TABLE OF CONTENTS

CERTIFICATES	III-V
ACKNOWLEDGEMENTS	VI
ABSTRACT	VIII
TABLE OF CONTENTS	X
LIST OF FIGURES	XIII
LIST OF TABLES	XVII
CHAPTER 1: INTRODUCTION	1
1.1. THE NEED FOR SOURCE SEPARATION OF URINE	3
1.2. ALKALINE URINE DEHYDRATION FOR NUTRIENT RECOVERY	7
AND CHALLENGES	6
1.3. STRATEGIES TO BUFFER THE pH OF URINE DURING	
ALKALINE URINE DEHYDRATION	7
1.4. REDUCED ENERGY DEMAND	10
1.5. OBJECTIVES AND STRUCTURE OF THE THESIS	11
CHAPTER 2: REVIEW OF LITERATURE	14
2.1. NUTRIENT RECYCLING FROM SOURCE-SEPARATED URINE	16
2.2. POLYMERS IN WASTEWATER TREATMENT	21
2.3. DEGRADATION OF POLYMERS IN AQUATIC AND MARINE	
ENVIRONMENTS	23
2.4. PASSIVE TREATMENT OF WASTEWATER	29
2.5. MOISTURE ABSORPTION VIA SUPER ABSORBENT POLYMERS	30
2.6. REMOVAL OF ORGANIC METABOLITES VIA POLYMERS	31
2.7 REMOVAL OF ORGANIC METABOLITES VIA ACTIVATED	
CARBON	33
2.8. FABRICATION OF BIOCHAR FROM HUMAN FECES AND	
REMOVAL OF MICROPOLLUTANTS USING BIOCHAR	34
2.9. HUMAN URINE AS A CHEMICAL RESOURCE	34
2.10. RESEARCH GAP	37

CHA	TER 3: MATERIALS AND METHODS	39
	3.1. COLLECTION AND ALKALIZING FRESH HUMAN URINE	40
	3.2. DEHYDRATING THE URINE	40
	3.3. PREPARATION OF THE POLYMER FILMS AND POUCHES	40
	3.4. FILTRATION SETUP	41
	3.5. THE CIRCULAR URINE DEHYDRATING SETUP AND THE	
	SUPERABSORBENT POLYMERS	42
	3.6. EXPERIMENTAL SETUPS	42
	3.6.1. EXPERIMENT I	42
	3.6.2. EXPERIMENT II	43
	3.6.3. EXPERIMENT III	44
	3.6.4. EXPERIMENT IV	45
	3.7. CHARACTERISATION	47
	3.7.1. pH AND ELECTRICAL CONDUCTIVITY	47
	3.7.2. CHEMICAL OXIDATION DEMAND	47
	3.7.3. FOURIER-TRANSFORMED INFRARED SPECTRA	48
	3.7.4. POWDER X-RAY DIFFRACTION	48
	3.7.5. GEL PERMEATION CHROMATOGRAPHY	48
	3.7.6. SCANNING ELECTRON MICROSCOPY AND ENERG	Y
	DISPERSIVE X RAY SPECTROSCOPY	48
	3.7.7. INDUCTIVELY COUPLED PLASMA-OPTICAL EMISS	SION
	SPECTROMETRY	49
	3.7.8. THERMAL MONITORING OF WEIGHT LOSS	49
	3.7.9. POTASSIUM CONCENTRATION TEST	49
	3.7.10. QUANTIFICATION OF ORGANIC METABOLITES	49
	3.8. CALCULATIONS	51
	3.9. STATISTICAL ANALYSES	55
CHA	TER 4: RESULTS	56
	4.1. MONITORING THE DEGRADATION OF POLYMER FILMS IN	
	URINE	57
	4.2. IDENTIFYING THE BY-PRODUCTS	68
	4.3. BUFFERING THE pH OF THE DEHYDRATING URINE	73

4.4. RECYCLING WATER FROM DEHYDRATING URINE	75
4.5. REMOVAL OF ORGANIC METABOLITES	79
4.6. THERMODYNAMICS OF THE CLOSED-LOOP URINE	
DEHYDRATING SETUP	83
CHAPTER 5: DISCUSSION	84
5.1. CHOOSING THE BEST POLYMER FOR THE PASSIVE CHEMIC	CAL
DOSING SYSTEM	85
5.2. UNDERSTANDING THE EFFECTS OF pH, TEMPERATURE AN	D
FILM THICKNESS ON THE DEGRADATION RATE OF	
POLY L-LACTIC ACID	86
5.3. BUFFERING THE PH OF THE DEHYDRATING ALKALINE	
URINE	88
5.4. EXTRACTING REUSABLE WATER	91
5.5. REMOVAL OF ORGANIC METABOLITES BY SAPs	93
5.6. REMOVAL OF ORGANIC METABOLITES BY ACTIVATED	
CARBON	94
5.7. ENERGY DEMAND AND DESIGN OF THE CIRCULAR URINE	
DEHYDRATING SYSTEM	95
5.8. OPTIMAL MANAGEMENT OF pH IN ALKALINE URINE	
DEHYDRATION	98
5.9. TECHNO-ECONOMIC ANALYSIS	99
CHAPTER 6: CONCLUSION	101
CHAPTER 7: SCOPE FOR FUTURE RESEARCH	105
BIBLIOGRAPHY	108
SUPPLEMENTARY INFORMATION	118
LIST OF PUBLICATIONS AND CONFERENCE PRESENTATIONS	155