Dedicated to.....

My beloved parents

NILUTPAL

DECLARATION

I do hereby declare that the thesis entitled "Fixed-bed Pyrolytic conversion of Tithonia diversifolia: Process Optimization, Catalytic Effects and Kinetic Study", being submitted to the Department of Energy, Tezpur University, is a record of original research work carried out by me. All sources of assistance have been assigned due acknowledgment. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for any other degree, diploma or award.

Place: Tezpur University, Tezpur

(Nilutpai Bhuyan)

Date: 25/12/2024

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) Napaam, Tezpur-784028 *District: Sonitpur: Assam: India* Ph: 03712-267004, 267005 Fax: 03712-267005, 267006

CERTIFICATE

This is to certify that the thesis entitled "Fixed-bed Pyrolytic conversion of *Tithonia diversifolia: Process Optimization, Catalytic Effects and Kinetic Study*" submitted to the Tezpur University in the Department of Energy under the School of Engineering; in partial fulfillment for the award of the Degree of Doctor of Philosophy in Energy, has been examined by us on 2.5-12-2.5 and found to be satisfactory.

The committee recommends for the award of the degree of Doctor of Philosophy.

upulald.

Sign. of Supervisor

Sign. of External Examiner

Date: 25-12-2024

Date:

TEZPUR UNIVERSITY (A Central University Established by an Act of Parliament) Napaam, Tezpur-784028, Sonitpur, Assam, India

Dr. Rupam Kataki Professor Department of Energy Tezpur University, Assam, India Phone: +91(3712)27-5308 +91 9435380921(M) E-mail: <u>rupam@tezu.ernet.in</u>

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "Fixed-Bed Pyrolytic Conversion of *Tithonia diversifolia*: Process Optimization, Catalytic Effects and Kinetic Study" submitted to the Department of Energy, School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Energy is a record of research work carried out by Mr. Nilutpal Bhuyan under my supervision and guidance. He has been duly registered (Registration No. TZ189837 of 2018) and the thesis presented is worthy of being considered for the Ph. D Degree.

All help received by his from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

Date: 25-12-2029 Place: Tezpur University

(Prof. Rapam Kataki) Supervisor

Dr. Rupam Kataki Professor Dept. of Energy, Tezpur University Napaam, Tezpur- 784028, Assam

DECLARATION

I do hereby declare that the thesis entitled "*Fixed-bed Pyrolytic conversion of Tithonia diversifolia: Process Optimization, Catalytic Effects and Kinetic Study*", being submitted to the Department of Energy, Tezpur University, is a record of original research work carried out by me. All sources of assistance have been assigned due acknowledgment. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for any other degree, diploma or award.

Place: Tezpur University, Tezpur

(Nilutpal Bhuyan)

Date:

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) Napaam, Tezpur-784028 *District: Sonitpur: Assam: India* Ph: 03712-267004, 267005 Fax: 03712-267005, 267006

CERTIFICATE

This is to certify that the thesis entitled *"Fixed-bed Pyrolytic conversion of Tithonia diversifolia: Process Optimization, Catalytic Effects and Kinetic Study"* submitted to the Tezpur University in the Department of Energy under the School of Engineering; in partial fulfillment for the award of the Degree of Doctor of Philosophy in Energy, has been examined by us on and found to be satisfactory.

The committee recommends for the award of the degree of Doctor of Philosophy.

Sign. of Supervisor

Sign. of External Examiner

Date:

Date:

TEZPUR UNIVERSITY (A Central University Established by an Act of Parliament) **Napaam, Tezpur-784028, Sonitpur, Assam, India**

Dr. Rupam Kataki Professor Department of Energy Tezpur University, Assam, India Phone: +91(3712)27-5308 +91 9435380921(M) E-mail:<u>rupam@tezu.ernet.in</u>

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "**Fixed-Bed Pyrolytic Conversion of** *Tithonia diversifolia*: **Process Optimization, Catalytic Effects and Kinetic Study**" submitted to the Department of Energy, School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Energy is a record of research work carried out by **Mr. Nilutpal Bhuyan** under my supervision and guidance. He has been duly registered (Registration No. TZ189837 of 2018) and the thesis presented is worthy of being considered for the Ph. D Degree.

