleacetic acid 

Organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indolyl 
carboxylic acids 
and derivatives 

5-Hydroxyindoleacetic 
acid 

Organoheterocyclic 
compounds 

Furans Furoic acid and 
derivatives 

2,5-Furandicarboxylic 
acid 

Organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indolecarboxyli
c acids and 
derivatives 

Indole-3-carboxylic 
acid 

Organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indolyl 
carboxylic acids 
and derivatives 

Indole-3-propionic 
acid 

Organoheterocyclic 
compounds 

Indoles and 
derivatives 

Indolyl 
carboxylic acids 
and derivatives 

Indolelactic acid 

Organoheterocyclic 
compounds 

quinolines and 
derivatives 

Quinoline 
carboxylic acids 

Kynurenic acid 

organoheterocyclic 
compounds 

Diazines pyrimidines and 
pyrimidine 
derivatives 

Orotic acid 
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Phenylpropanoids and 
polyketides 

Cinnamic acids 
and derivatives 

Hydroxycinnam
ic acids and 
derivatives 

Caffeic acid 

Phenylpropanoids and 
polyketides 

Phenylpropanoic 
acids 

N/A HPHPA 

 

 

Figure S1: (a) Dry potassium polyacrylate (top) and potassium polyacrylate after 
moisture absorption (bottom), (b) dry sodium polyacrylate (top) and sodium polyacrylate 
after moisture absorption (bottom) (Experiment IV).  
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S1. Energy demand calculation of the circular urine dehydrating setup 

The primary objective of the setup was to evaporate 45 g of urine in a 12-hour drying cycle. 

The heat of vaporization of urine (ΔHv) is approximately 2360 kJ kg⁻¹. The energy required 

to evaporate 45 g (0.045 kg) of urine is = Heat of vaporization × mass of urine   

            =2360  kJ kg-1 × 0.0045 kg   =106.2 kJ 

The pump, operating at 200 W over 12 hours, consumes = 200 W × (12 × 3600)s  

                         = 200 W × 43,200 s = 8640 kJ 

The energy efficiency of the system is then calculated as the ratio of the useful energy (used 

for evaporation) to the total energy input, ɳ = used energy/ input energy 

                  = 106.2 kJ/ 8640 = 0.012 

This low efficiency indicates significant energy losses within the system. 

 

S1.1. Energy loss analysis of lab scale circular urine dehydrating setup 

Energy loss in the system occurs primarily through heat transfer via conduction and 

convection. The temperatures inside and outside the drying chamber, as well as the 

temperature of the pump, contribute to these losses. The following formulas are used to 

calculate the heat loss: 

Q = Qconduction + Qconvection 

Qconduction = 𝑘𝑘 × 𝐴𝐴 × (𝑇𝑇𝑖𝑖𝑖𝑖−𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜) × 𝑡𝑡
𝑑𝑑

 

Qconvection = ℎ ×  𝐴𝐴 ×  (𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)  ×  𝑡𝑡 

Where:             

Q is the rate of heat transfer.       

k is the thermal conductivity of the glass = 0.8 W/(m.K) (approx.) 

h is the specific convection coefficient of urine = 15 W/(m²·K) (approx.) 
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From the data collected from the experiment, we know that 

Temperature inside the drying chamber (Tin) = 27°C = 300 K      

Temperature outside the drying chamber (Tout) = 20°C = 293 K     

Temperature of the pump (Tpump)= 46°C = 319K 

Diameter of the drying chamber = 12.5 cm, radius (r) = 6.25 cm  

Height of the drying chamber = 16 cm     

Curved surface area of the drying chamber (A) = 2πrh = 1408cm2 = 0.14m2 

Wall thickness of the glass chamber (d) = 0.5 cm =0.005 m    

  

Power of the pump (P) = 200 W         

Amount of urine to be dried = 0.0045 kg  

Time taken to dry, t = 12 hours = 43200 seconds      

  

Latent heat of vaporization of urine ΔHv ~ 2360 kJ kg-1  

 

Qconduction = [0.8 × 0.14 × (300−293) × 43200]
0.005

       

  = 6.78 × 106 J 

Qconvection = 15 × 0.14 × (319−293) × 43200   

                 = 2.5 × 106 J 

Thus, total heat loss, Q = (6.78 + 2.5) × 106 J = 9280 kJ.     

  

Heat loss factor = 𝑄𝑄
𝐴𝐴× ΔT 

 ,  
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where Q is heat loss, A is the surface area of the drying chamber and ΔT is the temperature 

difference 

Heat loss factor = 9280 𝑘𝑘𝑘𝑘
0.14 𝑚𝑚2 × 7𝐾𝐾

 

    = 9359.2 kJ m-2 K 

This is significant heat loss and indicates potential areas for improvement to enhance system 

efficiency. 

 

S1.2. Scaling up the circular urine dehydrating setup 

Urine dehydrating chamber to dehydrate 6 L of urine in 12 hours. 

Volume of urine: 6 liters, 

Assuming the chamber to be a cylindrical drying reactor. The volume V of a cylinder is given 
by: V = πr2h 

where r is the radius and h is the height. 

If we set a practical height for easy handling, for example, 50 cm (0.5 m):  

V = 6 liters = 0.006 m3 

πr2 × 0.5 =0.006 

r2 = 0.006/ 0.5π  

r ≈ 6.2 cm 

So, the drying reactor could have: 

Height, h = 50 cm 

Radius, r = 6.2 cm 

 

Absorbent chambers with SAPs to absorb 90% of the moisture generated. 

90% of the evaporated urine = 5.4 kg 

We will assume each absorption chamber to be also cylindrical for consistency and ease of 
design. 