All help received by his from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

Date: Place: Tezpur University (Prof. Rupam Kataki) Supervisor

ACKNOWLEDGEMENT

At this moment of accomplishment, it gives me immense pleasure to express my gratitude to all those who contributed in various ways to the success of this study and made this thesis possible. Though words are not enough to fully convey my gratitude, I would still like to thank everyone who made this an unforgettable experience for me.

First and foremost, I would like to thank the Almighty for showering His blessings and giving me the strength, courage, and patience to make everything possible.

I would like to express my profound sense of reverence to my research supervisor, Prof. R. Kataki, whose unwavering dedication, sage guidance, and insightful discussions have been the cornerstones of my Ph.D. endeavor. His mentorship has not only shaped my academic pursuits but has also instilled in me a deeper understanding of my field. I am very much obliged to the Almighty for giving me the golden opportunity to work with such a dedicated personality.

1 am highly indebted to the honorable Vice-Chancellor of Tezpur University, Prof. S. N. Singh, as well as Prof. V. K. Jain and Prof. M.K. Chaudhuri, former Vice-Chancellors of Tezpur University, for allowing me to carry out my research in a cordial and scientific environment. 1 extend my heartfelt gratitude to my doctoral committee members, Prof. T. K. Maji and Prof. D. Deka, along with Dr. Biraj Kakati, whose expertise and constructive feedback have enriched my research journey.

I express my sincere gratitude and thanks to Prof. S. Mahapatra, Head, Prof. R. Kataki, and Prof. D. C. Baruah, former heads of the Department of Energy, for providing me with the necessary facilities to carry out my research work. I would also like to thank Dr. P. K. Choudhury, Dr. N. Sarmah, and Dr. V. Verma of the Department of Energy for their support, encouragement, and valuable advice.

My heartfelt thanks are extended to the technical staff, including Dr. Biswajit Gogoi (former technical officer), Madhurjya Borah, Tapanjit Borah, and T. Lahon, whose support has been invaluable. My gratitude extends to the various department & institutions, including SAIC, Tezpur University, Assam Science and Technology University, IIT Guwahati, and Guwahati Biotech Park, for their invaluable assistance and collaboration.

I extend my heartfelt appreciation to Tezpur University for the institutional fellowship that has enabled me to pursue my research with financial ease during the initial four years of my doctoral journey.

The camaraderie and knowledge-sharing within my research lab have been invaluable, thanks to the guidance of Dr. Debashis Sut, Dr. Neon J. Bordoloi, Dr. Rumi Narzari, Dr. Ruprekha Saikia, and Dr. Lina Gogoi. Special appreciation

goes to my fellow lab mates, Neelam, Mondita, and Priyanka, whose camaraderie has made the journey both stimulating and enjoyable. I am especially grateful to Debashis da, Rumi ba, and Neelam for their invaluable assistance in preparing several manuscripts based on this thesis.

I would particularly like to thank Dr. Nabajyoti Saikia (Associate Professor, Kaziranga University) for helping me throughout my Ph.D. journey and the preparation of a few manuscripts, as well as for his encouragement, discussions, and constructive suggestions during the entire course of my Ph.D. program. Likewise, I extend my thanks to Prof. Kalidas Upadhyaya, Department of Forestry, Mizoram University, for his invaluable assistance during the selection of feedstocks. The contributions of Dr. Satyabrat Malla Bujar Baruah, Dr. Kabita Boruah, and Dr. Nabajit Dev Choudhury are also acknowledged with gratitude for their insightful discussions and assistance.

Throughout my Ph.D. work, 1 received invaluable assistance from my friends, especially, Sumu, Kuldeep da, Manash da, Rakchinpha da, Hilly ba, Niran, Pritam, Anurag, Satya, Nithin, Biswa, Aftab, Bidyut, Uddipan, Dipanka, Uddipta, Swagat da, Dikhya, and all my fellow researchers. Their encouragement and helps like offering feedback on drafts, providing moral support during challenging times were invaluable. I would also like to extend my sincere gratitude to Bidyut and Uddipan for their invaluable help and timely assistance with the formatting of this manuscript.

Special thanks to the principal, DCB Girls' College and all the faculties of the Department of Chemistry, DCB Girls' College for their help, support, and encouragement.

No words can express my deepest gratitude and love for my family, especially my beloved Maa and Gagu (younger brother). *Deuta*, though you are no longer with us, your unwavering hope for me to become a college teacher has always been a constant source of inspiration. While I deeply regret not completing this degree during your lifetime, I know you would be immensely proud of this achievement. To all of them, I owe an immense debt of gratitude for their unwavering love, encouragement, and support throughout this journey. This Ph.D. thesis is a result of their extraordinary efforts and sacrifices. My successes are dedicated to them, now and always. Lastly, I would like to thank all the well-wishers for their blessings and prayers, which encouraged me to complete this research work.

(Nilutpal Bhuyan)

LIST OF TABLES

Contents	Page no.
Types of waste biomass feedstocks utilized in pyrolysis	35
Physicochemical and biochemical properties of diverse	37-42
waste biomass feedstocks	
Process parameters and their levels	113
CCD experimental design matrix	114
ANN parameters used to train, model, and optimize the	116
bio-oil yield	
Algebraic expressions for the $f(\alpha)$ and $g(\alpha)$ functions.	125
Physicochemical characterization of biomass	131
Bio-chemical characteristics of biomass	131
Physico-chemical analysis of TD bio-oil	137
¹ H-NMR result of the bio-oil	140
GC-MS compounds for non-catalytic pyrolysis oil	141
Variations in biomass and biochar characteristics across	143
different temperatures	
Experimental and predicted bio-oil yield as per the	155
CCD experimental design matrix	
ANOVA for Response Surface Quadratic model	157
Comparison of RSM and ANN models using statistical	162
parameters for design data	
Validation of RSM and ANN model for additional	163
experimental data	
Thermal characteristics of TD biomass for active	170
pyrolysis zone (zone 2)	
Mean activation energies and frequency factors	175
determined by various methods	
	Types of waste biomass feedstocks utilized in pyrolysisPhysicochemical and biochemical properties of diversewaste biomass feedstocksProcess parameters and their levelsCCD experimental design matrixANN parameters used to train, model, and optimize thebio-oil yieldAlgebraic expressions for the f(α) and g(α) functions.Physicochemical characterization of biomassBio-chemical characteristics of biomassPhysico-chemical analysis of TD bio-oil'H-NMR result of the bio-oilGC-MS compounds for non-catalytic pyrolysis oilVariations in biomass and biochar characteristics acrossdifferent temperaturesExperimental and predicted bio-oil yield as per theCCD experimental design matrixANOVA for Response Surface Quadratic modelComparison of RSM and ANN models using statisticalparameters for design dataValidation of RSM and ANN model for additionalexperimental dataThermal characteristics of TD biomass for activepyrolysis zone (zone 2)Mean activation energies and frequency factors

Table no.	Contents	Page no.
Table 4.13	Kinetic parameters of different stages of the one-step	181
	thermal decomposition process of TD determined by	
	Friedman methods.	
Table 4.14	Impregnated metal content in M/ZSM-5 catalysts as	191
	per the EDX analysis	
Table 4.15	Surface area (BET and BJH) and Pore volume for	192
	different catalysts	
Table 4.16	Product distribution of the pyrolysis process	194
Table 4.17	Characteristics of non-catalytic and catalytic bio-oil	194
Table 4.18	Percentage of H based on ¹ H-NMR analysis of bio-oil	197
Table 4.19	Thermal analysis parameters of various catalysts	202
	blended samples for active pyrolysis zone at different	
	heating rates	
Table 4.20	Kinetic parameters	206