To maximize the area of interaction, let's assume a height of 50 cm (similar to the drying 
reactor). 

Using a similar volume calculation, let's determine a suitable radius for each SAP reactor. 
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For practical design, assume we use 2 SAP reactors, each handling half of the moisture:  

Moisture per SAP reactor = 5.4 kg/ 2 = 2.7 kg 

Given that SAPs can absorb many times their weight in water, we need to account for the 
total volume they will occupy when absorbing moisture. 

Assuming SAPs absorb 30 times their weight in water: Volume occupied by absorbed 
moisture in each SAP reactor = 2.7 kg × 30 = 81 kg or 81L. 

πr2 × 0.5 = 0.081 

r2  = 0.081/ 0.5π  

r ≈ 22.7 cm 

So, each SAP reactor could have: 

Height, h = 50 cm 

Radius, r = 22.7 cm 

Connecting Pipes 

For efficient airflow, the diameter of the connecting pipes should allow for smooth flow 
without significant pressure drop. 

We will assume a pipe diameter of 5 cm to balance flow rate and system size. 

To evaporate 6 kg of urine and ensure 90% moisture absorption by SAPs. 

Using psychrometric principles (detailed usage and calculation in the next section) and 
ensuring sufficient air exchange, we estimate: 

Airflow rate =Volume of air required to remove moisture 

Assuming an air exchange rate that effectively removes 5.4 kg of water vapour, estimated air 
flow rate per reactor = 500 m³/h 

Total system air flow rate = 3 reactors × 500 m³/h = 1500 m³/h. 

Typical power ratings for such pumps range from 500 W to 1 kW depending on the efficiency 
and design of the system. 

 

S1.3. Calculation of The Optimum Airflow using Psychrometric Principles 

Psychrometric principles involve the study of the thermodynamic properties of moist air and 

the use of these properties to analyze conditions and processes involving moist air. To 

evaluate the airflow rate required for a urine-dehydrating system, we need to understand the 

relationship between air temperature, humidity, and the evaporation process. 
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1. Dry Bulb Temperature (DBT): The temperature of air measured by a regular 

thermometer. 

2. Wet Bulb Temperature (WBT): The temperature of air measured by a 

thermometer covered with a water-soaked cloth over its bulb. 

3. Relative Humidity (RH): The ratio of the current amount of water vapour in the air 

to the maximum amount of water vapour the air can hold at the same temperature. 

4. Dew Point Temperature: The temperature at which air becomes saturated with 

moisture and water vapour starts to condense. 

5. Specific Humidity (or Humidity Ratio): The mass of water vapour per unit mass 

of dry air. 

6. Enthalpy: The total heat content of the air, including both sensible and latent heat. 

 

 

Steps to Evaluate Airflow Rate Using Psychrometric Principles 

1. Determination of the amount of moisture to be evaporated: 

o Total urine to evaporate: 6 kg in 12 hours. 

o Moisture to be absorbed by SAPs: 90% of 6 kg = 5.4 kg. 

o Moisture to be handled by the air: 6 kg (since we are interested in the total 

evaporation). 

2. Calculation of the evaporation rate: 

o Evaporation rate = Total urine / Time = 6 kg/ 12 hours = 0.5 kg/ hour 

3. Determination of the initial and final conditions of air: 

o Initial conditions (e.g., inside the drying chamber): Dry Bulb Temperature 

(DBT) = 27°C, Relative Humidity (RH) = 50%. 

o Final conditions (e.g., outside the drying chamber): Dry Bulb Temperature 

(DBT) = 20°C, Relative Humidity (RH) = varies based on the design. 

4. Using the psychrometric chart: 
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o Plot the initial conditions on the psychrometric chart (DBT and RH). 

o Determine the specific humidity (or humidity ratio) and enthalpy at the 

initial conditions. 

o Plot the final conditions on the psychrometric chart. This will help to find 

the final specific humidity and enthalpy. 

5. Calculation of the change in humidity ratio: 

o ΔW=Wfinal−Winitial 

Where W is the specific humidity. 

6. Calculation of the required airflow rate: 

o Use the mass balance equation for the water vapour: 

o Evaporation rate = Airflow rate × ΔW 

o Airflow rate = Evaporation rate/ ΔW 

 

S1.4. Calculation for the Scaled Up Circular Urine Dehydrating Setup  

• Initial conditions: DBT = 27°C, RH = 50%. 

• Final conditions: DBT = 20°C, RH = 90%. 

From the psychrometric chart: 

• Initial specific humidity (Winitial)  at 27°C and 50% RH ≈ 0.010 kg/ kg dry air. 

• Final specific humidity (Wfinal) at 20°C and 90% RH ≈ 0.013 kg/ kg dry air. 

Change in humidity ratio (ΔW): 

• ΔW = 0.013−0.010 = 0.003 kg /kg dry air 

Using the evaporation rate: 

• Airflow rate = (0.5 kg/ hour)/ (0.003 kg/kg dry air) = 166.67 kg dry air/hour 
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Converting this to volumetric flow rate (using the density of air, 1.2 kg/m³ at standard 

conditions): 

• Airflow rate (m³/hour) = (166.67 kg dry air/hour)/ (1.2 kg/m³)  

≈138.89 m³/hour 

To handle the moisture effectively, total system air flow rate = 138.89 m³/ hour × 3  

≈ 416.67 m³/hour. 

However, considering real conditions and ensuring effective evaporation and absorption, we 

typically oversize the airflow rate. So, a pump capacity of at least 500 m³/hour per reactor 

would be recommended. 
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