Figure no. Page no. Contents Fig. 1.1 Various conversion routes and utilization of lignocellulosic biomass 12 Fig. 1.2 Flow diagram of pyrolysis unit for different product formation 14 Fig. 2.1 Catalytic upgrading of biomass 58 Fig. 3.1 Flow diagram of the methodology adopted for the study 104 Fig. 3.2 Tithonia diversifolia 105 Fig. 3.3 Schematic of pyrolysis experimental setup 110 Fig. 3.4 Pyrolysis liquid product: (A) aqueous and (B) organic phase 111 Fig. 3.5 ANN architecture 117 Fig. 4.1 Spectroscopic analysis of biomass 132 Fig. 4.2 Effect of temperature on pyrolysis product yield 133 Fig. 4.3 Effect of heating rate on pyrolysis product yield 134 Fig. 4.4 Effect of particle size on pyrolysis product yield 135 Fig. 4.5 Effect of N₂ gas flow rate on pyrolysis product yield 136 Fig. 4.6 FTIR of TD bio-oil 138 ¹H-NMR spectrum of the bio-oil Fig. 4.7 139 Fig. 4.8 Total ion chromatogram of TD bio-oil 140 Fig. 4.9 FTIR analysis of biochar at different temperatures 145 Fig. 4.10 SEM imagery of biochar at (i) 400 °C, (ii) 500 °C and (ii) 600 °C 146-147 Fig. 4.11 3D-response surface plots showing the effects of different 158 parameters on bio-oil yield (%) (A: T, Temperature (°C); B: HR, Heating rate (°C/min); C: FR, Nitrogen flow rate; D: PS: Particle size (mm)) Fig. 4.12 Evaluation of the optimal number of neurons depending on the 160 selected algorithms.

LIST OF FIGURES

Figure no.	Contents	Page no.
Fig. 4.13	(a) Training, (b) Test, (c) Validation, and (d) the best fit for all	161
	expected data sets for the ANN model and (e) all expected data sets	
	for the RSM model	
Fig. 4.14	Comparison of ANN and RSM predictive capabilities per	162
	experimental run.	
Fig. 4.15	Level of importance of process variables on the bio-oil yield.	164
Fig. 4.16	TG/ DTG curves of TD at various heating rates	169
Fig. 4.17	$Y(\alpha)$ master plots	171
Fig. 4.18	(a) Friedman, (b) FWO and (c) KAS plots	173
Fig. 4.19	Apparent activation energies (Ea) and lnA as a function of	176
	fractional conversions (α) for Friedman, KAS, FWO, and Miura-	
	Maki method	
Fig. 4.20	Plot of various thermodynamic parameters as a function of	177
	fractional conversion.	
Fig. 4.21	Single-step combined kinetic model fit results.	178
Fig. 4.22	Experimental and calculated curves obtained at different heating	179
	rates for single step devolatilization process	
Fig. 4.23	Plots of Ea as a function of $lnAa$ for different pyrolytic	181
	decompositions stages of TD	
Fig. 4.24	Powder X-ray diffraction pattern of different catalysts (HZSM-5,	188
	Co/ZSM-5, and Ni/ZSM-5)	
Fig. 4.25	SEM mages of (A) HZSM-5, (B) Co/ZSM-5 and (C) Ni/ZSM-5	189
Fig. 4.26	EDX analysis of (A)HZSM-5, (B) Co/ZSM-5 and (C) Ni/ZSM-5	190
Fig. 4.27	(A) N2 adsorption-desorption isotherm of different catalysts, and	191
	(B) BJH Pore distribution	
Fig. 4.28	Product distribution of the non-catalytic and catalytic pyrolysis	193
	process	

Figure no.	Contents	Page no.
Fig. 4.29	¹ H-NMR analysis of different bio-oil: (A) non-catalytic, (B) HZSM-	196
	5, (C) Co/ZSM-5, and (D) Ni/ZSM-5	
Fig. 4.30	Total ion chromatogram of different bio-oil: (A) Non-catalytic (B)	197-198
	HZSM-5 (C) Co/ZSM-5 and (D) Ni/ZSM-5	
Fig. 4.31	Effect of catalyst on different types of compounds according to GC-	199
	MS data	
Fig. 4.32	TG and DTG diagram of biomass samples containing (A) HZSM-5,	200-201
	(B) Co/ZSM-5, and (C) Ni/ZSM-5	
Fig. 4.33	Friedman, FWO, and KAS plots for different samples: (A) TD+	202-203
	ZSM-5 (B) TD+ Co/ZSM-5 (C) TD+ Ni/ZSM-5	
Fig. 4.34	Kinetic parameters (E_{α} and lnA_{α}) for single-step pyrolysis model of	204
	biomass samples containing: (a) HZSM-5 (b) Co/ZSM-5 (c)	
	Ni/ZSM-5	
Fig. 4.35	Comparison of average activation energy obtained using Friedman,	205
	KAS, and FWO methods for various catalytic and non-catalytic	
	samples	
Fig. 4.36	Plot of <i>lnA</i> as a function of α for catalytic and non-catalytic samples	207
	for Friedman method	
Fig. 4.37	$Y(\alpha)/Y(0.5)$ master plots for single-step pyrolysis of biomass	208
-	samples containing: (A) HZSM-5 (B) Co/ZSM-5 and (C) Ni/ZSM-5	
Fig. 4.38	Variations in (A) enthalpy change (ΔH_{α}) , (B) entropy change (ΔS_{α}) ,	210-211
U	and (C) Gibbs free energy change (ΔG_{α}) with respect to α	

LIST OF ABBRIVIATIONS

TD	Tithonia diversifolia
IEA	International Energy Agency
BET	Brunauer-Emmett-Teller
CV	Calorific Value
TGA	Thermogravimetric Analysis
DTG	Differential Thermogravimetric
FTIR	Fourier Transformed Infrared
FWO	Flynn-Wall-Ozawa
KAS	Kissinger Akahira Sunose
UNFCCC	United Nations Framework Convention on Climate Change
IRENA	International Renewable Energy Agency
СК	Combined Kinetic Model
NMR	Nuclear Magnetic Resonance
GC-MS	Gas chromatography-Mass spectrometry
GHG	Greenhouse Gas
IEO	International Energy Outlook
ICTAC	International Thermal Analysis and Calorimetry Society
VM	Volatile Matter
MC	Moisture Content
FC	Fixed Carbon
ANN	Artificial Neural Network
RSM	Response Surface Methodology
SEM	Scanning Electron Microscope
TGA	Thermogravimetric Analysis
TIC	Total Ion Chromatogram
XRD	X-ray Diffraction
EIA	Energy Information Administration

тлл	Laward and Managardt
LM	Levenberg-Marquardt
MLP	Multi-Layer Perception
LEARNGD	Gradient Descent Learning Function
NIST	National Institute of Standards and Technology
STR	Starink
FRM	Friedman
VYZ	Vyazovkin
CCD	Central Composite Design
FTIR	Fourier Transform Infrared Spectroscopy
BJH	Barrett-Joyner-Halenda
BET	Brunauer-Emmett-Teller
EDX	Energy Dispersive X-ray spectroscopy
EC	Electrical Conductivity
\mathbb{R}^2	Coefficient of Determination
RMSE	Root Mean Square Error
MAE	Mean Absolute Error
AAD	Absolute Average Deviation
SEP	Standard Error of Prediction
α	Fractional conversion
R	Gas constant
β	Heating Rate
А	Arrhenius constant
Ea	Activation energy
ΔS	Change in entropy
ΔG	Change in free energy
ΔH	Change in enthalpy